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ABSTRAGT: This is an elementary review of the invariance properties of the
laws of the classical mechanics of systems of point-particles (sect. I); it
is well-known that the conservation laws in this theory are not deducible
from the invarianee' principles and Newton's equations of motiom tut, rather,
from these principles and Lsgrange's equations. The extensiom of the ILa-
grangean formelism to classical linear field theories is recalled, and the
famous theorem of B. Noether, which provides a rule for the construction of
conserved physical variables corresponding to invariance principles, is ea‘-i
tablished (sect. II). Finally, the foundations of Einstein's relativistic
theory of gravitation are sketchly presented with the inten}-im of showing
that it is not possible to associate an energy-momentum tensor - but only a
coordinate-dependent object or pseudo-tensor - to the gravitatianal field
(sect. III).

* lectures at the Latin American School of Physics, Caracas, July 1966.

This is s revised version of the notes in Spanish kindly prepared by
Dr. J. Sesma.
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SYMMETRIES IN CLASSICAL MECHANICS OF SYSTEMS OF POINT~PARTICLES.

i e 2 e e

I.1) The ange gnd canonica tiong.,

The kinetic energy of a classical system of n point-particles, A, is ¢

n
1 2
T= L - n (a ) (Ivl)
Al 2 A A

where m, is the mass of particle A at position y- 9 and the dot over a letter
denotes, as usual, its time derivative. Let V be the potential energy of this
system, a function which, in general, depends on the position of each particle
and on time - it may also depend on the particles! velocities, which is the
cage of the so-called velocity-dependent potentials.

The Lagrangean is then defined as the difference between T and V
L =T~V ’ (1,2)
and is clearly a function of each particle's position, velocity and the time t:

L o= L(gg g i i

l,...gn;t). (193)

£
The existence of such a function, independently of the special defimition (I,2),
will be assumed for the dynamiéal systems. we study in classical mechanics with
the objective of a later transposition or generalisation into quantum mechanics
and quantum field theory.

The action S between any two instants t
the Lagrangean :

1 and t2 is the time-integral of

t

2
S = § L dt. (1,4)
1

It depends not only on the two times tl and t., but also on the form of the

2
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function L : S is an ordinary function of t, and t, and a functional of L,

1 2
(this means that, for tl and t2 fixed, to each function I, there corresponds
a numerical value for S) :

Between the instants tl and té there exists, a priori, an infinite setan

of possible trajectories for the dynamical system; out of these, the system

describes, in fact, that trajectory which makes S stationary, i.e., gives a

minimun or maxiwum. This is Hamilton's principle or the postulate of minimal

action or simply the action principle.

Let « denote a paramnecter designed to distinguish, for a given time t, the
positions of each particle A in each of the possible trajectories of the set I

X t; a) (176)

X = ﬁA(

" As the integration in (1,4) is over t, the functional § in (I,5) will also

depend on « 3
— . N I’
S = SII, H tl, t2, aI ‘ ( Sa)

Let a given value of «, & = 0 say, correspond to that trajectory which makes

S stationary and :define the variation of x., as

JA
0 X ;
5xjA=_-‘l- du:, j=l,2,3;A=l,2,'oon-
Oda /faa=0

The action principle is expressed by the requirement ;
5§s = 0. (1, 7)

For tl and t2 fixed, one has :

s
58 = i 81 dt (1, 8)

1

with (see fig.1)

-d xjA<t =0 , : (I,8a)

) = A
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and hence, according to (I,3) and (I,8)

t
2 n 3
5 S = S T T {Qlk 5 xjA+91‘-— 5 z’ch}dt. (1,8b)
tl A=1 j=1 L O xjA 0 xjA
The interchange of the symbols & and %; , and the identity
QL 4. 5, =9__( 0L 5 4 )_M. 4. 9L )
JA jh JA

lead us to write (I,8b) in the following form :

t. n 3 ' .
5 S = 82 T E{FJJ— -(%t- Q-L-)X 5 xjA+-g-€(_QLo xjA> dt
A=1  j=1\[0O X0 o} 0 9] %in

1

A partial integration and the conditions (I,8a) make the last term of

the above form of & S to vanish.

We are thus left 'with :

. dt

+ a j Lo %ip 0 XjA

1
The postulate (I,7) , valid for arbiirary varis-icns O Xp thus leads

to the well-known Lagrange equations :
o)
;-— —%{ §L~ =0, §=1L,2,3 ; L=1,..n (1,9)
*5a *ia

The knowledge of the equations of motion of our system of particles is,

in this way, connected with that of the Lagrangean.

To these equations of motion one must add the initial conditions in or-
der to determine the orbit of the mechanical system. In classical mechanics,
the observables are the positions and velocities of particles. The values of

the 6 n quantities XjA(to)’ ijA(to), at a given instant t - the results of



the observations (or measurements) of these variables at this instant -

may provide a set of such conditions.

The momentum of particle A, canonically conjugate to its coordinate
xjA' is defined by the relation

ij': —— » j=l’ 2,3 ; A=1' ese Ile (I’lo)
o] xjA
t
Y. N
t2 aliathadidin il
! '
4
]
L2 AR VA
N 1
Q ' ' »
' 5xA xA

Figure 1

If these equations are solved so that one may express the velocities

x in terms of the momenta, the Hamiltonian of the system, as defined by 3

H= T
JyA

X, = I

will be a function of the independent variables xjA' ij and t

H = H (‘El’ gl,ooo zn, ‘gn ; t) (I'lla)
The equations (I,9),(I,10) and (I,11) give the well-known canonical
equations :
) s

t‘ S wemaam— » ﬁ. _— .. (1’12)

Ay P A 0 x
JA JA

a system of 6 n differential equations of first-order, equivalent to the se-
cond order 3 n equations (I,9).

A typical illustration of the fact that the definition (I,2) is not always
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valid, is provided by a particle, the velocity of which is not small if CO L am
rec to the velocity of light ¢; although the notion of potential energy V(z)

is still assumed to be valid, a mass variation with the velocity is requirec
by relativity theory :

2 w1/2

m=fm , p=(1-3,) . (1,13)
‘ o]

o

And the equation of motion :

a0
at d

<

with

where

2
_ 2 § ¥ 1/2}
T, =m o i1 -(1 - “2 )

does not coincide with the particle's kinetic energy @

2

7 =m002{(1- 2)‘1/2-1} (1,14)

0 RBd

I.2) Conservation of mechanicel enersy.

Tn general, therefore, the Hamiltonian is a function of the particles'’
positions, momenta and time, as stated in formula (I,lla). Its total rate of

change with time is thus :

Each teryof the summation on the right-hand side vanishes in virtue of
(1,12):



It is concluded that if the Hamiltonisn does not depend on t in an explicit

(£) ard p‘jj‘(t)), its total

fashien ( it devends implicitly on time through x, \

JA
rate of change with time vanishes

ai
dt =0

The Hamiltonian will then be equal to a constant E,conserved in time, the e-

nergy of the mechanical system 3

H(}Sly Bl’ see zn,P.) = B,

il

I.3) Poisson brackets and constants_of motion.

Let F(ﬁi,gl,...,ﬁn,gn;t) and G<£&’£l"""§nﬂan;t) be two dynamical
variables of our system of particles - function¢of time and of the particles'
coordinates and momenta. An important quantity associasted with this system
is defined by means of such a pair of dynamical variables. It is the Poisson

bracket of F and G , expressed as :

{F,G}=Z(OF 0 _OF Q¢ > (1,15)
J,A c)'xjA Oij ()pJ.A c)xJ.A
This function is adequate to a more elegant form of the equations of motion,
and allows a simple proof of fundamental theorems on sywsetries and constants
of motion, as we shall seg.iioreover, it is this form of the equations of motion
which allows a straightforward transition from the classical to the quantur-

mechanical description of physical systems (which have a classical limit).

The total rate of change of ¥ with time is :

dF _ OF OF d X oF d Py
aw-ox TE AN O® YL ®
j,A VMO XjA 0 ij

which,in v¥ ow of the canonical equations (I,12) and the definition (I,15),
takes the form :

daF dF ) T =20
el T 1,10,
ot oy + {'F, ! % (
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In purticular, the canonical equations read :

- - 1,17

and the fundamental Poisson brackets, relative to the particles' coordinates

and momenta, are :

{xjA'ka} ={ij’pkB}=°' (1,18)

{xjA ' pkB} = 6jk - O)3
with ‘

j'k 1’2,3 ; A, B = l, 2,-0. N.

A dynamical variable F is a constant of motion if its total rate of

change with time vanishes 3

According to equation (I,16), this will be the case if F does not depend

explicitely on time and its Poisson bracket with the Hamiltonian is equal

to zero.

I.4) Symmetries and invariance principles.

The notion of symuetry - in scd%ture, painting and architecture, in the
crystalline and biological forms, in mathematics, in physics = has been mas—
terfully discussed in a beatiful booklet by Herman Weyl.''If I am nct mistaken,
writes Weyl, the word symmetry is u;zdjg;ery day language in two meanings. In
the one sense symmetric means something like well-proportioned, well-balanced,
and symmetry denotes that sort of concordance of several parts by which they
integrate into a whole, Beauty is bound up with symmetny.(..n) The image of
the balance provides a natural link to the second sense in which the word sym-

metry is used in wmodern times : bilateral symmetry, the symmetry of left and

right, which is so conspicucus in the structure of the higher animals, espe-
cially the human body. Now this bilatersl symmetry is a- stricly geometric and,
in contrast to the vague notion of symmetry discussed before, an absolute pre-

cise concept. A body, a spatial configuration, is symmetric to a given plane



E if it is carried into itself by reflection in E.(...) & mupping is defined
whenever a rule is established by which every point p {of a spatial configu-
ration) is associated with an image p'. Another example : a rotation around
a perpendicular axis (to a plane) , say by 300, carries each point p of space
into & point p' and thus defines a mupping. & figure hes rotationsl symmetry

around an axis £ if it is carried into itself by all rotations around £ ''.(1)

One is thus led to consider speciual sets of mappings, of one-to-one
transformations of & given space into itself, with respect to which the laws
of a theory are invariant. These special sets are the so-called groups; a
set S of transformations T ,T2,... is a group if, given any two elements of

1
this set, Ti’Tj’ one can define a product (or composition) T =T such that:

T.
k"1 J
a) Tk belongs to the set S

b) the identity I is an element of $ and is such that for any Tj: TjI = ITj=Tj
. =1 )
c) to each element T, of S there is associated an inverse, lj , belonging

J
to S, and defined by the equality

The symmetries of a spatial configuration, of a physical system, of a
gset of laws of nature, are thus defined by those groups of transformations
which leave invariant the given configuration, physical system, or natural

laws - and they are thus appropriately called the corresponding symmetry groups.

Of course, the search for such symmetries, for the invariance properties
of the laws of nature is meaningful; although they do not change the forms of
these laws, they have observable consequences because the initial conditions
associated to the laws of nature are not unchanged under the transformations

of thevgroup.

Accordiiz to Houtappel, Van Dam and Wigner (2), one can distinguish
two types of definition of an invariance principle. To the adepts of the first
definition, the generally valid invariance principles are only tnose which

postulate the equivalence of the frames of reference which can physically be

changed into each other, As a frame of refcrence consists of an observer equip-

ped with all necessary measuring devices, this definition restricts the inva-
riance transformations to space and time translations, to rotations and, more

generally, to inhomogeneous Lorentz transformations.
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The second definition of an invariance principle postulates as ger::.ally

valid all thosgﬁ simple) transformations which leave the laws of natixe

invariant, independently of whether one can or cannot physically change one

observer and its apparatus into another by such transformations. The operation

of time reversal or the transformation CPT which consists of the product of
time reversal, space reflection and charge conjugation are examples of such
transformations which cannot physically carry an observer into another (in this

part of our world).

It is within the context of the first definition - that of physically
equivalent reference frames - that one may distinguish, following Wigner, two
equivalent points of view for carrying an invariance transformation. The active
transformations change the object; the observer in his reference frame inves-
tigates the correlation between his measurements on the object before and after
the transformation. According to the passive viewpoint , the transformations
are correlations between the observations made by two different observers on
the same object (fig.2). It is the passive type of geometric and kinematic
transformations which is usually considered in classical physics, mainly, after
the fundamental papers and booklets by Einstein on the special theory of rela-
tivity. Clearly, in the example pictured in fig.2, one can always, given the
active transfommation AB =) AB' for the observer S, imagine a second observer,
S', who is in the same relation to the observations made on AB' as the first

observer S is to his measurements on the original system AB.

It must, however, be mentioned that the second definition of invariance
principle - which regards as valid all those simple trensformations which keep
the laws of nature invariant - is more general and allowed the discovery of
non-geometrical (or dynamical) symmetries of certain interactions, such as the
isospin, and more generally , the unitary spin symmetry of strong interactions
in elementary particle physics. The gauge transformations , associated to the

definition of current and charge conservation, are also non-geometrical.

~ A

n B

B
A
s
/ == ;/

A A

Frame S

Frame S

7
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b) Passive transformation
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Figure 2

1.5) Symmetries and the structure of physical space in classical mechanics.

The equations of a classical system of point-particles are invariant
under certain transformations of reference frames. The invariance under each
specific group of transformations results from a basic principle, of empirical

origin.

a) First of all, there is the principle of absolute time in Newtonian

mechanics. It states that the time interval between two mechanical events, as
measured in a reference frame, is independent of the state of motion of the
frame. The principle is not generally true -~ it holds only for velocities
which are small compared to the light velocity c. Newton, however, believed

in en ''absolute, true and mechanical time, of itself, and from its own nature,
(which) flows equably , without relation to anything external, and by another
name is called duration'! . He, therefore, assumed that the clocks of all
observers, whatever their state of relative motion, could be synchronised by
means of signals, which would have to propagate with infinite speed. Newtonian
mechanics is a theory of action at a distance. Actually, all known physical
interactions propagate with a finite velocity and Einstein's theory of relati-

vity allows one to show that this maximum velocity s equal to c.

b) The equation of motion of &n isolated system of n point-perticles,
in an inertial frame, are of the form :

ve

A Fia BZA Pip poee oy di ©)

Il

1, 2,33 AB= 1, 2, ...n,

<.
i

where the forces are, in general, functions of the positions and velocities

and of the time at which these observables zre measured.
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The principle of homogeneity of the physical space, in classical mechanic:

states that the equations (I,l9) are invariant with respect tofa change of the o-
rigiﬁgg§r%ﬁg7frame. In other words, there exists no privilegied points in physical

space, the relations between phenomena within this mechanical system must not

depend on where they are determined (the absolute origin does not exist).

Let

1= - , 3=1,23;3A=1...n (1,20
XJA XJA aJ- 7 J y )31 ? ’)

be the coordinates of our particles in the new reference frame, displaced by

the constant vector a from the original one. It is seen that the displacement

invarisnce requires that the force depend only on the mutual distances between

the point-purticles

m ¥ =TF, =% F._ (x .,%.:t (1,19a)
A 34 A T gy, o Zaurdpy 5 P ’

The transformations (I,20) form the group of translations T(E)’ depending
on the three parameters aj : the product of two translations T(a) and T(R) is

a translations by & + b : T(a) T(p) = T§3~+ b); the identity is T(0) and the
inverse of T(ﬁ) is ’I‘(-g\).

c) The principle of isotropy of the physical space states that the equa-

tions of motion (I,l9) are invarient with respect to any rotation of the refe-
rence frame. In other words, there arec no privileged directions in space, the
relations between events within our system of point-particles do not depend on

the orientation of the whole system in space.

A rotation around the origin of the cartesian coordinates system associa-

ted to reference frame S, with basis ]el} , ]e2> , | 63) , Changes all vectors :

3
I = = o 121
%, ) I %y i ej) , A=1,...n (1,21)
J=1
into new vectors :
; (1,22)
)= E Tl ’

where lei) ) ]eé) ’ \e%‘> are the basis-vectors of the new coordinate system S'.



Expressed in terms of the basis of the original system S, the new vectors

]x‘) will have new coordinates x!, :
A JA

v

|} ) = ? st [ej ) (1,23%)
In correspondance with the vector spuce L spanned by all linear combina-

tions (I,21), one defines a dual space , a vector of which will be denoted by
the syubol (xf . The space L will have euclidian structure if, to each vector
|b) of R and (a] of its dual, one associates a number denoted by ( a|Db ),

the scalar product of the two vectors with the properties :

1) (ala) 70 and (ala) =0 implies {a) = |0) where |0) is the null vector;
2) (alb) = (v la)i, where in general L comprises vectors with complete numbers
as coordinates;

3) « being & complex number one must have (a| ab) = a (alb) ;

4) ((ayra)lv ) = (a  10) + (a, |b)

If the two given coordinate systems S and S' are cartesian, their bases

will be orthonormal, i.e.

(1,24)

3..
p g
il
(o4
lad
-
o
i
et
[AV]
-
N

(ek[ e ) =‘(e£§ e

A

Therefore the comparison of equations (I,22) and (I,23) gives rise, in
view of (I,24), to the well-known homogeneous linear relations between the

coordinates x,, and x',
JA JA

1 - ~
XJA = i aJk)H‘_A (I,25)

corresponding to the given rotation . And this is determined by the 9 numbers
ajk :

aak

= (ejf el)

the cosinus of the angle between the k-axis of the system S' with the j-axis
of syste~. 3.

The length of a vector lx) is the non-negative number ( (x]x) )l/é

where, in cartesian coordinate systems :
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*
j Y

(x] y) = =x*
. J

transformations (I,25) which conserve the

J

.
.

These homogeneous linear
length of all vectors or, more generally, the scalar product
(1,26)

(xf{y) = (x']y")

are called unitary transformations. In the particular case of real vector
spaces, these transformations are called orthogonal. The latter ones keep

invariant the bilinear form

1 t
Loxsy ¥y =5 X, ¥y
3 J
whence
1,27

(For the unitary transformations one has : T a?k &.p = 6ke ).
Let us represent the nine numbers ajk by a matrix R

[ayy 85 23 \

(1,28)

{
{

! |
| i

821 %20 %23
i
\ 831 832 833 |
in & basis of the coordinate frame

The vector le) which has coordinates Xy
S will be represented by the one column matrix

[
\‘XA) = \ X2A/§ ’ A=l,...n
\
7
if one chooses the following representations for the basis s
SR [0 [0}
i ,/ \ \ i \
:e):nO)- e,) = l/ ; te,) = {0 )
AU Lo T V1
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The rule of multiplication of two matrices,
R =
(Rl 2)1:2. E (Rl)kn (RZ)n{{',
leads us to write the equations (I,25) under the form :

lx,) = Rix) (1,29)

The reader will be able to prove the relationship :

Tle el = 1 . (1,30)
3 3 J

It is clear from the representations above that in the case of a complex
vector space, the passage to its dual space is performed by the operation of
transposition and complex conjugation. In a real vector space, the dual vec~
tors sre the transposed (column .» line) of the given ones. The fact that, in
this case, the coordinates of | x) and (x| , in the same basis, are the same
real numbers, is usually translated by stating that the space and its dual

coincide.

The relations (I,27) and (I,28) allow us to write for the orthogonal
matrices
RRR = RR = I (1,31)
where R? means the transposed of R and I is the unit matrix. For unitary
matrices U one has
+ +

U U =00 =1

where U+ = UzT, the hermitian conjugate of U, is obtained by transposition

and complex conjugation of U. It follows from (I,26), (I,29) and (1,31) that:

(x| = (x,|B (1,32)

As the ceterminant of a matrix is the same as that of its transposed, one
conclud-s from (I,31) :

det (R) = +1. (1,33)

When transformations R have determinant +1
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det (R) = + 1.

They constitute the so-called group of proper rotations - they can be conti-
hously generated from the identity.

When det(R) = -1, the transformations are called improper - they contain the
spatial reflection Ig (with respect to the origin)

)ﬁ'{=—xk, k=1, 2, 3.

An improper transformation can be expressed as the product of IS and & rota-
tion.

Clearly, the equations (I,19) are invariant with respect to the group
of rotations if the forces transform like vectors :

Pian gy v By 5 8) = T ey Rpy gy dpys 8) (1,34)
K

d) The principle of classical {newtonian or Gal;}gi) relativity states

that the mechanical laws of an isolated system of n - point particles esta~
blished in a inertial frame of reference, S, are the same for another frame
S', in rectilinear and uniform motion with respect to S. In other words,
it is impossible, by means of mechanical observations within the system of
point-particles, to detect the rectilinear uniform motion of an inertial re-
ference frames.

The transformations between the coordinates of a point-particle A as

referred to two such frames S and 3' are :

XSA =X =V, t , 3=1,2,3; A=1,...n, (I,34a)
where vj are the components of the constant velocity of S' with respect to S.
They form a group which depends on the three parsmeters vj. the homogeneous
Galilei - group , G (v).

Ty

It is clear that the equations of motion (1,19a) will be invariant if
the forces FjA are Galilei-covariant vector functions of the instantaneous

mutual distances and velocities of the particles; these forces have the form

(2)



F.. = I

. v R A . +
T e e T s gan) + T (g Xoy)y Taon * G Zon) 5 Taa

BC
. /\ * ,‘\. *
v (g Xo,) oy + (x5," X)) ey

where the f's, g's and h are Galilei-invariant functions of the coordinates

and velocities,

1.6) Canonical transformations and the Hamilton - Jacobi equation.

The connection between symmetries and constunt of motion or conservation
laws does not follow from Newton's equations of motion, but rather from the
Lagrange's form of these equations. This will be seen in paragr. I,10. Until

then we need to review some needed concepts.

Hamilton's principle, (I,4),(I,7) can be written, in view of the equa-
tion (I,11):
(2, -
5 { T p dx.,, —Hdt{ =0 (1,35)
) L C3A A ;
1
We now introduce a new reference frame, S', with respect to which the

coordinates and momenta of our system of point-particles, xéA,péA, will be

functions of the analogous variables as measured in the old frame S :

st = xéAQﬁl’gl""”fn*Bn ; t)
(1,36)
P, = P (X ,p.pees, x, P 3 t) ’
JA JA ~,1"”1’ H ,‘_’n’ in ’
J=12,3 3 A=1,2,...n.

It will be assumed that the mapping functions (I,36) are continuous,

differentiable and have a non-vanishing Jacobian :

/ éxil Oxil
’ Oxll dp3n
%
del} . [} + ° I . < " ¥ 0 (1,368-)
()pj‘n ()pjn /
Oxll . Op3n
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50 that there will exist an inverse mapping :

1 ' LY
PRI D T AP S

(I,36b)
Pip = PsalX] 0 Bloees o Bp i ®)

The oroup of canonical (or contact) transformations is the group of mappings

of
(1,36),(1,36a) which leave the laws of the mechanics/éystems of point-parti-
cles,(I,9) or (I,12), invariant.

For simplicity, let us represent by X = (x,p) a point of the én-dimensio-
nal phase-space, the coordinates of which are xjA’ ij with j =1, 2, 3;

A = l,oo'n'
Let F(X,t) be a dynumical variable, a function of the observables x, p

measured at a given time. This function will be mapped into another one,F'(X!,t)
by the canonical transformations (I,36); the latter will be symbolised by the
application of the operator'@ of the corresponding group :

X o=8x , X =€7tx (1,37)

The group of canonical transformations 6 defined in the phase-space induces a

set of transformations T in the space of functions F(X,t) :
F'(X,t) = TF (Xt (1,38)

The transformed functions of the transformed orbits, F'(X',t) will be defined
as those which have the same values which the original functions assume for the

original orbits 3
Fr(X',t) = F(X,t) (1,39)

In this way one will be able to associate the product of two mappings Tsz
in the space of functions F to the product &31 W92 in the phase-space. In fact,

it follows from (I,37),(I,38),(1,39) that(omitting t) :

T, F(X) = P(x) = F(8 ;1 X) (1,40)

-1
One then substitutes €. X for X; this will induce a transformation which reads,

1
according to (I,39) :



1. P () = F(‘f’l X)
and hence, in view of (I1,40):
nonrx) - et 2ty e ) x (1,41)
172 t2. Y 717 '

The Lagrangean and the Hamiltoniun, however, does not satisfy the relation
(I1,39) because the definition of canoniczl transformations requires the inve-

riance of the variation of the functional (I,Sa):
I | e Y
C Lttty x = 005 (LY by, b5«

vhere L' (x', x',t) is the new Legrangesn. This iz satisfied by requiring that

the two functionaljdiffer by an ordinary function of tl and t, -

= 5 1t

1
- L

&

] 1 o o+ £(t, t,) (1,42)

10 B

This may be satisfied by the differential condition :

Ldt = L' dt + aW (1,43)
where W = w(ﬁl"°'§n;~¥i""§é; t) and dW is the exact differential of W :

%%- at+ £ (L g+ L gy

aw = - . Sor )'
SA ijA jA dxjA JA

One sees that, in this case :

f(tl,t2) = w(ﬁi(t2)...; t2) - W(xl(tl),...; t

and (in view of (I,8z)) : 5f = 0.
From the relations (I,43) and (I,11) it follows that :

oW oM oV
» Rl = gy, o Hi=Huy (1,44)
JA

where H'in,..., Plrvees t) is the new Hamiltoniean .
These equations determine a canonical transformation. From the first

of equations (I,44) there results a functional relationship among the xjA’XSA
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and p,

! = ' s e H .
XjA xjA(xll,Pll, )%n’ pjn ’ t) J = l’ 2, 3; A - l’ 2' .‘.n;

The latter equations together with the second (I,44) give rise to the following
ones :

- ! . .
pSA = ij(xll ’ p11!'°‘i x3n! p3n' t)'

Tne Hamilton-Jacobi ecuation allows the determination of the function W -

the generating function of the canonical transformation in question. It is ob-
tained by the requirement that H' =0 :

oW oW oW
H(X, peeeX, , == ,eee5— ;%) +~=— = 0 (1,45)
11 X}n @xll Ox3n dt

so that the new coordinates and momenta are constants of moticn :

) . At =
xjA = 0 ’ ij 0

The integral w(ﬁl"'”gn; ;i,..zgg;t) of the equation (I,45) will contain 3n
constants xlA and enother set of %n constants given by the second equations
(1,44).

1.7) Infinitesimal cenonical transforuations.

In general, a mapping of a space T into another, L', is continuous at
oint f(x.)contains a

the point x € T if an arbitrary neighvorhood N(£(x ),e), of radlus ¢, of tze
ﬁ%ﬁ%ﬁ?iifb%gg Ngg%sformedthmawe) of which is contalned in N(f(xo),e). In other
words, if f(x) —» f(xo) when X - X_ (3). A continuous transformation is a conti-
nuous function of its parameters. Thus, a rotation in >-dimensional real space
is a continuous function of three independent parameters a (see (1,27),(1,28)),
a Galilei transformation is a continuous fun¢1on of the three parameters v.
(1,34 a).

Clearly an infinitesimal transforwation maps every point X, of the set

in which it is defined into another one arbitrarily near xo.

Let ©(x) be the set of (infinitesimal) parameters of an infinitesimal
canonical transformation. This means that one restricts oneself to those wap~

vings (I,36)which can be put in the form :



]
1]
»
+
(e g
»

JA JA JA
(1,46)
| - 1)
where (dx\A
x,, = L ¢ -*J“') ’
JA X (k) ()C(k) (o]
Op!
A .
8 p., = T g,y (==) , 3=1,2,3; A=1,...n.
jA x (k) ()e(k) 0

The index o stands for all e )= O in the derivatives. Thus,for a dyncmical

(k

variable F, 8 F is proportional to e, whereas d F is proportional to dt.

k
Let ® W be the Hamilton Jacobi fuaction for an infinitesimal transfor-

metion; one has in view of equations (I,11),(I,43),(I,46) :
-zl * 5 5 1,47
a(d W) = ?Alijd(bxjA)+ ijdxjA]+ H dt (1,47)
where & H = H' - H.
The definition of functions U(k)(xll,...; Pyyreees t) by the relationship:
OW==ZL p.,0x., +2 ¢ U (1,48)
TR TR R
gives rise, in view of (I,47) and (I,46) to the equation :
ou

N [_Ll_g) X + -f)-UJ-li) %Lz by {_(%.D.é_[ﬁ ) %, +(..c?.}.{.£l./.\. ) T ]+(.".\l{_.

gAtO%gy I Opg AL 0t g, (x) ®k) © 9T ()

o

The following aré , therefore, the equations which the functions U(k) sa~

tisfy and define an infinitesimal canonical transformation :

2 Xijé) - © U(k)
0 B(k) o] 0 ij '
(k) A
R - ° %)
e(k)o o0t
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It was, in fact, to get equations (I,49), similar to canonical equations (I,12),
that the functions U(k) - the generators of the canonical transformation =

were introduced by means of the relationship (I,48).

I.8) Transformation of dynamical variables under the group of canonical trans-

formations; Generators of tim® and space translations and of rotations.

Let P(x,p;t) be a dynamical varisble (where x = (xll""xjn)’p=<pll’"p3n))
such that, for a canonical transformation (I,36) one hus, according to (I,39):

F'(x', p'; t) = F(x(x', p'), p(x', p'); t)

In the case of an infinitesimal transformation (I,46), one can write 3

F'(x', p'; t) = F'(x +8x, p + Op; t)

or
o %y om op N
\

+ J
OxéA de(k) dij ée(k)j °

¢
F'(x',p'st) = F'(x,p5t) + T e
KIA )|

up to terms in the first power of the e's, We shall then have, in view of the
equations (I,49) :

SF = e u (1,50
! ie&ﬂ’ o} %)
where
OF = F'(x',p';t) - F'(x,p;t)
=F (x(x',p'), p(x',p');t) - F'(x,p;t), (1,50a)
lim  QOF' _ OF lim  OF' _ OF
£-0 Ost OXjA e~ 0 épéA Oij

The equation (I,50) states that the change in form of the dyramical va-

riables F corresponding to an infinitesimal canonical mapping of the coordinates

and momenta, at a given time, ig determined byv the Poisson bracket of F with

the zenarators of this mappine.

We shall now proceed to identify the generating functions of the simplest
canonical transformations.



8) Tns Hamilzonian i the rencrator of an infinitesimsl tive ¢ivplucement

(and & movement is thw suceeusive composation of such infinitesimal transior-
mations).

In fact, the identification of the parameter € with dt gives :

OxﬁA

) X0 = —527) dt L _ g
o p!

_ 1A
® iy (5% & o
or
\ o
xjA(t,e) ..... xjA(t + dt)

The equations (I,49) show that we can, in fact, identify t“e generator U

with the Hamiltonian ;

U=H for e =adt (1,51)
. . . . dF  OF (. .
In this case the reader will show the validity of the equation : ot = ot +LF,H}
. v
(by considering F'(x + dx,p + Op; t + dt)). (1,51a)

b) The total momentum of & system of point--particles is the menerator

of an infinitesimal space translation.

Here the parameters 5( ) are the three infinitesimal components of an

k
ordinary vector :

Xy =X tes , 3=1,2,3 A=l...n

Therefore

b
[o]
H
jov)
H
=
e}
o
H
t
(=5
Q
—
13
[0]
3>
=
=2l
Q
=
Q
o}
[\
[}
Q
(o]
Lo
fon
H.
o}
45
t+
(o]
~~
—
=N
(\o)
N
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that is to say n

L p
k k A=1 kA

[em}
i
g+
I

y k= 19 2v 3 ) (1952)

c) The generator of an infinitesimal rotation of the coordinate system
around the origin is the angular momentum of our system of point-particles.

For such a rotation the parumsters a. in (I,25) will differ from ij

Jk
by very little :
= O +
83k sk 7 5k
The orthogonality condition (I,27) requires that the parameters ejk be anti-
symmetric
ejk=-ekj’ klj=i’2’3°

The three independent values of this tensor are the parameters of the group.

In association with these are the generators U Kk’ defined by a trivial exten-

J
sion of the equation (I,48) :
W =- L pAdx'A“*% E Sl o
a9 kP
Yk =" Y

Then the equations which define these mappings, corresponding to (1,49)

are now 3
au.
Le, X, = % z ek0 E;lgL ,
n 9 kd ij
IY s.n Py == % z e aUkB
n Y kK k& OxjA

which, in view of the equations :

' = +
XJA XJA e,]k KKA

are satisfied by the generator :

n
Ups Ly = Afl(xm Py = %p P) ¢ (1,53)



where LkP are the components of the orbital angular momentum of the system of
a4

point-particles.

The reader will be able to verify, in the simple example where the dy-

namical variable is a position coordinate :

F (x 'P) = X,
3 J
that .
FE(X'.p‘) = FJ.(X(X'.P').p(x',p‘)) = x-egy X
and hence
FS(XrP) = xj - eJk & L4
P - t . =
3 F, = Fj(x,p) Fj(x,p) © e

which coincides with 1/2 e, ; Fj,Uk} and (1,53).

1.9) Fundamental theorem on symmetries and constants of r- cion.

1T the Hamiltonian of a mechanical system is invariant under all trans-

formations of a canonical group &, the generators of this group are cons-

tants of motion.

Let us, in fact, oonsider equation (I,50) and set
F = H
under the assumption that :

S8H = O » (1,54)

or (see (I,47))
Ht = H,

It follows from equation (I,50) that, for arbitrary values of the parameters
e(k) H
{H,U(k)} = 0 (1,54a)

On the other hand , the last of the equations (I,49) and the requirement
(1.54) imply that the generators U(k) do not depend explicitely on time :

oU .
20w

o0t

Therefore, from the relation (I,51 a) :
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R oU
— ) (x :
at = ot +{U(k)’ H}

one concludes that the U( s are constants of motion :

k)

avu
_Ttﬂc.lqo,

The followiné/hell—known results are, thus, corrollaries of this theorem:

- Any mechanical system of point-particles the Halmitonian of which is
invariant with respect to the grotp of translations, admits of its total momen~
tum (I,52) as constant of motion.

- If the invariance of the Hamiltonian is under the group of rotations,
the constants of motion will be the components of the aagular momentum of the
system, (I,53).

A group is said to be a symmetry _ group of the (Hamiltonian of the)

svstem if its generators satisfy the equation (I,54a).

The group of inhomogeneous orthogonal transformations (translations plus
rotations) as a symmetry group determines, therefore, the linear and angular

momenta of the system as constants of motion.

Finally,let us note the following Poisson brackets between the gene-

rators of space translations and rotations, (I,52) and (I,53):

= -%. P
{Pj' Lepf= 05, P =05 B
l= & 6. L. =0, ,L -8 L,
{_Lij’Lk.pf ik LjP+ 30 ik T U4 Ua gk il
If one identifies the three components of the total orbital angular momen-

tum of a system of point-particles , Lx’Ly’Lz’ with

L L =1L

’Ly=L3l’ z = 12

=L
X 23

the last relationship leads to

o
=
a4

Vg
i
-
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SYMMETRIES IN CLASSICAL LINEAR FIELD THEORY

-

I1.1) The electromagnetic laws ahd the Galilei relativity principle.

It is well-knovn that the Galilei relativity principle cannot be extended

to the electromagnetic laws., This means that experimental observations do not
confirm the transformation laws of the electromsgnetic variables corresponding

to an assumed invariance of HMaxwell's equations under the Galilei group.

These equations have the following form (in the M.K.S. system) :

2'.9«: P
SZ',‘BA = 0 ,
03B
2A§+5‘—t:: = 0 , (IIol)
oD
YARL-37 = i

-
where p and j are the charge and current densities, and §, D and ’Ii, B are the
electric and magnetic pairs of field and induction , respectively. The dot

indicates as usual the scalar product and the sign A , the vector product.

A transformation from a reference frame S to a Galilei = transformed
frame S' :

x' = t , t'=t (11,2)

X
A A

v
A,
gives the following relationship between differential operators :

V =

P

(11,2a)

o 4

: ...v.vl.
.

|

<2 .
ot

|
Q-
ot

The application of (II,2a) into (II,)) and a comparison with Haxwell's equa-

tions, assumed valid in the frame,S!; lead to the. tramsformation equations:



p' o= P
hk = J'PX_ ’
D = D ,
VS ~
E' = E+yAB , (11,3)
B* = B ,
. P aan)
" = H-VAD»
LV L P~
For the potentials (, A , given by :
oA
E=-Y9- =
B= VAA
A - A
one obtains
= - * . II4
,ﬁ: = A ’ ({)' =‘-F x é“ ( v)

On the other hand, as is well-known (4), the invariance of the phase of

a radiation plane wave :

= A cos(‘l‘:‘._{- wt) (11,5)

"

with anguler frequency w, wave vector k and velocity o in the frame S, giveg
rise, under the Galilei transformations (II,2), to the following relationship
between w and w' :

W' o= oWl =) (I1,6)

and between ¢ and c':

o(1 - 2K ) (11,62)

¢’ ck

All experiments, began with the famous observations by Michelson and
Marley, as is well-known, deny the validity of relations such as (II,3),(II,4),
(11,6),(I1,6a), based on an assumed invariance of electromagnetic laws under

the Galilei group.

I1.2) EBinstein's relativity principle and the Lorentz and Poincaré Groups.

Lorentz and Poincaré discovered the groups of transformations under which

the laws of electromagnetism are invariunt, in agreement with experiment.
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And the beautiful work developed by Linstein led to the discovery of the rela-

tivity principle valid for all laws of nature : these laws are the seme every-

where and at all times , they dc not depcnd of where nor when they arc obtained;

thev are independeng of the cirections in space and of the state of motion of

the reference frame, as longs as this motion is uniform.As Wigner has said(2):

''Einstein articulated the postulates about the symmetry of space, that is, the

equivalence of directions and of different points of spw.ce, eloquently'’.

In elementary textbooxs (5), the special Lorentz transformations which
connect a reference frame S to another, S', in uniform translation with respect
to S, with a constunt velocivy v, parallel to axis Ox (which coincides with O'x')

are established. These formulae read :

x' = ylx -vt),

yoo=y

2T B o (11,7)
tY =

'Y('t “'1:'2' X) ’
C

"Y (1 - 52)_1/2 ’

1<

H

p:
¢
. . . . 2 . .
where ¢ is the velocity of light in vacuum. If §~ is negligible as compared
to the unity , these formulae go over into those of Galilei. And it is now a
simple exercise, by the use of the method pointed out in the preceding paragraph,
to deduce the (experimentally verified) transformation laws of the electroma-

gnetic field and of the frequency of a plane wave corresponding to the rela-
tions (I1,7).

It follows from (II,7) that a length and a time interval between two events
are not invariant quantities. The fact that a space distance between two simul-
taneous events for an observer S generates a time distance between the same
events for another S', leads one to accept, as a natural generclisation, the
fusion of ordinary space and time into a four~dimensional ''space-time'' linear
vector space. Let us call x° = ct, x1= X, x2= Y, x3= z, the coordinates of a

point of this space, referred to a given frame.

In general, the Lorentz group is the set of linear, homogeneous transfor-

mations vhich msp space- time into space-time :

% = 'Zo‘p xp (11,8)
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and which preserves the scalar product of two four-vectors, as defined, the
latter, by the bilinear form :

(x]y) = &'y ¢

» (11,9)

where we are having in mind a sumnation over repeated indices from O to3; and :

= e = e = e = M -= II O
goo gll €59 g?)3 1 goq3 0 for o 74 ¢ (11,10)
the condition :

(xg*) = (]7) (II,11)

, o«
imposes the following restrictions on the Lorentz coefficients { ﬁ’

o B
= 11,12
v eat = 6, (11,12)
It is seen that the square of the norm .of a vector :
() = ()7 - (®)° (11,13)

is not positive definite and the condition (x/x) = 0 =» (x) = O is not valid

in such a space.

In a notation similar to that introduced in (I,21) - (I,32), we shall

express a vector of space-time in terms of & basis! kb)A KI)J XZ),‘%3)=
lz) = xTa) . (11,14)
A-Lorentz transfémation changes this vector into s

I x') = Xoilh&) (II,15)

whereitxa), «=0, 1, 2, 3, are the vectors of the new basis . We have :
“

b ox) = = xa) (11,15a)

Call (y | a vector of the dual space

(] = ¥ (] (11,16)



and denote by g the scalar product (A | Ay ):
By B

A L ay) =
( p( » . 6, (11,17)

It follows from (II,15) and (II,15a) that :

o 14
' = 1 11,18
7 gy = x (Aglany) (11,18)
If a new (contravariant) tensor g ‘ is introduced by the equations :
oL os B P 11,1
g8 = 8y = 8, (11,19)

where 52 is the unit matrix :

6&? = 1 for &« = §
0 for x £ B

one obtains from (II,18) and (II,19):

s - = (kp | k&) gﬁp (11,20)
Let us call :
(7\.“1 = (K)_,]gy“
and
b M .
eh = ( lxo‘) .

Formila (II,20) reduces to (II,8).

Usually one postulates the Lorentz metric tensor (II,i7),(II,10), the
scalar product (II,9) and the contravariant tensor gaﬁ (11,19). Clearly, one
can also write (II,9) under the form :

(xly) = x v,

where
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and the vector (II,14) can also be written s

Ix) = x| 2%

B

In view of the identification of the numbers x~ with real coordinates

(xo = ct, xl= X, x2= e x3= z), the Lorentz group matrix 2 = {-pr} is formed
of real numbers., It is well-known that an alternative way to represent the
Lorentz transformations is obtained by replacing the gp),elements in (II,17)

by the unit matrix elements 0 and at the same time identifying the coor-

v
dinates x™ with x4= x4=ict, x&; X, =X, x2= X5= Vs x3= X= 2 the scalar

product of two such vectors being defined as :

(X'Y) = - (XI Y) = xl yl + x2 Yo + x3 YS + x4 y4

5
= X ly xo yo .
In this case the transformation parameters , represented by ap.v 3
| JE—
xp apv X,

are not real numbers (a,jk and a4 2 are real numbers, a4j and aj4 are pure ima-

ginary numbers, where j,k =1,2,3).

A consequence of the equations (II,12) is that the determinant of the

matrix {ﬁ}li is +1 since
[aes 2P} ]2 - 1,
The equations (II,12) give, for p=v=20 3
o B
£ o goc(j L o= 1

whence :

3
(£)% = 1+ B (2%)%) 1
o=0

that is to say :

&o ¥ o1 or ftoo\(-l

Cne is thus led to distinguish four components of the Lorentz group L

(the lower sign is that of the determinant, the upper sign indicates the
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direction of time flow):

1) the proper orthochronous component L: the eleuents of which,d = {{*i % are
such that

o}
det 8=+1 , L° ¥y 1 ;
2) the proper non-orthochronous component L: for which

G,
det L=v1 , £7 -1

+
3) the improper orthochronous component L_ H

oy b

4) the improper non-orthochronous component L_ 3

det £=-1 , ll°o\< -1

- o
It is clear that the first compoaent , L+, is a subgroup of L, the

proper orthochronous group LT ; it contains the identity (J&t,: 5“9) und an

+ .
element of this group can be obtained from any other eleument of L+ by a conti~

. _ . ~ ‘
nuous variation of the six parameters. The sets L+ ' L~ ’ L_ , above are obvious-
ly not groups since they do not contain the identity. [he sum or wunion of

these sets with L: are groups :

-

a) L, = L UL, (proper Lorentz group);

b) o= L: U Lt (orthochronous group) ; (11,21)
c) L, = L: U L~ (orthochronous group).

; I ' § .
The orthochronous proper Lorentz group L+ is rormed of eleaments which

transfora a positive time-like vector x :

(x]x) =% -(x%) 0 , )0

AA.

into another positive time~like vector :

I B

(x'l x*) >0 , xl°> U .

A space-like surface U is formed of points such that the

distance between any two of them, x ~nd y in space-time is negatives
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(x=y/x=y) = (2 -32)2 - @-$)° <o

A particular space-like surface is a plane perpendicular to the time-
axis. For any two points of O , one is always outside of the light-cone of the
other, the light-cone at the origin being the set of points x such that:

(xlx) = 0

Given the fact that the four-dimensional volume d4x is invariant, since
] [
dx = g—:— | a*x (11,22)

and
"gi-:-}= det{-ﬁ%} = ]

an integral of the form JF(x) d*x has the transformation properties of F(x).
The integral which generalises a three-dimensional sum is:

L fx(x) do™
where

d0_7\.=(1'23 2 .3

dx“ dax’, dx° dax 5 axt 1 g?

ax°, ax’ dxt dx°, dx® ax~ ax°)

, A
is a vector normal to each point of & . The surface O~ being space-like, 40

is a time-like vector.

In the special case when € is a plane perpendiculaf to the time-axis one has 3

5 f dC‘)‘-)- ‘5 f d3x
A v o]
o

The generalisation of the Gauss theorem to space-time is 3

’

5w C)—f-}{-dd'x = j P ao. - & a0 (11,23)
A ) A
ox 07 1

where W is a four dimensional region bounded by the space like surfaces ¢ >
and T .
1
To each of the Lorentz groups (II,21) is associated a Poincaré group,

the corresponding inhomogeneous Lorentz group. Thus the proper orthochroneous
Poincaré group P . is composed of the elements }La, E} such that :

«H o au+zuxy
y
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where

det £ =+ 1 , foo)l.

If a Lorentz transformation is defined by six independent parameters
—{P§xthe corresponding Poincaré transformation is determined(by ten parameters
f e

a”, L h,

Clearly, if :

)
RTC ,
Y
Y _ y ) A
x = a2+€2xx

one gets N
B BB Y PH A
Xt =ay 4 { 1y &2 +1 1»‘¥2A X

It is, thus, secn that the multiplication law for the Poincaré group is:

5l_al’ L 1k {32'8 2 } = {al +€1 az'£ 1 }22 }

II.3) Lorentz-covariant form of Maxwell's equations.

The physical basis of the covariant form of Maxwell's equations is the
fact that electric charge of a physical system is Lorentz-invariant. If p(x)
is the density of a charge distribution in a frame S we must have :

p(x) Px = pt(x') x

where the dash indicates the values measured by an observer of a frime S'. A
comparison with the equation (II,22) shows that p transforms like a time coor-

dinate. Thus

transforms like dﬁ. Therefore the four quantities :

.
]

(HO CP ] HJ)

Q

where

are the components of a four-vector :

i) = RE S ()



160

Tre coatinuity equution :

0
5@ -+:Z. i =0
is written :
A
étl_ = 0
> =
O

vhere the sum over a repented index is understcod.

Y
Define a qu.ntity B in the folloving way 3

Hok _ Hko e Dk,

i
i

23 32 . o 13 " .12 21 .
H = - n3 = u H o= - = Mo uy , T =<«H = pohz

k _— .o C e . s
where D7, kX = 1,2,% are the compoucnts of tie electric displaceaent veeior and

Hx’ HV, HZ those of tie masretic {icld. The equations 3

“ Y.eDo=p o, TAE-ZE - g
——
can be synthetized into. ot
,ﬁg =
ox”

TRy
K leads to H’JL being the componcnts of a tensor 3

The vector carccter of j

~ ey OB
B () = UL U (w)

In the same way, the equations :

0
= T A ===
iZ . Ei 0 'y EL+ St 0
result from the equations :
o o o
—— ot T = 0
Ox ox” oz
By nad 1
where F©' is & tercor defined by @
Fko - Fok = —ce g gK ,
0
3 . 2 21
F2) - F32 = B, F3l - Fl3 -3, Fl I
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Finally, if one sets :
(L = ce ¢
Ak ’ [ oMo't

where ¢ is the so called scalar potential, Ak the vector-potential, the equa-

tions which define these :

. o Ak
- 77 ’A A - - A' - "‘
B =Y hA E=-Vo-5
can be written
\2
Fp.)' QL C\CL,“'
T 0x T dxY
"

The equations for the four-vector (:Lp, are, vhen € = p =1 :

v
oot ol _ 0 (11,24)
dxp
where 2
i) 2
O-¢" % & - L & v (11,24a)
oz ox c ot

is the scalar D'Alembertian operator :

iy

II,4) The Laeranzean formalism for the electromagrobfic fisld.

ne equations of a free particle are !

b

Le -
as
where .
2 .Y
ds = dz" dz
"
and .
k B azs o N
Y] = 212 it ) P = 1/2
W1-£7) / ) 1—5 ) (1)

They are deduced from an action principie :

68 = 0

the zction function being:
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w0
il

det,
2 (1_52)1/2

How are Lagrange's equations to be related to a field ? Une searchea for
a lLagrange function a scalar constructed with the electromagnetic potential

ijp end its first space-time derivatives

Nk
L= gt , f)-‘"x-\-) (x, t),%)
s

If L is assumed to be inveriant with respect to the proper orthochro-

nous Poincaré group, it does not depend explicitely on x

L = L(AH<§.:t)9 App\) ) H AP‘ 1y = -5}"{7 .

3y analogy with equation (I,4) one defines the total Lagrengeans

- 4

and introduces the action function S as :

+
2 - ) 4
S = Lat = & Ldx.,
CcC
W
by
A field distribution A}JL is determined by the solution of the inhomoge-
neous wave equation (II,24) and appropriate boundary conditions. The action
principle states that out of all possible distributions, the physicel field
is the one which makes S stationary. If, therefore, the set of possible distri-

butions is defined by a parzmeter o :

A= M(x; ®) where x = (ttﬁ)
and (see (I,6)) :

1 ()AP'
R | A e e A
A = doc >c «
one has
58S = = Qi sph g - 6Ahv( &ty =
¢ oaM oa”, J
- (1 Lo 6A“§ &x
© oat OA“,V x .

and a partial integration gives :
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5 5=l gak g0 +}j§9.l’.___0.y_ L Lo gty
°) ont, ° al ox’ ouf,

¥

where 0" is the boundary of the four-dimensional region W. The postulate :

5§85 = 0

under the assumption that oit 0 on G-, gives rise to tne field Lagrange's

]

equations :

oL _ 2 I (11,26)
e ox” o 'y

In general, the Lagrenge function is a sum of three parts : the particles!
Lagrangean, the Lagrangean of the free fields and the interaction between fields
and particles
L +L_+ 1L,

part. f int.
The complete action of ¢ peint perticle in interaction with an electro-

magnetic field is :

_ 11 i Vo4 1 M4
S = - mo c J ds + 5 3 -s Sy A d'x -~ JH AT adTx
where o<
H g
i(x) = ec EE—-é(X—Z(S)) ds

The interection term is therefore :
( " dz
Sipe = eﬂ) i (z) Egk'ds
The equations of motion of this system, obtained by variation of the

particle's world-line and of the field are, respectively

o ds ‘ds - ds '
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II. 5) Canonical form of the field equations.

The total Lagrangean L,(II,25) is a functional of AH' AP- :
T =\ n(afx,t) , &% (x,8)) &x = L[4 A ] .
ad ! 'V ol L p.' o8

where A;:“ = ¢ A"L,o.

The functional derivative of ‘IT with respact to AY is defined by the follo=-

wing relationship :

5T oL d oL
sAH oAt ot "

with a sumration over the index k from 1 to 3. On the other hand, the functio-
nal derivative of L with respect to AH is

8L, 0L

5aH oM
These definitions are sugsested by a comparison of the variation of T:

8L = ((-6-2‘—— 6A“+'§:14 54M) &x
) e sak

(which is a generalisation of the differential of a function :

0%k
d QP = _‘E dx
k Ox

Q

the three space-coordinates playing the role of continuous indices)

with :
5L = j oL d3x __.J{(()L - c)k oL )oare —?L 511"1} x
art ox® onf x oiH
o) oL Hy 5 . . . - :
up to a term ——1::. —— JA )d x which vanishes on the boundary of the inte~
ox 04",k

gration domain.

The Lagrange's equations (II1,26) can be written in the following form:

8T, o_ BL

5Lp'(x) 0% GAP(X)

0

similar to (I,9).
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The canonical conjugate mouwentum is defined by 3

dL
n(x) = ——=>
H 51;“( X)

and the Hamiltonian density,by :

H=J’fAH-L
M .

which is a function of &, 4" , %, The total Kamiltonian is tae functionsl:
’

Eo-indx - Bl% x ).
It follows from: '

& I =5(§-I:I—- 5 oF 4 S 6Jr)d3x
51’1“

b
LB
and a « )
5 H =j {:r oit + 1P o - ~Lpgt _ Ll gk e L s }d3x
P’ }J» C) AP’ c)A“ ’ C) AH P-
,k
=S{A“ dn -7 b APS Ex
bR
that :
N SH SH
AP ‘= n(x) = ~= x ={ct,x (11,27)
S (X) WX) ? U ) 6],”(};) ’ ( ,.,,) ’

which are the field canonical equations.

I1.6) The field's Poisson brackets. Constants of motion.

Let F [AH, ﬂp} and G LA“, 7 ] be two functionals of A“(x) and ﬂp(x).
The Poisson bracket ,as defined in.(I,15), is now extended to this case by

the form

Fef= S(“é_F' e LS 26y J (1I,28)
4 osifM(x) Bnp(x) 6ﬂp(x) 54M(x)

Ve can write :

d:y

A
A“(f&,t) =S 4 </th) 6“7\'6(3{‘3_(')

whence : 5AP(§,t)

= o 8(x-y)
N )\. AN A
647 (y, t) A
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By definition; 4 (x,t) and nx(y,t), at the same instant t, are indepcn-
’J. “ oWy

dent variables ;

o
o (5 t) = 0 (11,29)
& = (y,t)
Therefore:
(M), T} A
L ' } dn (x) ’
I
{TC (X), E‘f}: - O
- B 62:.“(]!)

These equations and (II,27) lead to the Hamilton-Heisenberg classical equations:

!:}-L(x) % Ap.(x)’ H } ’

() tnp(X), 3{-} .

The fundamental Poisson brackets of the field variables at the same

instant are

A
{AH(AXJ‘G), h (/X.'t) 0,

AN e~
i

0 (11,30)

M 5 (x-~ .
R (My)

WA,

{np(?}}t), 7 (y,t) }

.%.A“(E,t), ’5\(?1.’”5"

The generator of an infinitesimal canonical transformation, with parameter

€,
L Alp(x) = x’i“(x) + 0 AH(X) ’
m, > n&(x) = ﬂp(x) ;6 ﬂp(x) , (11,31)
d AP' = e(k) <?)_gt))0 ’
i’L_
T T ey

is a functional E.[AH, ﬂﬁJ such that ( see (I,49)):

)

K
= %) 3

h

al _al

57T
,  bx = k) (11,32)

F“ -
24 LT TR o
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The variation of a quantity F[A“, npi\ which is a functional of the field

variahles will be given by the equaticn s

~ i i
or =(( Lot Eon )i - o S CL el L Lo,
hence
" n - — . I
5 F e(k){F , U(k)} (1I,33)

On the other hand, if G is a functional of A% and nﬁ and a function of t:

¢ = G[a", 7t 1

one has
a¢ oG 5 5,96 i . OG
— = ‘:' + d X( —.—A + = J’r )
at Ot SA bﬂp !
or
4G o . f =
L Lo, T (11,34)

It follows from (II,33) and (II,34) that every infinitesimal canonical
transformation which leaves the Hamiltonian invariant, determines g constant

of motion, the generutor of tie transformation (see paragr. I,9) .

We shall see latter ((1I,42),(II1,46)) “he expression of the generators
of translations and rotations,respectively the energy momentum vector and the

angular momentum tensor of a field.

I1.7) Free-field Poisson braclketis.

The Poisson brackets written down in (II,28) refer to field variables
taken at the same time, i.e., at different points of a plane perpendicular
to the time axis. As such & plane is not an invariant surface, it is of interest
to know the Poisson brackets between two fields taken at any two points in

space-time. To derive these we need to use the free-field equation.

Ve have, by definition :
(00, & (e} ] ) 28w 0 M) 0 & be s
AT(x ’ A (x! 5:} Ty 2 -
| & &7(y,t) b m(y,%) W) g g (3, t)
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. A
where we have taken the time of the independent varizbles A (y,t),."c)\(y,t)
A ron
equal to that of a*(x,t), In virtue of the equation (I1,29), this reduces to:
L4

5 AM(x,8) 64 (x',t)

B Vgt = ’ =

v
Develop A (ﬁ"t') in series around t,

v
Y Y oA (*J’t')
A(x',t') = A(x',t) + (0 - 1) (3553 ) o+ ees
L ooy ! =
On the other hand, for a free field :
1 AV o .
L =5 gp.ocg A ,7\.A ' !
iy = 1 oL _ 1 g, A .
— . -~ -2 '
2 onY . «
’
v L
gl ﬂv: '1'2 Ap' H
¢
c)2Av(x' t! 2 2 v
() = ¢ VA (x,t)
ot t' =t ~ -~
therefore :
" v ! 3 .4 { o8 (x'¢) 2 07 (x1,%)
. L B8] iz, +
{A (§~,t),1x (i"t')" = deo?\b(/ﬁz) OTS\}’T-F(JC -t) ? ——T’j
5 £ (x',t) 5 o (x',t) }
1l 2 2 12 ! 1 4 3 2 s
+ = ‘- ~7 . + = (. v — + eee
210(t t) bﬁzﬂ 3£°H t) bquﬂ
that is

2 = 1 2n+tl | 2 »'27n \
&Ap(x) Y (x* } s E N (tr-t) ¢V 7 d(x'ex)
The Fourier representation:

(xt-x) = __.].-..; SdB kellf:(ﬁ.‘—?\i}
M Aas (2“)"

leads to:
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{Afx“(X), AV(X')} = ¢ Dlx'x) (11,35)

wheres the Jordan-Yauli function is defined by:

D(x-x') = - D(x'-x) = —— 1k ei5'<§3_§) I sinlk (x0 - x )
(2n)3 k [ oo o]

It vanishes if x and x' are on a space-like surface G- and fulfills the conditions:

ODx) = 0 ;

Do gk -1,
i ox

D(x) = 0 if (x]x) {0

If the field #%(x) and its first derivatives (04")/(0x”) are ziven on
a space-like surface, the field will be determined at any point y of space-

time by the relation p:

My) = J ,[D(y—x) ?‘%}3) - M) O D(y-x)] 1o
G__ . X

I1.8) Hcether's theorem.

Ye shall now prove an important theorem due to E.Noether, which allows
one to construct the constants of motion associated to the symmetry groups of

a field theory. This theorem may be stated as follows :

To_every continuous transformation of the (eeometrical or dynamical) coor-

dinates of a field ,“* o Tor which the field transformation law is known,
. , e loc} . . s ot L .
_& certain  comhination of W' “and its first derlvatlvesWVL N is associated
’

which is covariant and conserved in time, if the transformation leaves the

action invariant,

let

N (11,36)

ve an infinitesimal geometric transformation of the coordinates in space-time

defined by a set of parameters w .J, such that :

5 = £ wm (11,37)

v

&%
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In the case of a space~time translation, one has:

w = & ; f}Ev]= 5p'v (11,38)
For an infinitesimal Lorentz~transformation:
| v

DI o _ S MY

Boo= B pooo 1 -

f[ﬂ‘ fn = ~fHy = (‘5v B\ gvoc)x

The mappings (II,36) induce a transformation of the field variables 3

T -~
VI 5 ¥ ey <y + 5y
m t]éxﬁ form of the field function and from
The variation O IP&xl(x) results from a change/bf x into x'; we shall assume

it proportional to the infinitesimal parameters w P s
\pC“] 9‘[063 (x) w[ﬁj : (1I,39)
8]

The variations of the fields we considered previously (see (II,31)), are
variations in form only: '

sy ™) = v () ¥,

i.e., the original and transformed fields are taken at the same point x.

Y,
One can express 6"4’ o] in terms of the parameters wt ! and of
9‘[0(' (x) ] « Indeed :

5\*;1“]&)

]

Y ) Y ) - (Y ) Y R -

?—[0‘ \*jﬂ“}(x IB] (II,'40)

The action is a functional of the field and of the domain of integration R

lo) | _ 4
sV &] _SRde

where

= L(x;\jfcuj(x).\%’[“?x (x))
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The variation of the action is ¢

§s = sy, R'] _sw@@; R]

gnd is equal to
5s = s[Y' e] o5 W, v . sl ri] - sy®; &}
that is .
'gs i{ L( \{) [“](x LP tod(x d %! - f L(xl’IFLOC](X|)'I}/E;QX'))d4XI

+§ L(x" ‘\}J[oc] !Loc]( ))d o - 5 Wuﬂ 1}/[063
R

Rt

where R' is the transformed domain of integration resulting from (II,36).

We thus have :

5 j oL v ) 1, Y, Y e)ate -LL(x,\VB"?x>,\{f§%x))d4x

Rl

hence , if one keeps only terms in first order in the w's 3

= oL Toed JL A d A
5s = S 4 ( L}j[oc]Jr ——=— 5V + == § ¥ + L — (6x™))

Here we have taken into account that :

0 ¢ A 4
d4x' \ax}f&ddrx = (1 +'a-x—7\- (8x™) a'x

Now the field equations :

oL . o _oL _
o] A o} 7
oY Ox dl}l Ry

allows us to write O S under the following form 3

SO O BT DN - IR N [ B
5S“§ (a\}’w T Y5 ) Lfl'ﬁﬂ ax -

It is now seen that the postulate of invarisnce of the action under the
transformations in question :

58 = 0

for any infinitesimal w's , leads to the existence of the set of quantities ,
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the Noether tensor N?p] H

oL (o)

A
Vgl = oy @ W=t - Fl) - (I1,41)

the divergence of which vanishes

— Bl _ (II,41a)

Therefore, if this equation is integrated over & four-dimensional region

between two space-like surfaces le and O, , and if the field quantities

. N . P . . .
which occur in N vanish at infinite space-like distances, we can write, accor=-

ding to Gauss theorem (II,23)

jdx-—-@ é mjodo. Py - 0

This means that the quantity

?\‘ T
'S[ﬁl = j&d&K N[BJ (II,41b)

does not depend on the space~like surface G- . If this is a plane perpendicular

to the time axis, then

3.0
S = a’x N
(el J )
does not depend on time, it is a conserved quantity :
dsS
S 1
ax®
A . .
Clearliy,the Noether tensor N[ﬁ] is defined up to a term which contains

the divergence of a certain antisymuetric tensor. Indeed, if such a tensor is :

AV YA

trg ) = -t m}(")
then the two quantities N?ﬂa and N? LB]

I7\' - —---

will give rise to the same conserved objects, since :
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dN'[Q ) ()N{:)
A - A
Ox ox

I1.9) The field energy-momentua vector.

Suppose now that the transformetions (II,36) are translations in space-
time by the vector ev :

Y
ftv]“év *

€
]
V]

Jn this case, the field variables are invariant :

\PI[“J(X') = '\)[j[(’a(x) ,

To)
(x) = 0.
?m

The Noether quantity is the energy-momentum tensor ¢

& e oL tv] L3 IT .42
M@= = Tyt T 2 - ()

e

therefore :

The field energy-momentum four-vector is therefore :

oo P jdo—a T“ﬁ = g"ﬂj x T°p (1T ,422)

hence, for the Hamiltonian :

_ . ™l Wl
T o= = deX (a‘i;mw’o - 1) .—_-dex(n-wJ'\;J 1)  (II,42b)
,0

and for the momentums

x k(3 o (3 Lk
P~g—5dx'1‘4Z = chxnry}P = -5

If one regards the field equations under the form (II,32), the generators

for a space~-time translations are bi] A = - Py\ .
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I1.10) The field anecular momentum tensor.

When the infinitesimal transformations of the coordinates are homogeneous

Lorentz transformations :

% £ o _f
x px
one has )
%%, &
4 B p g

where the paremeters 80“3 are to0 be retained only to first order. We may write:

where

op Boc
We can still write ¢
'& (04 e
X = x +0 X ’
o 1 x AV
b x = 5 faue (11,43)
o o o o n
= - = -5
fay fon = Oy Eyn =%y gml) x

Now

V‘C“J(x') - 1{;[06](){) +% x]xv(*) ol
and we shall set :

Fx) - xvxC"[‘]mv\p[@(x) (11,44)
where o) B '
04
g™ T Eva

The Noether quantity is thus the following :

A oL ) b (o) A
= ——— - - L
va a\y@‘](\%’ ,rprv St w) fp)’
that is, in view of equations (II,41),(II,42) and (II,43):

S S R/ [CARENYI[5)
Ni:v = Txy-T) x, mc)\;)t“JML@va(
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This is the angular momentum tensor density; the first two terms

constitute its orbital part, the last term the spin psrt. The angular momen-
tum tensor is :

A 3 °
J = o- N = (11,45
Ly jd Y jd XNH)) »45)

The generator of the cenonical transformation corresponding to a spatial
rotation is :

U = =J TI,46
134 kR (71,46)

The reader will verify that tlie comsexvation of the tensor va raquires
a_symnetric energy momentun tensor s TP- Shi Tv“ .

II,11) The Lorentz geometrical nature of fields.

The study of the representations of the Poincaré group determines the
geometrical nature of the wave fields, the equations of which are invariant
under the proper Poincaré group(6 . The fields must belong to a representation
space of this group and they can only be scalsrs, spinors, vectors and spinors
or tensors of higher, rank.

Here is a list of the simplest fields (where we take ¢ = 1) :

1) Complex sealar field @(X),d,)f(l\:) : (fP' (xt) = ¢(x)

Free field equation :
2 x
D+K (PKX =O ’ (D+K)¢(X)=

Lagrangean :
RV Vo x
- OF - & ,pd},v)
Energy momentum tensor ;
pY g Ay, 9L x(A),Y_ v
= \f) \/ w@jx\l) L og”

R d

= g}mgvﬁ (¢% o $pv Ty ) -2

H
Hamiltonien and momentum 3

& E)'Qg;- - <ﬁ;,s:

|
i
—
Q’\.
B
g
Q
+
4
-
T
24
AN
+
by
n
ey
"
o



176

Angular momentum (only orbital since MEO_CR = 0)
[BIAY

Ler™ 5 ¥ [ﬂx( ¢ ™" ¢Q x) + H@%, = 'dgjxk)}

3
= .}(d X (TCik x/e - TO,Q JHC)

The two scalars qD ’ d‘\: * are equivalent to the couple of real fields
Qs such that 4

éf %-.._2.‘(431_-1(‘;)2) , (11,47)

q‘)* L. (4) + i ¢2) .
= 1
and one can describe the quantities associated to a single real field by

expressing the ahove ones in terms of (.P 1 dr’z and dropping the terms in<>2 .

2)Reel vector field , & M(x) :

$Hax) = LHE ().

Free-field equation :

2.1
(T o+ )CP (x) 0 @ W4
Lagrangean :

Lom-j g, 0370 - 0% 40 (11,48)

In view of the condition dp“}l =0 , one can write (L is defined up to a four-
4

divergence)
1 2 40 B « of
L=-§€mB(K¢ (;9 "gu}\F“FK)
where d¢,

s 4
P o2 e Qi_
- }J, C)Xa C)K.p.

Energy-momentum tensor :
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H = %Sd3x(nun°‘+¢°"k+ ¢ogk+K2 Cpadpa)
k 3 k
P =deﬁ°‘dpa = -

Angular momentum :

VR py '’
L = (°x -19%)&x = (n(¢°‘ x-q>“x)-L(5°x-5°x;ld3x,
Y gy DYy ARENTIS AR IS Y !
_ _ 3
S»V—S(depﬂv q)vﬂu)dx
y

1
3)Dirac'e spinor field ’hv(x) = 32 .We take =1, c=1.
3

3 (o] .
Jp.vzgdx va-_—.L +°38

Free-field equation of motion : YA,

1y 2= -0 YP(x) =0
0x

where yo, -yl, 'Y2’ y3 are four-by-four matrices satisfying
Y yviyy = 2 g
YOy = .
The adjoint field ] is defined by

Pz = Y@y

*
and ‘-I’+ is the hermitian conjugate of \P: "f+=(\[’l .\{"2, \‘?;\P: ) . Its

equation is s _
) - +
1——Y¢+K\}/=O, (\)'L)=«°¢'Yo
o
The Poincaré transformed of Y (x)

yHxt) = p(.L ) Y (x)

where ¢

2 (2) ¥ THR) = (11,49)

For an infinitesimal transformastion one has 3

Y Y o B
4y y T % o
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+3 Y (11,50)

Dmﬁ<s) =8 of Y

of3

It follows from the equations (II,49) and (II,50) that 3

pY] ¥ b%
M}‘.Yn}= Yv g?»} -ng '1

which is satisfied by :

AV 1 AV ¥ A
= 2 Yy -y y)

The Lagrangean is
i, p oY 0¥ T
= 3Py S - S A Y@rE T Y
ZYWOXP Y

The energy-momentum tensor has the form :

Y i o, - OV ¥ v
R A R R I 0

be ox

and the spin tensor :

M opB @
) ‘)‘V et ¥, Fagop oY,
B TR e
where
o® = Y-,

II.12) The current-vector.

When the wave fields are complex functions, the Lagrangean - which must
be real (hermitian in the quantlzed ver31onjof the theory) - must depend only
2o Tt wi
« It will therefore be
Yo Xa ¥ \VU@

invariant if the field is multiplied by an arbltrary phase factor (oauﬁe

on terms of the form \y

transformations of the first kind) s

‘U{'[’od(x) - eiTLLP(Oc](x) ’ \le [ocj(x) _ e—iﬂ vx{d)(x)

where Tkis a real number.

This constitutes an example of a non-geometrical group of transformations,
the importance of which gives support to the second definition of the inva-

riance principle in paragraph I,4).
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For n_infinitesimal we have, up to terms of first order in N :

W@ = 1+ Y&
Y* ¥ - -1 vy
As the coordinates x do not chiange, we have in (II,41):
f“M= 0

However (see (11,40))

rﬁ] At ) ’ oM 1

The conserved Noether's quantity is the current-vector :

\}l £b)_ oL y&
'Y
i.e. such that : O 3 = 0
bY
ox
The charge of the field is :

Q =jd% 3V = Sde .

Thus the current-vector of a complex scalar field is :

37 =18 (0% g, - 9", (11,51)

that of a spinor field :

jv = \’/ 'Yv\'{ (II’52)
The interaction lagrangean with an electromagnetic field is :

int = - € \T/ YV \})Ap(x).
which is to be added to the free electromagnetic and spinor field Lagrangeans.
Another non-geometric mapping is the gauge transformation of the second
kind :
A'p(x) = Ap(x) + _Qéiﬁﬁl
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ahere A (x) is a scalar function, solution of the wave equation A = 0.
Other quuntities of the general form of Q where the current is of the
form (II,52), are the baryon number B, the lepton numbers L and Le « They
are, perhaps, related to interactions of the corresponding spinors with hy-
pothetical vector fields in the same way as the electric charge is revealed
in interaction with the electromagnetic field. The conservation of the baryon
number and of the lepton number,‘although, empirically established, are how=
ever not yet fully understood. In quantum theory, these charges Q, B, L“, Le

have integral numbers .

II. 13) Qutline of the transition into guantum theory.

The correspondence principle states that, given in classical theory,
its quantum transcription will be achieved by the substitution of (hermitian)
linear operators for (observable) classical veriables and of commutators

divided by i K for Poisson brackets between such variables :

{A,Bj-; Z;LZ [4, 8] = -]7_17(A.B-BA)

Thus the position of the coordinates and momenta of particles A,B,... are

hermitian linear operators which satisfy the commutation rules (see (I,18)):
[xjA,ka] = [ij,pkB] = 0 ,

= i 5.0
["J-A ’ J&:Bl 1A jic “AB
The canonical equations of a system of particles, with a hamiltonien operator

H(x,p), are (see (I,l7)):

-

i ;‘ch = [xjA,H]' , i¥ fajA = [pJ.A,H]'

and the time evolution of a physical veriable F(x,p,t) is defined by the equa-
tion :

s F
w = ooy [FoA] (11,53)

It is to be noted that x and p do not depend explicitely on t.
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These equations give the description of our system of point-}

in the Heisenberg picture. The operators are here represented by matrices
and one is interested in the search for transformations which will cheange the
Bamiltonian mutrix into diegonel form. The diagonal elements of I are tae
energy eigenvalues of our system, its only possible observable energy values.
Operutors which commute among themselves can all be diagonalised by a given
transformation. The physical definition of the state of a system is given
through the maximum number of commuting observables each of which can thus

have a given value in the state in yuestion.

Such operators act on a Hilbert spece, a vector space with complex numbers

as scalars and a scalar product defined by :
G1p-<318)
(@ |2, §;)= = ¢;{¢ ] 11}1>
($132>20 ,

(@1?) = O implies \@): 0. Such a vector space must be complete s if
]i’li) oi=1l, 2,s.. , is a Cauchy sequence of stste vectors, i.e., such

that given e'} 0 there is an integral number n for which

((?i = ?1 hPi - YJ> )1/2<° » Ljym

then the sequence has & limit ll}b:

JQOO (< ? l \i}g Y>)1/2 '

If instead of the Heisenberg equctions (II,53), we regard the time evo-
tion of the system as described by that of a stute vector [ ?), the fundamen-
tal equation is the Schrfdinger's equation :

VI R

This is the Schrddinger picture according to which the operators do
not depend explicit.ly on time.

Given an operator A of which all the eigenvalues a and eigenfunctions
{a) are known :

Alay = alsy ,  <ale') = Bla-at),

one may develop{?) into this complete set of eigenfunctions :



ing
[Pr= e ¥ @orla
Yt = al YD

The Schrddinger equation will read in this cuse, in terms of the ampli-
tudes 1P (a,t) s

s A Q%Jt.a_&) ;jdea\Hlb}'\I/(b,t).

The usual formulation of one-particle quantum mechanics in x - space

where

is based on the equation :

1h Y (xt) = 5d3y<§\ﬂly>1}/ (y,1)

where, for local potentials
(x\ElyY) = H(y) d(x-y).
L ~ Lo - -

Our system may, however, be more complicated. In the case of a system of
photons, this will be described in the Heisenberg picture by operators AM(x)
such that (see (II,30)):

[rz0) mga] = o

LA 88 8(xy) (11,54)

A

[#(x, 1), 2,1 ]
[#(x,1), = (3,t)]

and the free-field covariant commtation rules are (sece (II,35)):

1]

[, " 5] = 1de & nlxy). (11,542)
The Lorentz supplementary condition, however, cannot be transcribed in
a simple way into quantum theory. If the operator relation = 0 were
(9] .
true , one would have o = 0 and this would be in conflict with the

A
comnutators (II,54; 54a§¥ The correction transcription of the Lorentz supple-

mentary condition in quantum electrodynamics is to consider the positive fre-
guency part, AM(+) of A“, according to the Fourier representation (x is the
polarisation):

1 d3k ~ikx +
A“(X) (2ﬂ)3/2 S (2k°)1/é i ep(KuE>[ﬁ(K,59 e 4 a (Awkg e

ikx]

H) )
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and select those state vectors [g?} restricted by the condition :

OA“ \P>

Another example of a qusntum system is a pion in interaction with a pho=-
ton. As pions have a strong interaction with nucleons, the Lagrangean of
pions and photons must include the terms relative to the nucleons field. The

corresponding Lagrangean is thus ( weak interactions being neglected) :

= IT
Ln + L+ Lrad + Lint (1I1,55)

where 3
1,2 ,,2 B
L = | - ) L)
4 2 (}-1 (PJ € CPJvO" (PJ’B)
is the free pion-field Lagrangean described by three real (hermitian) fields_
QPJ s 0= 1,2,3;
| My
ax“ ox

is the free nucleon-field Lagrangean where \yw = (\Hp) \V and \y are the

0
LN (\VN Yp Yp \KN) -K q)N \VN

four-component splnors of the proton and neutron rcspcctlvcly, Lrad is given
by (II,48) mhK=oand¢“= ;
1+C
e U 2 ...2. H B
Ling =€ Y Gy ¥yt Yy Y Wy X +erA

comprises the nucleon-pion interactions, with :
. 01 0 -i) | 10
Q= (1 o) r G = (i o) y G o= (0 —1)

. JU
the nucleon-photon interaction and the pion photon interaction where JH is

-e

given in equation (II,51) and (II,47). The total clectric current of this sys-

tem which obeys Hoether's theorem, is @
1+

LGP TR Yy s

The nucleon field-all spin 1/2 fields- is however guuntized according to anti-

commutators, as raquired by the exclusion principle .
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II. 14) Conserved current and equality of chargmes of ¢lementary particles.

An illustration of the importance of conserved Noether's quantities
is furnished by the relationship between cor;served current and the equality
of charges of elementary particles. The charge of an electron is revealed by
its interaction with a. photon. If weak interactions are neglected, the elec-

tron charge is given by the matrix elewment :

% =§<eout\ 1i)Jr\\)lein> d3x

where| ein> and \eout> are the incident and outgoing electron in interaction
with a photon :

S e e

For an incoming and outgoing pion, the charge will be I:
Q. = \{=x ‘ﬂ[ﬂ )d3 + \{ +\|/ | = >d3x
T outl'jo in x out! l( N TN'"4n

The first term is of the type of the above one and we may assume equal to it,
the second term might give additional contributions and make Q » #£ Qe y @s

illustrated by graphs such as the following one :

However, the solutions \VN and ‘( to the equations derived from the La-
grangean (II,55) must be such that in the remote past they describe free nucleons

and pions :

lim (D+p2)(P = 0

t> =co
. A ()SUN
Lim ( iy Y
t S -0 ox

—K\VN) = 0
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+
Therefore, in the remote past, S\V NL‘JN d3x = number of nucleons
- number of aentinucleons ; since there is only one pion in the distant past
one has :

tljm_co ﬂO*dtlj \Vg \PN d3x] J'Cin> = 0

and

. T3 )
tl:m_ oonr(t) =< “outl S‘]o d x) “in) = Q

which we assume equal to the electron's charge .
In view of the total current conservation, (II,56), one has :

d Q (%)

= 0
dt

hence @ -

i
O
A
]
o

II, 15) Sympetry operations in gquantum theory.

To canonical transformations in classical physics, there correspond
unitary trensformations in quantum theory : given e state vector| ?), one can
define a new state ve‘ctor ["{‘} after the physical variables of the system
have undergone a certain transformation. It is postulated that there exists
a linear operator U which transforms ]\}7} into | l_if' >

Py = P
7/ o

The transformation U in Hilbert space is a symmetry operation if the
physical laws obteined from f‘?') are the same as those obtained from { \:{})

. Let R be the transformation of physical variables which induces the mapping
U of the Hilbert space into itself. We shall write U = U(R). If the set of
all possible transformations R forms a group, the set of operations U(R) will
also form a group - and is called a representation (an infinite dimensional
one) - of {R} if e

a)the 'unity in Hilbert speace corresponds +to the unity in the set {R} ;

b)to the product R, R, Ry, RyEx SLR}, there cor.esponds the product U(RZ) U(Rl)
up to a phase factor w(R2, Rl) s ' -

U(l) =1

U(R2) U(Rl) = w(RZ, Rl) U(R2 Rl)
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The symuetry operation U is unitary if one postulates the conservation

of the scalar product :

CP P> (Plot ol = <T1P> (11,57)

which implies :
+
U U = I.

In general, however, what must be postulated is the probability conser-
vation

(P l?'>]2 = l(\”\}}lz (I1,58)

U is unitary if this is satisfied by the equality of the amplitudes (II,57).
The equation (II,58) may, however, be still satisfied if :

i e K
gy =<yiE>
in which case U is called gnti-unitery (this is the cuse of time reversal;

in classical mechanics the corresponding transformation is anti-canonical in
the sense that it changes the sign of the Poisson bracket {x,p} )e

How do the operators which describe physical veriables transform when
l\y>"/” \\P‘ > = U{?> ? Two main types of trensformations m.y be defined. The
Schrodinger type assumes that the operators Otod (x) do not change :

0 (x) = o®(x)
Nj'>s = U\@>’

s0 that g )
o) ! - .
_ 0 -
CPLOT NPD L (1ot oW x) o[ Py
The Heisenberg typé of transformation assumes invariance of the state vectors:
DA £
so that

(3o @ Py =P @)

The equivalence between both types of transformation is assured by the
equality :

(_\:-E,l OEOd'(x)[?,>H =<\'Pllo[°a'(x)l?l>s
(V1B @ P> = <ple o™ ul P>,

hence :
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The operators transform therefore in the following way

Otal‘(x) =0 0[063(:) U. ‘ (11,59)

If U is a continuous operator,we shall write, for an infinitesimal transfor-
Y.
mation with parameters w . (see paregraph I1I,8):
&Y
U 1y . w (11,60)
n ™)

I~

,and shall call the hermitian operators Ub,} the generators of the group. The
equations (II,59) and (II,60) give rise to the equation :
1 V]

5 o(x) = ()toa (x) -Om(x) = -117[0‘@ ] C

Tvl

which corresponds to the classical relationship (11,33). Therefore, if one
sets, as in- (11,39) :

- ota-](x) - OEO‘J .4(xl ) --OE“J(I) fy ]-5] ) [ﬁ]
e ) ) )
« &
50" = (Fiyx) - 0¥ ) e
- hemce : ) Y J
[cx
‘[[3) (x fxl_ﬁl -_)Z [_O (x), UL@]
wheére f?m is given by relatlon (11,37).

The reader will find the form of these equations corresponding to space-
time translsation, tb]‘_g. Py, , to a homogeneous lorentz transformation,
‘{ﬂ% J}\» and to a gauge transformation of the second kind , Up)-» - Q
Thus, in an infinitesimal translation along the axis of abcissae by the
amount & 3
x' = x+a (11,61)

one should have, according to (II,59) and (II,60) :
+ . i ' i
x' = U xU =(l+ﬂapx)x(l-ﬂapx) (11,62)

the comparison of (II,61) and (II,62) leadsto the commutation relation between
x and px s

Tz, p.] = i

If one performs a rotation by en infinitesimal angle QParou.nd the z axis:
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t=x-%y , y=y+¥Px , z' =2z

0= 0

or x* =R (P)x , RUP): I+(@ 0 O)
- e 0 0 0

ore must have 2

0 =0 2T = (T3 PL) R(I-ZPL)

x-Py
y+@x

y'=0"yu =(I+%(PLZ) y(I--%CPLZ)
hence
L1 = idy,
1) = ixx
If the rotation is around an axis n by an angle « , one has :

U(x, n) = -1 ofn . L)

and the consideration of two successive rotations around two axis in different

order gives rise to the angular momentum commutation rules :

&xL:i}f’]&N

MA

The equations which connect a field Otal(x) with its charge Q :

—J—'— OEOC) X ‘ = T_OQ
R L0 , o] = o™(x) ,
1 [o®™(x), ) =- o™

Ve

follow from the identification of

OIQD'(X) = Otpq(x)ac (1+1¢€) OEQD(X>

with ¢ ‘
o 'x) = tte) 0™ (x) Ule) = (T-=1 qe)o0

e

The charge operator is the generator of the gauge group.

(9 ()(1 + <= q &)

g

e
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III
THE PROBLEY OF THE ENERGY-MOMENTUM TENSOR CONSERVATION

IN THE RELATIVISTIC TEEORY OF GRAVITATION

II1.1) Introduction.

In field theories in a flat space ,i.e., in a space with

a Lorentz metric tensor (II,10), conserved quantities S[B](xo) (see parag.II,8):

S|,
dXO

are those derived from Noether's tensors N?ED
S = \4d¢ NA b'e
[p) S A M)
which obey the divergence equation ¢

L
o Bl

In the relativistic theory of gravitation, such conservation laws are
not covariant, In the presence of a gravitational field, g“y(X), the cova-
riant divergence of a tensor contains, besides the usual four-divergeuce,
additional terms which depend on the gravitational field derivatives. Einstein's
equations are established in such a way that the covariant divergence of the
energy-monentum tensor -~ the source of the field - vanish, as a generalisation
of the equation (1I,41a) for this tensor. It follows from this that one can-
not build up a conserved energy-momentum vector.

In this section, we shall present of brief review of Einstein's theory
and then examine, in a simple fashion, this question. It will be seen that ob-
Jects can be constructed which are conserved but thesé objects are not tensors

nor unique.
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I11.2) The search for relativisiic gravitational field equations.

The staﬁing point of a relativistic theory of graviftation is the search
for covariant equations which gencralise Poisson's equation for the Newton
gravitational field V(x) :

AN

vovx) = -6p(x). (1II,1)

G is the gravitational coupling constant, pm(zg is the mass density, source of

V. This may be regarded as the static limit of the equation :

Ov(x) = 6p(x) (111,2)

where [l is the D'Alerbertian operator (II,24a) and x = (xoﬁﬁ). Now, however,
unlike the electric charge, the mass is not Lorentz invariunt and thus pm(x)
cannot be regarded as the time component of a. four-vector. In view of the
equivalence between mass and energy, we see from equations (II,42a) and (II,42b)
that the mass density is the gero-zero component Qf the energy momentum tensor.
The problem reduces then to find , from simple physical arguments; a tensor
Bpﬁv which be a function of the gravitational field and its first and second
derivatives, and eqpate it to f.T“,V:

Bplv(x) = f TP7V (x) (111,3)

where f is a coupling constsnt. The equation (III,3) must go over into eguation
(III,2) in the approximation for wesk fields.

Einstein's beautiful theory of gravitation identifies this field with
the metric of the Riemannien space-time geometry. In its construction, Einstein
vwas intuitively guided by two principles:
1) the equivalence principlg
2) the postulaté of covariance of natural laws‘(not only under the Poincaré

transformation group but) under continuous one--to-one coordinate transforms-

tions 3 :
o 0, ) w=0,1,2,3 (11I,4)
: ; . dxtH .
with continuous first derivatives . and non-vanishing jacobian .
Ox

The so-czlled apparent forces are those - like the inertisl, centrifugal
and Coriolis forces - which are proportional to inertial mass and which can be

transforucd away by a proper choice of the coordinate system. Thus, as well-
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Inown, if the equations of a point-particle have the form:

n (111,5)

X B
v A

in an inertial frame S, the transition into a frame S' which rotates around

the z-axis of S with constant angular velocity w :

x' = x cos wht + ¥y sin wt
¥' = =X sin wt + y cos wt (111,6)
z' = gz )

or
X = X' cos wt - y' sin wt

y= X' sin wt + y' cos wt

leads equations (III,5) into assuming the form :

n(%' -2 w &' - u? ) = ',

X
(! + 2 w x' + o y') = F'& (111,7)
mz' = Tt
z
where
Ft . = P cos wt+F sinwt ,
X X, N _
Ft =«F sinwt + I cos wt z
y X y
o= F
zZ z

The terms proportional to éj ~ the Coriolis force - and to‘ﬁf - the
centrifugal force - can thus be transformed away by a proper choice of the
coordinate system, namely S.

Now the famous Einstein's elevator experiment led him to state that the
gravitational force is, at least locally, equivalent to an accelerated refe-
rence frame and can, therefore, be regarded as an apparent force. The elevator
experiment is this : an observer enclosed in a box verifies that all objects
i .side the box have a downward acceleration, independent of their mass. His
interpretation of this fact is either a) that there is a source of a
gravitational field at the bottom, which attracts all objects and communicates
them the observed acceleration; or b) that the box is accelerated upwards and
the inertia of all objects inside it gives them the observed downward accele-
ration. The two interpretations are equivalent because the inertial mass of any
body is equal to its gravitstional mass, as has been found experimentally.
Einstein postulated this equaelity and the full equivalence between a homogeneous

gravitational field and an accelerated frame of reference. This equivalence



192
principle has the immediate consequence that any energy signal, such as &

light ray, travelling across a gravitatiomal field, is deflected by it.

Now, the space-time internal dsz, which in an inertial frame has the form

2. & 2 _ o) b4 11,8
as” = ax - (ax) ..gwdx“dx (111,8)
where gﬁi} is the Lorentz metric tensor (I1,10), vests the more general form:
= g et g ® =g (¥ (111,9)
by P&y S

when it refers to a non-inertial frame of reference. Thus in the case of the
rotation (III,6), one has :

as? =[1- 9—’-2— (x? + y!z)} ()%= (ax: )-2—2‘§[y‘ dx' + x‘dy'] ax®
c .
The heuristic considerations of the equivalence principle led Einstein
to postulate that the metric tensor gp\;x)vis identical with the gravita-
tional field and that the description of all physical processes produced by
this field is to be given by the Riemannian geometry of the four-dimensional
space~time continuum. This is the essential postulate in Einstein‘étheory.
As the equation of motion in any theory can be manipulated into a covariant
form, it is the dynsmicad meaning of %Jy(x) which is important and shows
that the postulated invariance of natural laws with respect to general coor-
ainate transformations is a dynamical - not geometric - invariance (see Fock,

ref.(7))

In the paragraphs III.3) - 9) the principal notions involved in the
establishment of Einstein'gravitational field equations will be briefly re-

called.

I1I1.3) Tensors in a Riemannian space

Let us then consider a four-dimensional space in which the neighborhood
of each point x has an interval defined by the Riemannisn metric of the form
(III1,9); the transformation laws (III,4) and their inverse establish a one-to-
one correspondence between two diff'erent maps of cach of these regions.

A contravariant vector Fa(x) is a set of four functions associated to

each such point whichthAnsforms, under the correspondence (III,4) as :
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PH(xr) = -QEEE FP(x) (111,10)
ox

&

ox
where the sum over repeated indices is, as before, understood, and R are

the derivatives of the functions (III,4). The lew (III,10) is a natu?ﬁl exten-

sion of the transformation law for coordinate differentials :

dX‘o“ - %.‘_. dx‘?"

c)xD
p

which are linear in the dx".

The notion of covariant vector results from the differentiation of an

invariant function :

¢ (x') ¢ (x)

One has :

| O P (x) _ 0@ (x) Gxﬁ
oxt ¥ <‘)x[3 oxt™

The derivatives ¢ (x) are sagid to form a covarisnt vector. This entity is,

in general, a set Ox’ Ka(x) such that, under the transformations (III,4), trens-

form as :
g
K (x) = K (x) 2% (111,11)
& B Ox’a
Veoo
In general, a tensor with contravariant and covariant indices, TH (x),

OC]o-t
is defined by the equations :

P_l . \)I . A & B
P Y ey o o= ox gy & O (171,12)
(AN LI ot ox ¥ P ox' % dx‘ﬁ

which is an extension of the transformation of direct products of vectors :
H(x) £(x)... B (x) By(x). -
A tensor density of weight n tra:sforms like (III,12) with au extra-f.ctor

J® on the right-hand side, where J is the Jacobian of the mappings (III,4).

A contraction of a tensor with p upper indices and ¥ lower indices is
the sum over one lower and one upper indice and it is another tensor with p-1
upper and< -1 lower indices. The scalar product of two vectors is the contrac-

tion of their one-upper-one-lower-index tensor product and is invariants
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5
aF () B () = szp ¥(x) B () ZX' = 8% a(x) B (x)
X
= M(x) B“(x) .
5? is & tensor :
5iH' = oxtt _ oxt p _ox
o! Ox'a' ot %o &

The symmetry properties of tensors refer only to indices of the same floor

and are invariant with respect to (III,4).

IIT.4) Parullel displacement.

An immediate consequance of the definitions (III,10),(III,11) is that
the derivative of a vector (tensor) is not a tensor (of higher rank), except

if the transformations (III,4) are linear (Lorentz metric). Indeed, according
to (III,10) :

o o, oxtM o, oxth P
Tl L (& ) - () &
ox? O;‘ ox ox ox ox!
HoamB A A 2
o 9xl ﬁﬁ%: ey Ox = Fp(x) O ;' 5 (111,13)
c)x{3 ox  ox! x! ox Ox

The last term is theobstacle for the derivative of F“(x) being a tensor - it
vanishes when the transformations (III,s) are linear.

It is an essential assumption in what follows that it is always possible

to find, in every vnoint of space-time, & frame referred to which the neighhor-

hood of this point is describable by the Lorentz (minkowskian) geometry. in

such a locally 1nertlal frame, the parallel displacement of a vector to another
point of the nelunborhood does not change the vector components and the scalar
product of this vector and any other is invarient.

For a general reference frame , the notion of parallel displacenment
of a vector Fa(x) from the point I{x) to another of its neighborhood, i'(x + dx)
must leave the scalar product of P with an arbitrary vector, invarient. If
57> is the change in ~ due to such a parsllel displacem:znt, we shall set it

as & bilinear function of F(x) and of dx

5 FH(x) = -1” “ ) 7(x) ax" (II1,14)
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The L' ts are called Christoffel symbols. It can be showi that they are symmetric
i.e., that in every point of the space-time continuum they can be made to obey

the equality :

B B
Iy = T » (111,15)

The prooof can be given by choosing dxP as the vector Fp and by choosing new

_ coordinates x' locally minkowskian :
5(axt™) = 0 (I11,16)

In fact, in view of this choice and of tiie definition :

H Y,
dXH - ..C)_X._ dX'
Ox'v
one obtains :
2 ,V N
y A ox”  oxP
dx' ox! x x

which, compared with

5(ax™) = --T;JL ax* axP

op
gives
v
I‘H (x) - 02 xp ox! dx‘x
o3 ox+” Ox'k x> c)xﬁ

which mekes the equelity (III1,15) obvious. The essential point here is that the
choice of locally minkowskian frame is possible everywhere and that the equa-

lity (II1,15) can thus always be satisfied.

The Christoffel symbols - which, as it will be shown, do not form a

tensor - define an affine connexion around the point x.

Given the metric tensor g, (x) (and the reader will easily show that this

B

. . ) Y
is indeed a tensor) , one can associate a contravariant teasor g (x) such that
for all x

&7(x) g, (x) = o (111,17)

Its components are given by :
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V%
(x) = Ag (111,18)

where g is the determinant of the gocﬁ's and Aocﬁ is the cofactor of elemeat

gocﬁ' The developucnt of g according to the element of a line oco :
o B
g =Z g4 h°
B 0
gives og ) AO“B
dgaﬁ

« B

since 4 © does not contain 8o B Therefore 3
0

b/ 1 9
8‘“ (x) = g ﬁ"'
D}-Ly

From these relations and (III,17) one obtains :

(o v v
= "‘-()‘&‘ = = = - d, .
dg %, te,, =0 = g8 d, e,
d v %8 S
8 _ g HVEY. | (111,19)
«= € o €€y
ox ox Y ox

The tensors gpv and g‘l vare 'instrumental in the transition between

contravariant and covariant vectors :

F(x)

F, (%)

]

&) (%)
gaﬁ(}c) P(x)

]

and for the ralsing and lowering of indices.

II1.5) Transformation laws of tne Christoffel symbels.

The Christoffel syubols can be expressed in terms of the metric tensor
and its first derivatives. By definition , given a vector Fp'(x), the parallel

displacement is such that :
5(F¥(x) Fix)) =0

and this means that the following equation holds s

go‘ﬂ(x + ax) FY(x + ax) %‘-ﬁ(x + dx) - go‘ﬁ(x) ch(x) Fp(x) = 0
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where ﬁm( x + dx) is the vector obtsined from F“(x) by parallel displacement
A
along dx

FHr+ ) = F) - T 0 P e

From this relation and from (up to terms in dx) s

- B g A
gap(x +dx) = gdﬁ(x) r P ax
one gets :
o n n
B - =
3k B, I’& &p % 0 (III,20)

Let us use the symmetry of the I''s with respect to their lower indices. We have
(interchange « and A then 3 and x):

dg&x )
oxP m ~ P

tw
The sum of the 1ast7équations gives 3

o8, 5 . 9%

n —n
o el m g Ta ey

whence , in view of (III,20) :

3

%85 %y 8

n
+ - -2 1 = 0
Oxa Oxﬁ Oxx QKTL op

Therefore (see (III,17)) :

ol o) 0
T = Lo (=22 .« o

(I1I,21)
op C dxp éxk

which is searched-for expression of the Christoffel symbols.
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The corresponding all-lower-indices symbols are :

Og og og
r _ v o_ 1 &8 of | _2uB (111,22
&, op gt-v op 2 ( dx ¥ dxﬁ c)xE ) ( )

From these expressions and from the transformation laws of the tensors
guﬁ , the reader will be able to obtain the transformation formulae for theI's
I Yy = O J«x.( it o Pz xt o
ap x'u Ox"3 dindxe ozt dx‘p

(111,23)

The Christoffel symbols - because of the last term at the right hand

side - are not a tensor.

If the tensor vanishes at a point in a given coordinate system, it will
clearly vanish at the transformed point in all coordinate systems. For the
Christoffel symbols, on the contrary, it is always possible to choose a coordi-
nate system (up to a linear transformation) referred to which.f‘: vanisghes
locally. Indeed, let §g be & point in a given frame for which I?Eﬁ(xo) £0 . If

one carries out the following transforumation :

v o_ Yy ; _ LN _
YV = x¥ - X+ l (x )(x X ) (x® o)
one gets :
y Y Y
o _ SV € Yo dx Uny o
X 8 +;I1A8(xo)(x -x ) 6, = _I:is(x ) (x=x ) o) e
and
pY
_.Sfiil_ - (x)
c)xn()xe ne
therefore, since
()x‘y Y ()xn' n
(=), =90, o = O,
ox ox!
the transformed of Iﬂaﬁ(xo), according to (III,23) is
' =8 ™ (x) 5" 5 ..I?lj(x‘) 5n’ 3% = o (II1;23a)
op A e o’ Tatp T met ol Pa Up ’
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What is the meaning of this system, the so-called geodesic syste:

In a Riemannian space it is natural to define a geodesic line as the one for

which the variation of the arc lenght between two points vanishes :

S
1 BV
_dz" 8z"\1/2 B
5 S (g“v(z) s =) ds =0
8
o

.

where s is the parcmeter of the curve z = z(s).

The equation thus obtained is :

98

du 4 o B

i +Paﬁ(z)u uw = 0
o

where u“ =-%§— . Einstein interpreted this as the equation of a particle

in a gravitational field; the particle thus describes a geodesic in space-time
the structure of which is Riemannian, due to this field. Therefore the force
acting on the particle is - moczj:\aﬁ(z) > up. The local vanishing of I

in the geodesic system means that one changes into a new frame (the free-falling
Einstein's elevator) within which the gravitationzl force has been locally trans-
formed away. Only if the gravitational field is uniform can it be transformed
away completely. In general, it will only be possible to transform it away

.in the neighborhood of a point in space-time.

II1.6) Covariant derivatives.

o .
Let F (x) be a vector field. At a neighboring point x + dx, this vector
will be s |

i

Fx + ax) = FYx) +d F{(x) (I1I;24)

‘ o .
At this point the vector obtasined by parallel displecement of F from the point

X is :

F¥x+ax) = FY(x) - sz M (x) ax” | (111,245)

The difference between the two vectors (III,24) and (3III,24a) is again a

vector since they are taken at the same point,

PY(x + ax) - F(x + dx) a x) +1 Sv(x) M) ax’ =

S DM e
ox” e
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The covariant derivative of a vector, by definition

(04 o (01
Po= P +I'WF“ | (11I,25)

is & tensor.
From the observation that the_ scalar product F(x) Ga(x) is a scalar

and that, therefore, its derivatives form a vector Ax(x) :

AG) = P () e la) + ) 6 (o)

one obtains the new vector :

& (x) - F(:Cx(x) ¢ (x) = F(x) [c;}l NER f}"l‘,\(x) Goc(x)]

’

hence the covariant derivative of a covariant vector is the tensor :
= I .
¢ (%) G x(x) PA(x) Ga(x)

Again, given a second-rank covariant tensor T n(x) and two arbltrary
vectors A(x), B(x), at the same point, the product D (X ) A& (X) B (X) is

a scalar, therefore :

5(2,5x) 2%x) BPx)) = o

p

whence, since A% and B are arbitrary, in view of (III,14) :

A w
8 TO‘B(X) = (f’ocYL ?\B+P BQTOO») dx

Now the difference between the two tensors :

T“B(x + dx) - E&B(x +dx) = d Taﬁ(x) ) Tap(x)

is again a tensor. The corresponding covariant derivative is thus

_ A
T = Tap ~Tan Mo L gy

By similar procedures one finds :

B ob re, DR g
T ‘VL T '}L+ A + YL
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and, in general :

BV e miYess boomaYes Yo M. _po Vooo il giVees
TocB...;x"Tocﬁ...;x +rax To:ﬁ... +Tax Tocp..."'“' lomTiB... rﬁx % Y

(111,26)

The covariant differentiation depends therefore on the rank of the ten-

sor which is going to be applied to. Thus we can write :

& o oy
F A = Do F (x)
where '
&0 gx & T
D, = . 8> +l?1mx (111,27a)
X .
Also @
o _ B nm
T A DmmT (x)
with
B 9 &P x B _onp 5=
Doy = A 5 bn+Fm6n +fm 8 (I11,27v)
and so on,

Clearly the covariant divergence of a vector is the operator :

(o4
mo m mx
ox

to be applied to Fm and summed over m.

The covariant derivative of the fundamental metric tensor vanishes iden-
tically (see (II1I,20)):

o3 _«fB o hp Boam
€ - 8 m+fxqg +ng = 0 : )
III,28
e TV “TMe -0

Fror this one is able to establish that ¢

o 0
Tmoc = T4, wel-¢g

ox

where g = det (g(x ) , and hence :

p :
oo ( 0 + o lOPJV’:AT) Fm(x) = -;L-(Fm(x)\r:;),m (I11,29)

o ox” ox V=g
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In the presence of a gravitational field the charge is :

- % fwao

III.7) The Riemenn tensor.

A space is flatwhen it is possible to carry out a coordinate transfor-
mation such that the metric tensor be identical to the Lorentz metric tensor
(II,lO) everywhere in this space. In it one can make a parallel displacement
of any vector throughout and get a constant vector at all points. The ordinary
derivative operator is then a vector and two of these operctors commute. In a
curved space these properties are not valid.

Let us consider the covariant derivative (III,25) of a vector in a cur-

ved space, which is a tensor TZ :
P = wH = M
Ta(x) = F ;O‘(x) = F ,oc(x> +roan(x) Fm(x)

If we calculate the covariant derivative of this tensor we have .(according to
(I11,26)):

F}J' = B = M P Ta - n o=

HEA qﬁx Tx Faa F@%

- TR Lk pl B o
F“'oc,?\ + (L ocq),x FLs+] .E g\ +[Fr T 'k "

Let us now exchange the indices ® and A and subtract the expression thus ob-

tained from the above one

Fp;oc;x - Fp‘;x;oc [ (0 \_) A ML),O:.+P gx.focvffzoc ;.Y]] F}L

In terms of the operators introduced previously, (III,27), we have :

(Daax D§§m> Di = Rqaa
where
R,*{Oo\ = (D g;\“-(m*) +p§xp§m-f:m ;1% (111,30)
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is the Riemann curvature tensor.

A flat space by definition is such that :
I =
ank(x) = 0
everywhere, Clearly a space with a Lorentz metric has vanishing I ~symbols and
is therefore flat,

We list the following properties of the Riemann tensor :

B _gH )

R\oo\ - R\m '
R = g RYL = =R = =R = R :
hady = S Ny opy hoyB Ty

1023 ¥ Raozr T Fz01
Out of the 44 = 256 components of Rpa only 20 are independent, in view

of these symmetry properties (as R is antisymmetric in P and Y, these indices,

for fixed ¢, &, give rise to only 6 independent components instead of 16; simi-

larly for the indices p,%, for fixed B,y; hence one would have 36 components;

the symuetry with respect to the intercharge of u « with $ <y reduces these to 21}

.

III.8) Bianchi identities and the Ricci-Einstein tensor.

In a geodesic coordinate system, the covarisnt derivative of RzﬁY reduces
to

- B (DM
= (I F) (P“Y)

(xﬁ ’Y’y IB’V

H
Ruﬁy; v

Therefore in this system the following relationship holds :

Ly H K = III
ROC@y:Y+ ROWD;\/ T Rocw;ﬁ ° (111,51)

These are Bienchi's identities : since the left~hand side is a tensor, the compo-
nents of which vanish in the geodesic system, the relations hold in any coordi-

nate system.
From the Riemann tensor one can form by contraction a second rank tensor:

= R (111,32)

This is the only tensor to beconstructed from the Riemann tensor since :
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% B _ MB - _ P -
oy T € Rpuy= 8 Rgys e Ry = 0
and
04 [0 4
R}J,YO{, = -R})Q,v = ~RP,V (III,BZ&)
The explicit form of Rp\) is, according to (III,30),(III,32)
o oy & t™a ®x  Ma
= - - III
Ry = (Do), -(D0)  +To 02 D3 oy (1133)

and it is seen that it islsymmetric :

R = R -
24 ¥ H
The scalar curvature is now defined as the contraction of R&p :
Y
R = ¢ R (111,34)

[
The Ricci-Einstein tensor, Gz , 1s one the covariunt of which vanishes :

ot = 0 (1I1,35)
o

From the Bianchi identities (III,31) we get @

U Lo

Jas
R +
By;V v &y YY;B

= 0

and the contraction of the indices p and B gives :

RP + RE* o gH®
Bys Y Yy YV ip

Now in view 'of the definition (III,32) and the symmetry properties

(III,32a) one has, by contraction of « and vy :

R - R - R = 0
iV P Vip
that is :
(o4

The Einstein-Ricci tensor , which satisfies the equation (III,3) is there-

fore :
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N 1
a7 = R - 2% 0. R
3 5) 2 B
oT
G 1 o
Bow T - R I11,%6
o Raﬁ 2 gma (I11,56)
I7I.9) Zinstoin's pravitaticnal field equations.

It is seen, in view of the definitions (III,36),(I1I,34),(I1I,33) end the

cxpression (III,21), that G, contains, besides non~-linear combinations of

o
g.\ﬂanc gp‘v N second derivatives of the metric tensor (or gravitational po-
Tential fie ld) (x) (linearly). If the energy momentum tensor of matter,

g EusT obey une covariant eguation which generalises equetion (II,4le) into

g diemasnnian spuce

then, in view of the relation (III,35) it is plausible to postulate that the

gravitational field equations are of the form :

o = X TE (I11,36a)

el

wher

w
-~

: K is a coupling constant. This was the postulate provosed by Kinstein
in 1915 after several years of attempts at discovering the relotivistic equa-
tions which may be regarded as a generalisation of Poisszon's equation (111,1),

(7)

methenstical structure of Binstein's equations and their consequences. In the

The reader is referred- to the literature if he is interested in tne

partrenlar case of a time~independent and weak gravitational ficld (i,e, diffew

ring very little from the Lormtz metric tensor) the identification with Poisson's

sequaton Lls achicved if one sets i

K & :gﬂgu
(e}

The energy-mementum teasor T v contaias the contribution of all matter
and (ields except the gravitational field. The equations of these fislds, howw
ever, take into account the grovitational field, in the difierentiation opera=
tors, Thus, the equations of a grevitational field produced by an eleotrouagne=-
tic radistion field (in the absence of oharaes) are

o] «= K T ; (IIT,37)



2Uh

where

is the energy-momentum tensor of the radiation field determined by the equa-

tions :

(V"—g FHV) =0 ,

y ¥

P F._+T = 0 P .= A =&
pY AT Ty T v, ’

In this case, since TH'V is traceless

TET}’L=O,
Einstein's equations, which have the equivalent form

Ry

1]

=
Pamn

=}

-
)
Nl

o

reduce to

R

]
~
3
*

v VY

II1.10) The gravitational field energy-momentum pseudo—tensor. Einstein's

¥

veriational princinle,

The extension of the equation (II,4la) to a Riemannien space is 3

and this is imposed by Einstein's equations. We have, according to (I11,26):

.
MY LR de’lmT“" - 0

'Y XYL
or n‘
Y - T A A
: - f = 111,38
Tcx,v*l ), T, Poﬁlrk 0 (111,38)

Therefore we cannot define a conserved quantity of the form (II,4lb).
The meaning of this relationship is the following : the temsor T ., , source of
the gravitational field, cannot be conserved alone; the gravitational field
interacts with itself, since it gives rise to an additional energy which, in
turn, contributss to this field. It is thus not unexpectod that only a couwbi-

nation of the original T . and of gravitational field quantities can be conserved.

py
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The question then arises whether it is possible to separate this |
conserved quantity into two parts, one associated to the source, the other to
the gravitational rield., We are going to show, following mainly Adler et al(7),
that it is possible to transform the equation (III,38) into one of the follo-

wing type:

(\r:‘gwa‘l\r:'g t;"),f 0 (111,39)

which is of the usual form (II,41) and vhich allows us to construct a conserved
object :

b v
P =5 do. Vg (2% 1 ). (111,40)

This object is however, not a vector since it turns out that the quantity tu
is not a tensor. Therefore the meaning attached to such an object, which depends
on the coordinate system, is not quite clear.

From the expression (III,Zl) for the Christoffel symbols, one gets :

dg’
rh . % gP b

)"Y\ dxx

since : N d. 5 N

g\)ﬁ(iﬁ_i\i) _ Ve 58 _ 8 B =0

v p /=8 y "8 v )
ox ox Ox ox
Therefore, according to (III,19) :
(V-g)
LT SIS - A
ST ZE o —'(log‘T:g)’,\ = -—:;‘— . (III,41)

’ v
On the other hand, as the tensor T“ is symmetric, we may write :

AY

I”‘Tn'=-;-(”‘ 7

)
+
Ayt 1 v\,oox)
80, in view of equation (III,22):

0
Lhigta = 30

Thus the equation (III,38) becomes :
(V=g) . .
Ty * Ty T 3 gy Wt = 0
Y Y:E : “9



; |
—-:-(T“ V-a),, - 2 AR ™= o

Einstein's equations allow us to write :
Y n hq
T V- - 2 V 7 R) = 0O

It is seen that the problem‘of establishing equation (111,39) reduces
to finding a quantity tavsuch that :
¥
)

(Vg t, N

- - % 1 Ve I% M (111,42)

Let us then consider the Einstein's gravitational action Sg:

2%
s = S R Vg d*x , R=¢" R _, (111,43)
g b By

where the integration is taken over a certain domain p of four-dimensional
space. R, the scalar curvature, is invariant; V-g d4x is another invariant,
hence Sg is a scadar functional.

The variation of Sg with respect to a variation of the field gp‘/ such

.

that

o] = & = 0 on the bound of

is 3
asg Si\l:é g}méR +gH Rb( —g)+ R \}I:é 5g""yjd4x.

In a geodesic coordinate system, according to (III,33),(III,23a) s

SR = 8([% f
By , ( qu’ ’V ( )
In this gystem, the ordinary derivative coincides with the covariant derivat:’gve,
hence :
Ly ( 0‘“);V (P w),

Since both sides of this equation are tensors (the reader will show that

A
although L oB

is not a tensor, &I A

B

is a tensor) the equation is generally
valid.

On the other hand, the relations (III,17),(III,18) lead us to write:



o(V=g) = - 3 (Te) g0 87,
Therefore:
o o 4
5s. = SPV'-‘EB(PW);V- oD 5, 7 '+

+

5 G“v-g5gp'ydx.

P

The first integral can be transform&d into an integrral over the boundary
of p. Indeed, let us set :

g}l [b(roq; sV

since g“?x = 0, Now, as s
9

(L ).l = (@8 %), - (2781 %)

is a tensor we can write :

of
(&”GD;);V-(é*vaD“> = - B

pv’ o0

Ny v
where A and B are two vectors, Therefore, according to the divergence formula
(111,29):

Z o Yty < 1A dcr.
YV larg, -or ) e (v y
P : undary
y uy Ly
Av and B , however, manish on the boundary of p because & g and I Z;ﬁ

vanish there. We are thus left with :

V_— Yy 4

08 = S G -gd d

g o BY s0¢ d'x

whence :
5 S ( )
—_—E Ve G 111,44

This result shows that if one can construct a lagragean density
Lm\f:é depending upon the gravitational field gp? , the matter and other
fields, and such that the variation of the action :

s, S L Ve dh (1I1,45)

be equal to

-X j r Vg 8”4

6sm
b 2

then Einstein's equations (III,36a) are deducible from a variational principle:




210
88 = 0

where

S = 3 + S
g m

. v
according to (III,43) and (III,45) and O g“ =0, g“); = 0 over the boundary
14

f L]
ot P back

k% . . .
Let us now go/to the censtruction of an object ta satisfying equetion

(III1,39). Ve Tirst split the scaler lonsity RV -g, equ.(III,34), into a sua

of terws_which contain first derivatives of gpv at most and another term which

1s the sum of divergences.The idea is, by transforumine away these divergences,
g

— x : : .
to reduce R Y=g to another form/%hich contains at most first derivatives in
gH S This is so because only then will the Lagrange equations yield field
equations containing second derivatives of bpv(x) at mogt, as postulated by

Yinstein. In view of the identity:
o Y (a4 (04 = Y —— v’-‘w(x '
v - (7 ! - (V- ! +
) - T = T, - (T 2T
e (Mg &) I - U= &) %
One may write , in view of (III,33) and (III,34):

N = (T &%), - (T #77%) o+

‘) , &

where
—— UYL a o A v \) o — ud o
b =V g B_avfw—faa Togr (e d”) (TO- (Ve d) To

can be transtormed into (see (III,28) and (111,41)):

gW?aﬂm ﬁT’PaJ.

&, my

Therefore the action S ,(II1,43), transforms into :
[+

)

3g=5 dX+j \/’}g}‘)’r“ ao; —5 Voe 7172 a0,

0 bound. Jbound. Y

\‘)7\‘
vorictional derivative of S will be egual to that of the first term above :

s

tus, o variations such that & o g aqo o) g vanish at the bvoundary, the
‘.A.

s}



=So£.,d4x =

P (111,46)
0% _ o=
agpv 5g“_y
The important point here is that o(, is not a scalar density.
Now
=j[___c‘)‘g% ) gp'v+ q"% ) g‘lyx] d4 x =
p-og" dg" ‘
_5[92.[:_- ] 8'u dx+f i”é.__égpvd4x
) o gJ“’ iz bound. Og"",A

and the last integral vanishes if O g“ Y = 0 at the boundary. Therefore, in view
of (III,44) and (III,46):

— ool ool

Vg ¢, = &= -

. (
BT e T gt I

Let us multiply both sides of this equation by gj‘L Voc and remark that :
‘. ' 1

L:Qﬁg{m+()l’ P

o m mn o
’ d o o »
g g ,Y\ |
to get ,(/
¢ Ve o, = oL 2= o g = 3 - g ) | (TI1,47)
y & I-'Lv ' & LS
og o
oA oA
Clearly, from the definition :
Y NV
= &
2 gun W
one has
y
iyt @
hence
— hY V mn
=g g“’a Gy =Veg g“’a 8 &n € =VE . e (I11,47a)

Therefore, if this equation is compared with equations (III,42),(I1I,47),(III,47a)

then one may define the quantity t: by means of the relation :
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and this quantity - the so-called energy-momentwn pseudo-tensor of the gravi-

tational field - satisfies the conservation law (III,39).

Sincebﬂ is not a scalar density, it follows that t“ is not a tensor.
One. thus understunds that elthough it is possible to construct the object Poc
given in (III,40), which is conserved, this object is not generally a four-
vector and depends on the coordinate system.

Other quentities have been constructed by different authors (Landau -
Lifshitz, Mdller, etc.) and the object taxgs thus not uniquely defined.

Such difficulties still remain in an altermadtive field theory of gravi-

. (8
tation ) the basic equations of vhich are of the form :

1
U@y = K(Tpv' 3 &yt o

the symumetric tunsor %9}lv describing this field in a flat space. As shown by
Thirring one is led in such a theory to ‘'renormalize' the metric and introduce
a metric gpv(x) which depends on the field CP“))(X) N

The fact that the gravitational field has an universal interaction
not only with all other fields but also with itself leads to the non-linear
effects which are essentially responsible for the difficulty in the construction
of an energy-mementum tensor associated to the gravitationul field. On the other
hand, the fact that it is“always possible, in Einstein's theory , to choose
a geodesic system in an arbitrary point of space-time, means that locally the
gravitational field is transformed away and that , therefore, at this point the
energy and momentum of this field can be mede to vanish. Therefore, the energy-

momentum object cannot be & tensor and has to depend on the coordinate system.
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