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INTRODUCTION
The electronic structure and magnetic properties of actinide metals

1, 2. One of

nas has been the subject of several works in recent years
the most interesting feature of these metals is the absence of magnetism
in the beginning of the series in contrast with the almost similar series
of the rare-earth metals. Characterized dy an incomplete 5f shell which
is gradually filled along the series, they differ from the rare-earth
metals in two fundamental aspects. Firstly due the spatial extension

of the 5f shell, one expects in solids the existence of f-bands instead

of the usual atomic-like f states typical of rare-earth metals. Secondly
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the existence of a d-band (also shown to exist in rare-earths) which is
expected to be larger in energy in actinides by spatial extension arguments,
seems to play a fundamental role in the vroperties of actinide metals. In

fact, 2 recent werk by R. Jullien ‘et al. 2,

has shown that the
magnetic properties of actinide metals can De explained by assuming a strong
d-t hybridization among 5f and 6d states. We adopt nere the same point

2, and treat the d-f hybridization matrix element as a

of view as in
phenomenological parameter, without any ambition of calculating it from
first principles. It 1is the opurpose of this work to extend ref.
2 in two points. Firstiy, instead of assuming two virtual bound states
(f and d) we consider two bands of f and d type (f is assumed to be a
narrow band). Within this picture we expect to recover the real situa-
tion of rather important overlap awong neighbouring 5f shells.
Secondly, electron-electron corvelations discussed in ref.2 within the
Hartree-Fock approximation are discussed here within the variational
method of Reoth 3. This method has proven to be satisfving in
discussing electron correlations 1in narrow bands, and has been
applied to s-d hybridized bands in transition metals by the

authors 4 5,

and by Fauikner and Schweitzer In this paper the
results obtained in ref. 4 are generalized to the <case of

two hybridized f and d bands. This paper is organized as follows: firstly
we discuss the case of hybridized bands 1in presence of intra
atomic f and d Couiomb repulsion and compare with the Hubbard approxima-

6

tion. Secondly the case of inter-orbital (d-f) Coulomb 1interaction
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is discussed and compared to the previous case. Finally the method of

8

Kishore and Joshi ° is discussed to obtain analytical expressions for the

density of states and the self-consistency is briefly discussed.

II. FORMULATION OF THE PROBLEM AND INTRA ORBITAL REPULSION CASE

The general formulation of the actinide metal problem would envolve
an Hamiltonian describing three overlapping bands (of s, d and f character)
hybridization among them (through Vsd’ Vs and Vas matrix elements) and
the Coulomb repulsion terms. Previous experience 8 with the Hartree-Fock
approximation as applied to this band picture show that the most interest-
ing effects in the electronic density of states are associated to the Vdf
matrix elements. Although not necessary but for simplicity reasons we omit
here the s-like band which introduce only the usual effects of s-d and s-f
hybridization, and consider the following model hamiltonian for actinide
metals; in second quantized form and in the Wannier representation:

- (d) 4* | (f) ¢+ (f) n(F)
= b Ty Yo die L T fio fio t Ur B e iyt

d) (d), , dy (), (d) (f
s off o e 3 B0 P2 0]+ e

+
* Veq Fio dio} ()

In expression (1) the two first terms describe the energy bands of
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d and f character respectively, the third and fourth terms the intra
orbital Coulomb interactions, the last two terms being the inter orbital
Coulomb interaction and the f-d hybridization terms. However in this
first part we drop the inter orbital term, the effect of it being separate
1y discussed in the third part. In this part we consider the following

hamiltonian:

Ho 7 gt g« 7 1Bt o5 o4y Iv di f. +
¥ : ' i i
i5.0 ij Tio “jo 75,0 13 10 " jo it L.df ioc o

It is important to emphasize that the hamiltonian without the last
two terms is exactly soluble, the difficulty lying in the Coulomb terms.

Now we follow strictly Roth's procedure 3n

By analogy to his choice we take the following basis set:

ORN (f) ¢ |
{m d c? ffo’ Mi-o ficsf (3)
In the absence of Coulomb repulsion (U; = Ue = 0) the first and the

third term of this basis set provides the exact so?ution of the probliem.
Now the operators of the basis set satisfy the following equations of

motion:

2 (d: d
[dio’%iJ =5y T dy + Yy lS di vy g (4-2)

(d) -y ofd d)[,(d) . _
EH dig> ﬁﬂ = %Mo Yot t Tlﬂ 1_1 -5 Y0 * %i-0 Y40 Yio

+ (d) + _ et
g TP T } Vdf“{ fig ¥ 4ig fig i =~ Fig di¢ 10}(4 b)
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I I S IR TN ¢ )
Fio, %] = % Tip’ o v % Mg Fio * Vea dio (4-c)

£ £ £
U-): fio’%]: Ue niT) £+ 3, TS ){ {7 fog * Fog Frog Fig™

. ‘
+ (f) + ot -
fz -@ f i-0 fi%} + Vfd {?1-0 dio + fi-o di-o fic di-c fi-c fio:} (4-d)

These equations are perfectly symmetric for f and d electrons and
Jescribe kinetic, Coulomb and mixing effects. Now we follow-Roth's
approach and calculate the energy and normalization matrices defined

respectively by

~ . q .

Eyj = <[[A1.,%J , AJ.] > NG
and

- I +1

where the A.'s are members of the set (3).

Using equations (4) and the definition (5-a) one gets for the energy

matrix:
2 (d) .y <.d (d),. d f ~
Tt ang8iy (Ti +USi0n’> | Ve 855 Var M58 5
]
]
(d) d . ~(d) ! d d _f
(Tij +Lh61j)<n—o> lﬁ 61J+ATJOA ' Vdf <n-c>513 Vdf<"-o><n-5613
E.m | cecccmecccmmee- _____________________i ___________________________________
R d L (P g e (£).,
Ved S Veq <n_;> i3 P Ty Heng8 (T1J‘+Ufc‘3”)<n
L]
F e L () i £ L 3(F)
Veq<nog® 6ij Veq<n_z<n >Gij : (Tij +Uf61j)<n-c> Ug<n_28; +A1Jc
- , 3

(6-a)
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In the energy matrix (6-a) the dotted lines emphasize the pure d and f
contributions (except for mixing contributions in the band shifts X). Trans
lation invariance is used to write <n,_ > = <n__>, and the band shifts

7(d) 7(%) : . |

135 and A1JO are defined as:
Ald)y _oa(d) | + - (d) 4
Ajo = Mis %y Var [“Tio di-0™ 2 MNig fi-o 90”

(@) _ o(d) (d) (d), , () ; 4 1
AijéhTiJ Mg nj-0>+T JL i-o JO “j-o 45 <djc dj-o di-odio>J

-8 (8 J -2 «nld) gt
%i *m Tim <d o di0”" 2 My Yoo 457

and a perfectly similar results for A(f), obtained by replacing d by f and
f by d. The off-diagonal elements of (6-a) produce mixing effects among

corretlated d and f electrons: the results of (6-a) are exact except for the

terms < [nf g 10,7é], n(f) 'ff] > and the correspondent to interchange f

j-o  Jo|+
with d (wh1ch are equal); these terms read:

d f d f
<]7[n1(_c)7 dio’%] > n(-c)x f;c]+ = Vyr <n1(_c)I n1§_3> 855~

+ + , + +
df “4i-ofi-oTio 91078157 Var Ti-o%i-oT 10910781

)

lle have approximated these expressions using the fact that since d and

f bands are not Coulomb interacting, to a first approximation we write:

(d) L(f)y = (d), <(f)
Yar Mo Mg = VaF Mg’ Nl 8y

and the remaining terms are of third order in the mixing Vdf if one decouples

o and -0 operators. Within this approximatioh. one.obtains’ the terms -
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Vg <n><ng> of mg?§1xé(ﬁ,a). In appendjx‘I{y@\fﬁ§cg§§fh9w to deal with

these terms correctly énd what is their effect. = .~ =
Now using definition (5-b), and straightforward calculation one gets

‘ LT e i L -1
the;pqpma]i;at1qn}matr1x1and its inverse N = as:

FE
B 8y ol s 0 0 )
; '
d d :
N Al 4 '
B <«a_> 5” <n_o‘>6.ij; E 0 0
N'= - s D G - - e o ? ------------------------
0 0 i ) <nf > 8
1 ij -0~ ij
‘ i f f
0 0 ' <n_d>61j <n_g> 6,
L : LY o
and .
8. 8 ! ]
13 i !
(RSN, - i 0 0
d _end i
]_<n-°> ] <n_°> ‘l
: |
§i s I
iy ij !
- ._..._...:1._ _ i 0 0
B d d .
el alp(ienl)
“hﬂ.: —iq——:-/_?;l-—-“t‘—"-;-——f-;;'-‘t—--—-_—--—e-i-—q----,---—----—--—---- --------
- T %3
) . Q” ; 0 :; ; - - ——-}——
: 1-<n_°> 1f<n_d>
i
0 0 -
' “! -T;<ﬁf6§‘ <hfo>(1-<nfc>)
- : |~“. i -
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Again dotted 1ines emphasize the pure d andpure f contributions to
the normalization matrin,

1t 18 to be noted that the d-d and the f=f blocks n N and N™' are
identical to Roth's results. Now associated ta the basis set (3) we
introduce the Green's function matrix i(w) defined by:

5” . << Ao A';»w | (8=2)

the A being the members of (3): Intreducing the hotat1on n = n‘f’ g
and'm -;nsfg f,, one gets:

W e i )

e e e

o grw e e
HATIR AN ’ g

Now aceerding to Roth's mufu the matrix G(w) satisfies the follow=

{ng equation of metion!
(el s Ay el(a) -};ﬁ (9)

whmi“iu the {dentity matrix. Then naxt step 15 to evaluate explicitly.
the matrin produes EoN"' {n order 40-get the squations of motion for the
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Green's function matrix; straightforward matrix multiplication gives (using

(6-a) and (7-b)):

(d) : ,‘ )
Hd)_d  7(d) ~(d)__d 2.(d)!
S AYZ7~<n” ST
i Ms” Mo L _ido Ted” ig u oy d
q Uadis* 4 v Vap 5785 0
1 - /\n_o> <n-g(]-<r >4 i
E'N-lz - T TN W Lt s e et Tl G A o G e e e Y e WA e W A AR e e e S e e -:- ——————————————————————————————————————————
1+ )
Ved iy C iy Ue 93
| L F () ~(F)__ F 2-0F)
i [ Ty 7 A
Vegen > 8 0 g Mo ge +Mi
! fd -0 id ' P O3 P
% E 1 - x’.n_o> <n_ >(i_~<n_0;-}
| '
L ; _
(10)

Using the results of (10) one obtains from (9) the coupled equations of

motion for the propagators involved in matrix (8-b).

ITI. DETERMINATION OF THE G??(w) PROPAGATOR AND COMPARISON TO HUBBARD AP~
PROXIMATION
Using (9) one gets the following equations of motion:

n,d
dd . (d) dd ofd _
W G“'lj(w) = — 613. + EZ T: G (w) + d G i3 (w) + Vdf U(w) (11-a)

2m
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d)_d d) A(d)_n@ S21(d) :
n,d 1 _T( <n_ >- Aij/=<n_ > T} n;d
" Gi{ () = —-<nf >8. 4T i g OGdd( w) +J 2 k0 " =0” ik ot (@)
J on o "1J "8 d L d d 2]
1- <n_> L <n_g> (1-<n1;)
n, d d
+ Uy G ij (w) + <n_ < Var G1J(w) (11-b)
fd s () oFd a4
W Cw(w) =z, Tip G ( ) + Ug & j (w) + Vfd (w) (11-c¢)
n,d nzd ngg- T$£)<nfo>2 n,d T(f)<n >-A(£g £d
w Gij (w} = Uc G (w, + Zz ‘ - , sz (w) + Ly - GZJ( )
<n_6>(]-<n_o>) 1 - <n_0>

f . .dd
+ Vg N> 65(w) (11-d)

Firstiyv we want to emphasize that equations (11-a) and (11-c) are
exact equations of motion as can be easily verified using equations (4) and
the general equation of motion for Green's functions. The approximations of

the method are contained ©~ in: equations (11-b) and (11-d).

Another point we want to stress is that equations (11-a) (11-b) and
(11-c) form "separate" blocks in the sense that from (11-a) and (11-b) one

Gfd

gets the propagator qu(w) in terms of (w) which in turn is completely

determined by equations (11-c) and (11-d) in terms of G (w)

Then, the effects of d-d correlations are contained in (11-a,b) and
the corresponding (f-f) correlations appear in (11-c,d). These f-f cor-
relations are introduced in the problem of d propagation since, through Vdf
mixing d electrons are admixed into the f band and then propagate in

presence of f correlations, after what are re-admixed into the d-band. This
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is the physical origin of the above "“separated" blocks. The approximations
invoived in (11-b) due to the choice of the set (3) are now compared to the
standard methods (Hubbard 6), To do that, the band shift (6-b) is now re-

written in a more convenient way:

3@ - {0) o >2+T<d>{<,,(d) HUNSROR }.(d){ C ot 4

ijo 13 i~o “jo "j-o Tio

- <t gt (d) (d)
<dJG dJ-c 45 dio;} iJ In T3 {}d d.o>" 2 My d di->

- + - (d)
Gij vdf'{}fi—o di- > 2<n f1 -0 di-c{} (12)

The second and third terms of (12) can be rewritten in a quite sug-

gestive way:

d d d d d d d d
D{alf) off) -l fo oD i) - DS - D
(13-a)

(d) + ooat gt - - (d) +
T d1 odacdj od1o <djc dj—c di-c dic> T 4] -OdJ-O+dJ cd1-c dgcd1c
(13-b)

Equations (13-a) and (13-b) describe respectively the total correla-

tion between fluctuations in occupation numbers of ~-c electrons at sites

i and j and the correlated motion of opposite spin electrons between sites

i and j.
Equation (11-b) can be rewritten in a clearer way if we introduce

the following definitions (suggested by (12) and (13))
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1
d d
a? ] <nd>(1-<nd >) { : T( ) <d < 40> " 2 <n$°) dm -0 d'i'c’)]
-G -c
+ vdf I:(f-i.--c jog” " 2 <n(d) f:-o dj -c{l} (14-a)
T(d) _ (d) _ . d (d) .

L i) - @t [rf2d - %]

- <n

i-o “j-o J-o Ti-g| “Jjo

| (14-b)
Substituting (12) and (13) in (11-b) and taking into account the

definitions (14) one gets the following equation

n,d 1 d

1 _1 d
w Gij (w) = o <n_0>6ij +<n_> Zz

| d
+a{ iy (@)-<n >Gdd(w)} zzr(d){ iy (w)-<n%> dd(w)} (15)

In connection with equation (15) we define the following "fluctua-

H{d) gdd n,d d

Sw) + Ug Gy () + vdf<n_c>efg(w)

tion Green's functions"

o d
(@) - @, " (d), dd
<<[n}1._0 <n' d Jo >w Gij (w) - <nl,’> Gy J( w)
These functions describe the propagation of a o- electron from site
J to site i in presence of a~f1uctuafion in the.occupation number of

-0 electrons at the site i. Thé final equation of motion is then:
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n d

(w) = —-<n(g)> 815+ Yq j (w) + <n zz T(d) Gz (w) + V <n£g)>6§§(w)

df
o (d) _ _d Lot z(d) (d) __d Lot
T 0 <<[&i-o <n-o%]dio’ djo>>w * 22 Til <o <n-o%ld£c i djc>>w

(16)

The physical interpretation of (16) is more easily seen if one remembers
Hubbard approximation 6 to the equations of motion for the Green's function
Gnid(w)n From equation (4-b) and using Hubbard's decgupling one gets 6

n,d 1 d) nd

W Gij (w) = E; <n£O > Gij + Uy G (w) + <n 22 T(d) Gdd(w)+v <n(d)>Gfd(w)

(17)
Comparison between equations (17) and (16) shows that two extra terms
are introduced by the linearization procedure (note that f-d mixing effects

are equally treated in both cases); these terms are:

(o] d d .4t
o <<E11._0 f <n_G{] dio’ djo>>w (18-a)
7(d) (d) _ 4. . gt -
<<[b2~0 <n-c%}dzo’ djo>>w (18-b)

and are clearly associated to fluctuations in the occupation numbers of -o
spins; in Hubbard's work these fluctuations are completely absent. The
first term (18-a) describes one of the effects of -oc electron motion; ac-

d)

cording to definition (14-a) the fluctuation n(d) - <n£0 > 1is connected

to two effects: firstly due to the hopping term. ng), a - ¢ electron may
jump from site i to site m during the propagation of a o electron from j to
i. Secondly due to d-f mixing, the -0 electron may be admixed into the f

band, contributing then to the occupation number fluctuation. The seconq
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term (i8-b) describes another type of .contribution due to -o electron.
motion which has the form of a "kinetic energy" term. The involved fluctua-
tion propagators still emphasize intra-atomic correlations but at interme-’
diate sites . These intermediate sites & are connected to the final site i
by an effective hopping amplitude. f(d), which takes into account correlated
motions. From definition (14-b) one sees that T(d) subtracts from the total
-0 spin correlation function <l: - <nd :H: (d) - <n(d):[> the

contribution associated to the correlated motion < d1 - j c+dJ od1-o d30d10 .

Then ?gg) contains only fluctuation correlations not involving
simultaneous trahsfer of o and -0 electrons from i to j and in this sense

is a kinetic like term.

The same type of discussion can be done for equations (11-c) and
(11-d) describing f electron correlations; in particular an equation quite
similar to (16) can be obtained for the G:;d(w) propagator, just by inter-
changing d operators by f operators, the physical interpretation being the
same.

Whence one has got some insight in the nature of the approximations. .
involved in the choice (3), we proceed discussing the solution of equations
(11). We start Fourier transforming equations (11); if one redefines the

Fourier transformed band shifts Ako as:
C=(d) _ _.d d .\ d) _ (d).2
Aﬁc) = <N (1- <"-c>) "ﬁg) + €£ ) <n£°)>
Kﬁ:) = <nfo>(1— <nfc>) Wﬁ:) + eéf) <nfc>2 (19)

one gets for the Fourier transformed eduations (11)'

(@ - o) gl = =+ U, G, o + Vge Gid(w)  (20-2)
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(w- Ud)Gn (w)-l— <ndc>+<n >(€(d) WKd))G (w)+W(d)Gk (w) +<"d>vdka (w) (20-b)
!
(1 - séf))G () = Ug 6 : () + Vey 60%(w) (20-c)
(w-Uf o (w) wég o (w)+<n BCRE v%f>)efd(w)+<n 2 Vey Ggg(w) (20-d)
Now from equations (20-a) and (20-b) one gets for Gdd(m)
d d d) y(d
(w-e(d))Gdd(w)= 1 1e Ug <n_g> . Ud<n£0)>(e£ )-Vﬁc)) Gdd(w)
k ko 21 ~(d) ~(d ko
w'Ud'“éo w = Uy - wﬁo)
(d)
U <n}
Ja oo o 679(w) + Ve 6F4(0) (21)

w= Ud Wéd)

In order to simplify things we only consider hehenthe 1imit of very
strong Coulomb repulsion (Ud -+ o and Uf + ), In these conditions one gets

for (21)
{: el (1-<nd 5)-<nld)> u{di}ekc( )= {}- <n(d):}+v (1-<n{>)6M%0) (22)

Quite similarly from equations (20-c) and (20-d) one obtains for

Gfd(w) in this limit:

f
1 -<n o>

64wy = v - 6dd(4) (23)
e (1=<n_p>)-<n_>W

One recognizes in equation (23) the Roth propagator for f electrons,

gzg(m), as given by
1 - <nfc>
gri(w) = - (24)

- el 1eanf 5y - <nf >WlF)
w =g (1 <n_0?) <"-o>w§o
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so equation (22) reads:

1 1 - <nd >
dd -0
Sl = o (d) d d_ = (d) (d).. ff (25)
™
w =g (1= <n )= <> Vg 'lvdf|2(1-<n-c)>) Iolw)

Equation (25) can now be rewritten in a clearer way if we introduce

the f-d renormalized d energies as:

Eéd) = eéd) + |Vdf|2 g::(w) (26-a)
SSNTR

dd ! -

609(w) = — (26-b)

7 Al ald

One sees that Ggg(w) is just the pure d electron propagator as obtained by
Roth, but now d-electron energies are d-f renormalized as shown in (26-a). A
quite similar expression is obtained for the G:;(w) propagator.

namely: . <h(f)>
67 () = — ° (26-c)
k

T 0 el - alD )

There results show that in this picture of actinide metals, the d and f elec
trons are described by-Roth propagators, as in the pure d and pure f cases,
except for the mixing effects contained in the renormalized energies Eﬁd)

4 5 for transition

and E(Z). These results generalize the previous ones
metals in the sense that now both the hybridizing bands are correlated

bands. The conditions for magnetism follow the same lines as in Roth's, ex-
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cept for the extra difficulty imposed by the presence of hybridization. In

appendix III we show, using a method by Kishore and Joshi 7

» that analitical
expressions for the d and f density of states can be obtained in the ap-
proximation of averaged band shifts. Using these density of states the self
-consistency program may be performed and the regions of ferromagnetic
instasility can be determined. Fina11y, in appendix I one removes the ap-

proximations and in computing the energy (6-a). The effect of exactly treat

ing the energy matrix elements is just to introduce effective hybridization

2
matrix elements {Vgifi defined by
eff,? \ .2 2
}Vdf | = lvdfl (1+a) (26-d)

where o is defined by

+

(d) an(F)5 *
“AnlgT Anlgt> <Lfif0

d, __+dl__f. iff__d. >
i-o i-g 1-0' i-c “io” . (26-¢)

(1 - <nld5) (1-<n{F))

OLO =
the expressions (26-b) and (26-c) for d and f propagator remain the same in
the exact case, except for the renormalized energies (26-a) which now
involve the effectfve mixing defined above. Equations (26) together with ap

pendix II for the self-consistent determination of a_ solve completely the

o)
problem of the intra-orbital repulsion.
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IV. EFFECT OF INTER-ORBITAL REPULSION: FORMULATION AND DISCUSSION OF THE

dd
Gko PROPAGATOR.

In this part we consider the following model hamiltonian:

-
- v oqld) H(f) o+ I
H 4 T 1_] Gio"ujﬁ + 2 : TJ f'l(_')‘ f\]()' + z E\df dfi;o‘ f]o +
i,j’o‘ 1’~jsc -E~O‘h
] ]
Veg F1_ 0, (d) p(F) 4 old) ()
- .i

in order to discuss the separate effect of the inter-orbital correlations
induced By Coulomb correlation Vdf' The question now is how to chose the
basis set; to do that we firstly write down the equation of motion for

the dig anq in propagators; one gets:

R (. I TR € R (28)
%00 ™ 7 L Y% T ar Moo %o T Vaf Tio

- 2
oW o=y 7iD ). n(d) i
i 1 = LT Fao *Var Mo oo + Vea io (29-2)

From equations (28) one sees that the equation of motion of dio and

; (f) (d)
fio generate_respect1ve1y the opefators n: s d1.0 and ns fic‘ We

chose then the following basis set.
YRR ¢ N B )
7%0’“10 digs Tigs Nig Tig (28-b)
L #

The new operators satisfy the following equations of motion:

- -
~h L Y (@) (f) ()] ]
Diso Yo HJ Udf oo dio ¥ D Tie Mg st L Tig -wa—o f3-0 Yo

& +V,
J

(f
i

) ¥ - at = !
df Mot Fig * Ve 1Fiog Qi dig = 91g Tio d;55(30)
J
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d
9 07 -

_ o (d) - : |+
dy5 445 fi%} * Ve Njo dig t Vdf'{.di-o i
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£

o

- ¢t

1

+.

d

f

i-o “%-0 'ic ~

o oo 1;} (31-a)

Now using definition (5-a) we calcu]atevthé energy matrix E as

[(d) ()
Tij +Udf<n_c >61j

<n(f)>(T$J)+udfa1j) v

Udf<n(§)>613+xfgo.. Vfﬁ
vdf <n£ )5 61j ng)
Vdf éic 613 <né

where the band shifts are now defined by:

- 1{fi< {%1 £, +fF

CIJO'

i

A

i

Joo i-

o
af

d
Jo

dJGd1O

d ) (f).
T aff) ol

L

- 51y 3 1 i 2<n<d>

—

(d)
Ved 26" %43
<n’ >(T(f +U 4685 9

(d) ~df .
Udf<n >61J+A1Jc

(31-b)

1 cfz-c;}

m 8 N L - (d) +
845 vdf*{}ﬁi-c fio” = 2 Mg Y- Ti-o”

and a similar expression for

As

1o

= <n§fg o4 -

X$;g,f1nally

[%1 5 Yi-c *

+
-o f1'~:|f'io d5”

(32-b)
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A quite similar discussion to the previous case can be made for the

physical meaning of the terms involved:in the band shift X§36 and the discus

sion of Aio. wi11 be made latter on.

The normalization matrix and its inverse can be calculated from (5-b);

it turns out to be:

and its inverse reads:

%43 o Sy
1 - <n(f)> : 1 - <n(f)>
-0 -0
I F ik &
1 - <n£§)> ' <n£g)>(1—<n£;)>)
0 0
0 0

~ _ (f)
Gij <n’g >61j g
]
(f) (f) ‘
<n >61j <N > 61j E
'
LT L L L P L LT +
]
0 0 H
'
i
]
t
0 0 i
- 0

0 0
0 0
(4
Gij <nf0 > 8 j
(d) (d)
po<nl> 613 <nl, >51J )
(33-a)
: 0 0
'
]
[}
1
]
A 0 0
'
'
H
%? ------------------------ -7 {33-b)
N .
E §1j 613
E 1 = <n(d)> ]-<n(d)>
' -0
E
: )
4 % i
: —<nld) : r(d)s1-n(d)
E T=<n_ *> <Az >(1-<n 7>) |

3
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One sees comparing (33-b) with (7-b) that for the case of Udf correlations

the positions of the matrix are inverted. Now matrix multiplication gives for
~_1

E-N

+(d) .
T35 Y Sy Ve Sy 0
(), 1{d)_3fd ~fd__(F),2.(d)! (F)o (d), (F)s
<n_d >Tij Aijo A 6<" 5 T.j ; <n_G > A1O A10_<n_0 ><n’
U, 8. W, 8. ‘ V., S.
df 13 dfig df i
) - el (s (1oanlfhy 1 ycp(d)s @) (1oen(D)s)
-0 = § -C
________________________________________ ?_..._..______________..__..________....__..____
: (f)
Ved i3 0 ; Tiy Ugr S5
: (d),_ (Bl (d), i (d),o(F)_ Tdf ~df __ (d),2o()
i M5 7 g BigT N- g ” 1N 7Ty Aijo Aijo N Ty
Vo s s v - U, .8,
£4°7 3 fd ! df®i
L 1-<n(_f)> <n(_z) (1 <n£§) ) Y1 - <n(d) <n£g)>(1~<ﬂ£g)>)_
(34)

Next step is to use the equation of motion for the Green's function matrix

G(w). Introducing the definitions n = ngfg io and n, = ngfg fi; one gets the
two exact equations:
dd, , | (d) dd, . . n,d fd
w Gij(w) = E; 61j + ZQ T3 sz(w) + Uge Gij (w) + Vyg Gy (w) (35-a)
and
(f) gFd, - Med dd
13 ZQ Tig G (w) + Uys Gij (w) + Vye Gij(w) (35-b)
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n,d
The approximate equation for Gig (w) reads then:

~fd __ f _2.(d)
Ailo N> T

n,d 1 £ n,d -~ 'ig  n,d
w Gij (w) = Ef-<n_0>61j + Uge Gij (w)+ Zz - . sz% (w)
T
<n_0>(1- n_0>)
f (d) _ fd f _
<n_0>T12 Aizo dd <n-c> Aio £d
+ 22 - Glj(w) + vdf -—————7;———— Gij(w)
1 -<n_ > 1 - <n_0>
fo..d
Big=N 5" N g n,d
+ Vyr - y Gij (w) | (35-c)

<n_0>(}-<n_0>)

Now we transform a little equation (36-c) in order to make easy compa-
rison to Hubbard's 8 approach; quite similarly to the previous case we define

the following quantities:

~fd _ _f .. _f _ 7fd f .2 _(d)
Aijc = <n_0>(1 <n_o>)W1.jO +<n_> Tij
~df __d d _ odf (d),2 -(f) (35-d)
Wjo = <t nl )W+ D> I

df

and introduce the quantities afd and o defined through:

o o
fond a(d) _ . d (f) _ . F.l. . [et + +
big = NN 7¥ g{bi-a <n-o{][§i—o 571 7 I fio di-o+di-ofi-c fiodic>

(d) anlf)scfs? + gt
fd <Anj -g Anj-g>< fi-o i * Y- Fig|Tic 45

o]
d d
ad> (1 - <l
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(d) (F)o_ let + +
g¢ Moo Mg Fiug dieg ¥ diag Fing|Fio Y107
o, = . . (35-e)
<n_g” (1-<n_c>)

One sees from (35-e) that the a's subtracts from the total fluctuation
correlation between -o occupation numbers at the d and f bands, the simulta-

neous mixing of f into d of 0 and -0 electrons.

Using these definitions one gets:

"1d 1 ¢ n,d ¢
@ Gyy (w)= =m0y + Ugr Gig (Wrng> LT Ty o (@) + Vge <nfc>‘5}°§<w>
Tr .
i e f jfd gad
+ g Vigs zJ ( ) = <> by W Gps(w)
+ Vdf 0(.0 << (n( ) - <n - )f_io_; djo'>>w (36)

From equation (36) one sees that the first four terms in the right
n,d
band side are Hubbard's approximation for the equation of motion of 613 (w)

propagator The terms involving the band shift can be written as

Zz V1 dec (n(f) - <n ) dig ;c>>w and correspond as discussed previously
to the effect of electron f]uctuations associated to propagation within the
d-band. Finally last term describes fluctuation effects associated to the

mixing Vdf’ A quite similar equation can be written for the propagator
n,d : .

y
\!_ij (w/.
Now we solve by Fourier transformation the above equations; one

gets:



128

(wei®) 6f%(w) = é%-+ Uge G:ld(w) + Ve Gr3(w) (37-a)
(w-Udf)GE;d(w)= é%-<nf§> + 1 eEéd(w)+<nS§)>(e£d)-&Lgd)egg(w)

# Ve <nf > 6 w) + Vo ol Gz;d(w) - Vye o9 <nd 56fd (37-b)

(o o) 68 = Ugg G 100 + Vg 50 (37-<)
(w-Udf)G:;d(w)=\!~lkgf G:éd(w) + <n?o>(e£f)-®kgf)ﬁzg (w) + Vfdv<néo>6sg(w)

" vf&‘adf G:;d -‘Vf& IF <nf0> 609 (w) (37-d)

Equations (238) are then solved in the limit of very strong inter-

orbital repulsion (Udf + »); one gets for G:g(w):

1 - <n(_:_lg> + adf <nf >

fd, .
o) = Vg d d o df
>)=-<n >V o

- P
w =g (1 <Nn_g g

-0 Gdd

kc(w)

(38)

Comparison to equation (24) shows that one gets a propagator quite

similar to Ies propagator except for the fact that now due to d-f corre-

lations the narrowing- factor is (1 - <n?5§

would appear if we had intra f band correlations.

For the Ggg(w) propagator one gets:

, " fd_d
r f ~fd (1 -<n_0>-oc <n_0>) (

f

instead of (1- <n_>

d df
1 —<n_c>+on

) which

2
o -0 ko |Vdf|

L - «
= — (1 - < >)

2'ITY

iw-eéd)(1-<nf >)=<n_ >V

o = el (1-<nd >)-enl D>y df

f
<n-5)‘16dd
Jko

(39)

(w)
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Expression (39) can be modified to give a much more simple interpketé

tion; we start rewriting the coefficients

f fd d . f
1 - <n_O> +.0 <n_g> = (] - <n_0>)(] + ac)

.d df _f d
1-<n’ 4o <~ﬂfg> 5 (1=’ >)(1 +e) (40-a)

where the quantity a is defined as:

d f M+ + e
By B T T 0 i fi-quio dig”
o = ' (40-b)
¢ - .d f
(1~ <n?>)(1 - <! >)

Expression (40 -a) suggests the definition of an effective Vdf mixing

" through

eff|? N
Evdfo% = Wgel? (1 +0)® (40-c)

and the definition of the pure f propagator

d
1 -<n" >
i -
Iolw) = - - 2 — (40-d)
S R
the final expression for the d propagator is then:
f
1 1 - <n_>
Ggg(‘”) b D - 9 - ” (41-a)
']T _~
w - e (1 - <n_.> ) = <n_j Wko

where the Vdf renormalized d electron energy reads:

() - (A, |yeff) g (w) (41-b)

Ek - k V
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CONCLUSIONS

In paragraphs Il and III the one-electron propagators are obtained for
the case of intra-orbital and - inter-orbital repulsion. In both cases one
obtains Roth-like propagators, with Vdf renormalized one electron f or d
energies. These results generalize the previous ones obtained for transition

4’*5, in the sense that the hybridizing bands are now Coulomb

metal systems
correlated bands. In the case of inter-orbital correlations, the exact
energy matrix is fakeh into account, and the consequence of taking it exact
is to introduce an effective miXing matrix element ivﬁﬁf 2, which accounts
for the effect of fluctuations in occubation numbers of d and f bands. In
appendix I we show that for the case of intra-orbital repulsion. we  can
remove the approximations introduced in diScusSing the energy matrix. One
recovers essentially the same result as in the inter-orbital case, obtaining
for the effective mixing the same formal expression for the correction o
defined in (40-b). In appendix II we use the method of Roth to show that
the self-consistent determination of the correlation functions involved in
the definition of o/ is feasible. Finally the method of Kishore and
Joshi 7 is used to derive analytical expressions for the density of states
(cf. appendix III)Q The p&ogram bf'perfOrming the self-consistent determi-
nation of the occupafion numbers (and consequently the magnetic state) can
be performed in the same lines as in Roth's paper, except for the hybridiza
tion effects which are treated in the same way as Kishore and Joshi, using

the density of states of appendix III.
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APPENDIX I
In this appendix we remove the approximation introduced in part II,
The matrix elements are identical to those

(f) ¢
Nj-o fjo ¥

These matrix elements (which are

for the energy matrix E.

def1ned in (6 a) except for the elements <{[§(d) d10 4{}

10 jé] J _J+>' o

equa1§ now have the exact value of:

T (d f 4 (f
{E‘Lé dicf’ia] . n§ i fJO] = Var 61‘3‘{ (@ il -

an
and - " 0

L R Il I A ESE G A S (A1-1)
i-0 i-o i-o i-_J ig Tio _J df "i1j “io
Again we separate the fluctuation terms as:
_oad () (d) , (f). _ [+ + o
Big = Ny NG > F <An1—c Ani—c> < di—o fi-c * fi-c di- fic io >(A1-2)
We see that the first term is the approximation used in part II, which cor-
respond then to neglect the fluctuation terms defined in (A1-2). The
matrix E*N° T reads now:
(d) ; B
F' T13 Ud Gij : Vdf aij 0
]
(d) . d ,_5(d) T(d)_ (dy! d . —end s <nfs
T3 <n_g Aijc Aijc o Tij " N> big Big™ Ny N3
p Ugls 3# p T Vet Yarliy p
1 - <n 0> <n_0>(]-<n_0>) E 1-<n' > <n >(1_<n—0>)
__________________________________________ +____________.______________..___.._..____
; (f)
fo Cd f () T(f) f)
N >=by A; gm<n_><n_ > :T1J <n_;> Aijo <n_5»T(J
Vv V.S, . : UgS, o+ —J—————————
fd d df-ij d d H (f) foij £ £
1 -<n_ > <n_c>(]-<n_0>) a 1 - <nl,’> <n O)ﬂ—q16>)
| ! (A1-3)

.
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Comparison to (10) shows that if one neglects in (A1-3) the fluctuation terms

envolved in Ai0 one recovers the results of part II. Introducing the defini-

tions
~(d d d d
ng = <> (]-<n >) “ch) + T( ) <n
Ay = > <n &) “ﬁjc + T <n e
(d) (F)o et + 1€t
a4 <ani?) Ani70> <[f]._0 difU + difc fiﬁg*}ic d. >

.F

<n_> (1-<nf

_0>)

and a s1m11ar def1n1t10n for af, one obta1ns the equat1ons of motion for the

propagators ‘as an examp]e the equation of mot1on for d -propagator are:

' R n,d
dd d) .dd -fd
0 G50 = — b5+ I, 144 ¢ Cw) + Uy 655 (@) + Vgp 615() (A1-4)
(w-U)Gnld(w) c s s rads I, {9 Gdd(w) + Ve <nd > 6f (w)
iJ om 13 O -g~ 42 df
wid) (d) _ (,d . gt
* ZZ “éz <<[ﬁ2-c ﬁn-c%]dzc’ djc>>w
| (f) _pf I -
+ Ve ac << [ <n__> fic’ djc>>w (A1-5)
fd n,d
Quite similar equations are obtained for the G. and G1J propagators.
Now we see from equation (A1-5) that the first three terms are just Hubbard

n,d
approximations for the equation of motion of Gij . The fourth term

include fluctuations of d occupation numbers as discussed in part II.
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Finally last term describe f band fluctuations induced by the mixing Vdf’

and this is the new term associated to Aio # <nf0> <n?0>. Now solution of

these equations by Fourier transformation give the following result:

d
1 1 -<n_>
SO - : o — (A1-6)
e g0l alg WY
where the renormalized d-band energy is
~(d) {d eff|2 ff
O |vdf 9% (A1-7)
the effective matrix element being defined as
et % Ly 21 v 0y
| df dft o
d f e+ + et
A An_g> - <Lfi—0 4ot g fi-qlfio 45>
(¢4 =
a
d f
(1 - < ) (1= <n_5>) (A1-8)

and gff is defined 1in equation (24).
ko

One sees tnat o is formally identical to the corresponding of the
inter-orbital case, but its value is certainly different (cf. Appendix

11).
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APPENDIX II
In this appendix we describe the procedure to be used in the determina
tion of the correlation functions involved in the definition of ¢ 5s €equa-
+
i-o 1-cf1cd1o

+ + ! " .
and <d;__ f. . fig djg>+ We are interested in the Timit Uy > = and Ug> =,

tion (40-b) there correlation functions are <n$dg n$f3>, <f.

corresponding to the first case, namely 1ntra-6rbita1 repulsion. In this
- . . + + .

limit the correlation function <f1._G di_5 fig dj5> Vvanishes so one needs

to determine only the two remaining functions we use the general equation

of motion for Roth's method:

1
w <<An, B»w = 51—1. <I:A"’ B:[+> + Zm Knm <<Am-, B>> (A2-1)

where the matrix K is equal to EeNfl, and the operator B is arbitrary. Now
we chose appropfiate operators B in- order to get the correlation functions.
One has

<dt d, nlfs ok <ad, ,nlf) at s B - alf) gt (A2-2)

jo Tio jo w io? nJO Jjo" w jo Jo

From (A2-2), taking i=j one obtains <n$g) n§§)>. For the basis set (3) one

gets the following anticommutators:

<E’ : "flp digls> = > 85

:f o’ "S;) d - iy fi2 813 (A2-3)
<L_$?g d 5 ngg) d Rl <n$?g ng;)> Sij

L R L e
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Substituting the results (A2-3) in equation (A2-1) and using E-ﬁ-l given in

(10) we obtain a set of equations for the propagators <<An, B>>w . When

solved this system gives <<dio’ B>>(u expressed in terms of the correla-

tion functions (A2-3). However this procedure introduces a new function

namely <n(d) n(f)> which we now determine. One has:
io

+ (d). _ (d) / (d)
<fj fi "j- >=F <<f o nJ fJ >, B= J_ f

Taking i=j one gets

ol off) - e

n{f)s

)
o Mo
For the new choice of B one has the following anticommutators:

(d)
<E:1o’n-0 JO] = < >5.J

<71;, (é) f:{+ .0

Yo Mo
(A2-5)
- (d) (d) o+
<_n1'-c digs Nj-o fjo & =0
.
(f) (d) ¢+ | 52 <pld) (f)
Mo fior Mo Tigl+™® Mg Mi=o” Sij

Again the Green's function <<f10, B>>w can be expressed in terms of the

functions (A2-5). Since the new set of equations (A2-5) regemerate the cor

relation function <n$dg ng> this enables us to completely determine the
function <n(d) n(f) >. .
i-o i- ¢

Finally it remains to calculate the correlation function

+ + ; .
<d1._O fi-a fic dic>' To 'do that one takes:
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+

+ - + + o+ +
the anticommutators associated to this new choice are:
<l:d'io’ d] j-o J o J]
LT f: :] >=<«dt  f. > 6.,
ic? “j-o 3-0 Jo|+ Jj=o "j-o~ “ij
<nd dq. , d = - <df__ f. _fTd. > 6
i-o "io® “j-o J-O JG i-o 'i-o0 io Tio ij
(f) + 1 alf) gt -
= fio® dJ-G fJ-o qu_ g "o’ Yi-o fie” 61j >0 as U

Then, one can solve for <<d10, B >> in terms of known quantities. Using
a quite similar procedure one can determine the functions involved in o

for the case of inter-orbital repulsion using equation (34) for E-N?

APPENDIX III

We calculate now the explicit form of the density of states for the

intra-orbital case, using the method of Kishore and Joshi 7. We start
from the -d-propagator
1 1 - <nc_10>

ng(w)= —
o 2m

] f >

- <n
w-e( )(1 <n 5>)-<n. NN(d) 'V d >) 0

k

w-eﬁf)(1—<nfo>)-<nfc>ﬁ%(f)
(A3-1)
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where Tﬁg and \}.«72 are averaged band shifts (Roth 3),
We adapt hepg the model for the band structure consisting of hemothetic

bands, namely:

kT %k
(A3-2)
=Ag + At

the constant A < | reducing ke width of the f-band. We introduce also the

following definitions:

= d d_ zd
€ = Gl = <n>) + <n_> W
and 2 , (A3-3)
7 | eff f
'v'df' = ,Vd‘f (1-<n§c>)‘(]-<n_c>)
Using these definitions equation (A3-1) becomes:
1 - <nd' >
dd ! o
ch(w) = — —— ——————— - : (A3-4)
2m _ 2

W= g — e
w=-(A %, + A )("l"-‘<n50>_)=-«<nfo> Wg

Now we write the denominater of gg :in terms: of: the 'e'o enengies

F ToWf=w- (A + &) (A35)

w=- (Ag +A)( - <n]>) - <n

where the new "effective mass" A is:
.- f
(1 - <l >)

1-<nd

A=A (A3-6)

>
=0
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and
- -l 4oy f foo(f
Al = A ———"% <n% W % A (T-<n’ >) + <n >wif)
g d =0 0 -0 -0 O
1 - <n_>

Using equation (A3-5) we get

TR '] U J

5(w) =
(w- eko)[- -(A gy * A XJ - Ivdfl

(A3-7)

Or in terms of the poles of thie denominator:

ad 1 (]'<"€o>)E‘"(K €k +Kc‘:"j
Ga(w) = (A3-8)
2y - e )

the density of d-states is then:

nd(w)=zk (1-<nf0>)(w- Ae, - R;)’ a[}w-w:)(w- w;i]- (A3-9)

Now following Kishore and Joshi we define functions g+(w) and g (w) through

the relation:
- - 4+ —_ - —
(w-ue) (w=w) = A(g7(w) - § (97 (w) - E5) (A3-10)
this equation defines a second order equation for the g's which is
'—2 _>— _—l 2__1 . 2114
A 9*(w) {}A+1)w A%}- g(w) + w A0 ) IVde (A3-11a)

whose solutions are (p = + ):

- - i
pw =-{an A +4ﬂlnm&f+4iﬁuﬂjz} (A311b)



nd(e) = 1,

— - I ng -ek;l (A3-12)

Now one has:

—— ~ *T
_ | oP(wy - <nd >yl N
-1 d | g © I
I 818°(0) = B = Ty 8401-n)) - % |
l II 1- <n~ > I
L L -0 A
. d =
] gp(u)’\n_o'> [o}
= N
l'] —<n(jg 1 - <n?0> v
where N{w) is the density of states assnciated to €
Finaily: N
w-AgP{w) A ¢P(w) - <nd > W&
nd(w) = I N (A3-13)
| AT - 9w | ' - <n?g>

Quite similarly one derives an expression for the f density of states.
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