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INTRODUCTION
In this paper we treat the problem of bound states for a spin

1/2 particle interacting with gravitational and electromagnetic
fields: The gravitational field is described by tetrads, and
the Hamiltonian which is obtained from Dirac's equation is made
' Hbrmitiﬁn by means of a‘nonvunitéry transformation in the
Hilbert spade ‘of the vectors of state X. It is shown that with
this Hamiltonian solutions presenting the behaviour of bound
states are fonn§f5 These solutions possess a behaviour which 1is
free of unconsistencies, both at large values of the distance

from the gravitating mass and at small distances.

‘The gravitational field presently considered is that of a
static' echarged ‘pointlike mass, usually called by Nordstrom
field.

Regarding fhd“ﬁ@tation, we indicate the tensor degree of
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freedom by greek letters which run from 1 to four. Spatlad
degree of freedom are indicated by latin letters. Irdices ¥ into
a round bracket denote local tetrad indices; they hwv&-a»i?a;ig
tion which is indiecated by the same symbols as those of usual
tensor indices. Finally, the special relativistic metr.c gﬂw

has signature + 2.

It is well known that iff wider to Thtroduce the gravita-
tional interaction on the spin 1/2 parficles is necessary to
describe the gravita%ional field by tetrads hﬁ@”»’ end their
reciprocal hf(v)a Présently we are concerned with this inter-~
action as described by the Hamiltonian for the couplel system,
so that initiélly we have to obtain a suitable three=-{l:edsional
decomposition of the tetrad field. We do that as follows

Buev) = (Brgsys Viwyr 22 Vi) = Bo(yyr T = Brco)
h'l())) = (hr(5)2 wv’ Z(r))9 WV o= hY(O)g Z(I‘) = hO(r) e

Imposing the condition that the unit time-like normal to %he

hyperplansfxq‘zfconstant is given in terms of tetrads as
o

[0
§ = h(O) =-—-—L £F= Fy ), = hF(O) (1)
M s A g v
F /)
we can eliminate both the Y_ and the AL
Y, = 0, AL (2)

and obtain
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B®(o) F /g% (3)

It may be shown that only the thirteen components o (s)

and w” are lndependent h, since

_ =l (2) . k(3)
Br(1) =0 7 €k pit2) g<t37

o=l (3) K1)
ho2) =D 7 Euux 03t ’

- n=l1 (1) k(2)
h(3) =D €rik nd b ’

D = oy B pi(2) k(3)

- Oy=1 - -1
Vir)= “Bg(p) wE(W)™, Vo) © (W)

the variables hr(s) and hr( g) are uniquely associated té the
geometry on the three-dimensional hyperplang x°%= constant. They
represent therefore physically admissible varlables 3. The same
property does not hold for w” or V(V)'which depend on the
continuation of the coordinate system, outside the hyperplane.
This structure 1s clear from the above equations, where we see
that the total number of variables split into two parts, one
involving only relations among the nt (s) and hr( g)? the - other
among the W” and V().

In this paper we consider only static gravitational
fields,y for which we have 8ot = O. This implies that

V(r) =0 (4)

w =0 (5)
and we are left with just. the b(T) and W° as independent
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variables. The above equations simplify to
=]l
D

J(m)  k(n)
bo(e) =2 e(s)(m)(n) rik B b (6)

- -1
Vo = (wW°) (7)

where we also have, from (3),

WO = /g% (8)

The three-dimensional contravariant metric tenseor ersz:srs -

- gor gos/goo’ is here identical to grs’ and is given in func~

tion of the tetrads as

oFS = pT . pS(m) -

B(m) B(m) B(n) * (9)

2. H TON OF C'S EQUATION FO G SYSTEM

According to a previous paper 1, the Schrodinger form for
the Dirac equation in‘presence of a static gravitational field
has the expression (the quantity V indicates the Coulomb poten-
tial)

1 y (e N
2

where the symbol ~ indicates, for any quantity F,
= F/(=W°) .

Since the Hamiltonian formulation does not maintain the
four-dimensional covariance of the theory, all relations of
the present formulation possess only general three-dimensional
covariance. The Hamiltonian of equation (10) is Hermitian,
and may be written in a form which shows its ecovariant charcter

with respect to the three-dimensional general coordinate trans-
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formations. For doing this, we first introduce the scalar
product i:u taree-dimensions
app

a.b = R a, bs o

The Hermitian scalar product of T by 3 is,

1 i e e 1 »
-~ {a.p + p X)== (3 & p_+p e’soi,\ (11)
2 2 r°s S 1/

Using (2) and (9) we may write (11) as
rs [/ rs~ o () ¥s(r) ~s(r) 12)
e urps-e»pse °‘r°"°(' (h ps+psh (
(where use have been made of the usual formula of tetrad zalculus,
o= h(:L) Ot(m))o Thus, we can present the Hamiltonian in the form

manifestly covariant with respect to the three-dimensional trang

formations c — R
H=m<go?+?.;:>+sc2p+v : (13)
2

This Hamiltonian has, except for the presence of the scalar
potential h' y in & and in the mass term, the same form as the
special relativistic Hamiltonian, except that the scalar product
now refers to the Riemannian three-dimensional metric eT®, and
since 3: is point dependent the scalar product of Zby i)’appears

symmetrized.

In what will follow we seek for solutions of (10) present
ing the behzviour »f bound states. For practical applicatlioans,
as will be the case in what follows, is convenient to work only
with the constant matrices %(p)? instead of the ®po With this

finallity we use the commutation relation
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and write the equation (10) as

1S 1.5 \
(r) ike 2  (r) \ - L
2 . s
h° 2 o x nO
(o) (e)

This equation shows that in presence,of a gravitational field we
have to replace the usual Dirac matrices:x(r) by the ccmbination
h(r) (r)? where the X(py are still the same constant matrices
of speclal relativity. Besides this,; we alsc have the extra mid
dle term of the right side of (14) and the presence of the
potential ho(o) in the mass term. Using these replacements into
the correspondent Hamiltonian for the motion of a spin 1/2
particle ih the Coulomb field of a point source in speclal

relativity Q@ ﬁe find /s \
.- the > the 2 [XoN L,
°°(’rpr*r mer-f-mec +V - 2 0‘(r)?)xs h?) 15
o
a2 3 6
where P is the operator, HP —¢3(03L*h) and<x is
°’(k) X1
hi 0
o LK) (16)
r no o(k X4
(o) r
The Hamiltonian (15) will be further simplified by imposing that
r S I -
B(s) =1 85 - (17)

(in this relation we are not summing over r). As we will see in
the next section, the gravitational potentials presently
considered satisfy the conditions (17). Using (17) we may put
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the matrix &r of (16) in the form

-’-i'
o J.T
1l T
o = - (18)
T nd S.r
(o) el o
r ->

where the scalar product has the usual Buclidian form, and ) has

components
.
2= (et oy, 22 0y £0 o)
3. SOLUTION OF THE DIRAC EQUATION FOR THE FIELD OF A STATIC

CHARGED POINTLIKE SQURCE
We consider the field acting on the electron, as originat-

ing from a point charge at rest. The metric in spherical polar

coordinates corresponding to this source is 7
ds? = €’ (ax®)2 + &Y ar? + r2(a6® + sen®e d?z) - (19-1)
with 2
v 26M G e
e’ =1 - + (19-2}
2 4 2

where M 1s the mass of the source particle and G the gravitational
constant. In the case where the metric is dilagonal,y it is pos~

sible to obtain directly the tetrad components from the formulas 1

Vo 1
- w}l - h{‘ = .goo 6’4 = 6# 3 (ZO)
o) o = o
€00
Y x AN R SN
Blry =Y& &r) = 7= O(r)> (21)

i1
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here 814 indicates 811 8pp OT g33. The relation (20) shows
that W' vanishes and that W° has the value given by (8). Similap
ly, the eq. (21) shows that Z(r) vanishes and that

1
=il =, /—, (22)
854 )

for each one of the three values of i. Using the above gFV we
find

ol ot 22 (23-1)

£2 = ¢% = yr (23-2)

£ = £9= 1/r sine (23-3)
i

with this choice for the f~ we can write the last term which

stands on the right hand side of (15), in spherical coordinates

as ‘ i
e ohty)
—_— = theot, G, + A(0,9) (24-1)
7x
with
G e2
cer? ch

The part depending on the angles, the A(0,¥), is summed to the
term KP which stands on the right side of (15), thus yielding a
new operator P in presence of the gravitational field. The eq.
(15) then takes the form (all calculations are done up to linear
terms in the coastant G)

H = ey .,_fff.;‘,_’ k+~mcz+v-1hcot G (25)
%Py, r r‘a P r 71

and the Schrodinger equation for this Hamiltonian is
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using the relations
€ aM G &2 \

T %
ear Zc‘g‘rz

ike |
(coop +--—ot.Pk-h‘3m +V-.itcoa,e >¢=O

2 1
= -if | — + -
Pr <2 r T >

we can write (26) as two separate equations

<§2 51 °1-§1’:!.)F2+ nc51+E+V);E 0
(%2"% 51*51"')1’1 <“‘°51"E V);é °
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(26)

(27-1)

(27-2)

(27-3)

(27-4)

(27=-5)

(27-6)

(27-7)

(28-1)

(28=2)
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where g 1 and gz are a short for

_ &M G ez
§1 o BQZE +Ze4r2
Gy
%2 = 'E"’
introducing the dimensionaless variable p, (E( me™)
p =Ar
A=Ay A

hcﬂl=E+meZ

fic Ay = me® - E
we obtain frem (28),

b2 Gk a Avov b3 ‘
(F--hg)m () noe @
52 G a A2 5
3, 3
() P +§1dp> 1 <2 ‘hc?\*‘hcﬁ> = (

53(9) = me? §1(p) - me

Taking solutions of the equation (29) in the form of power

series of P

oo
e~ P Z a, PWS

F,(p) =
Y=0
w .
F (p) = e P 2_.b, PV+S
v =0 :

we find, by equating to zero the coeffieie¢nt of PU"'S'I,
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A1 e
b1 +I— a, = (k+AGM +v +s)by - g;-!-GMm a, +
2 ) 22 ge? , AGeZm +226e2 ke
+ AGM(k+y+s)b + + a s o Shatiliiitens =
g 2hect T ke MM ke o4 2 2 oy
AZ eZ
- 8y= T b, 1+ (AGM=k+y+s)a, + Mw%-; b+ AGM (k=-v=s)a 4 =
22ge? Agen 2%6e% [vest2 & o
- eeme— & an —— b L W o
2h2et VL ke Y 2k 2 2 free

{from here on we shall take & = o = 1). Tiking #» O in these

equations, we fingd
21

| 2
b_y toa - (k+AGM+s)b, - (e~+GMm)a  +
AHCkcse) A2ae? AGecm 2 02 L D
+ AGM(k+s )b, + b, + =X ald = b — =
1 2 1 z 1 2 2 =
Az
-~y - by * (AmM- ks )a, + Gmwez)b + AGME-2)ay -
2%0e°  Acem 2 2 [2%2 X
mmalpmbl-pﬁge | — - a{g;@
2 2 2 2

Chonsing &5 a partieular case of the above equations

- b (AGH + kts) + (6% GMmda, = ©

by (G ~ e2) + (AGM-k + ) a, = O (30)
Which implies in the condition
s2 +220Ms + (A26AM2 - k° + 0% - ¢2MZnP) = O (31)

this equation glves a explicit value for the constant s. We
will neglect the negative sign in front of the radical since it
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conducts to a wave function diverging at the origin. We cbtaln

S = =AGM + (kz «=_e4+G2M2mZ)% o (32)

In the 1limit where G goes to zero thls gives the value
for s obtained for the motion in the Coulomb fleld of the charge.‘

In order that the wave function (27-7) be finlte at the
origin is necessary that s be of the form,
s = a2
where a is a constant taking on value equal or large than two,
a>2 .
This represents a condition on the possible values of the mass M
which generates part of the gravitational interaction on the
particle of spin 1/2. It can be shown that the behaviour of this
wave function for large values of the distance is free of
divergences. Besides this, the wave function can be normalized

by suitable choice of the coefficients.
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