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Abstract

Using the conformal equivalence of translational KMS states on chiral theories
with dilational KMS states obtained from restricting the vacuum state to an interval
(the chiral inversion of the Unruh-effect) it was shown in a previous publications
that the diverging volume (length) factor of the thermodynamic limit corresponds
to the logarithmic depencence on a decreasing attenuation length associated with
the localization-caused vacuum polarization cloud near the causal boundary of the
localization region. Far from being a coincidence this is a structural consequence of
the fact that both operator algebras, the global thermal and the locally restricted
ground state algebra are of the same unique von Neumann type ( monad”) which is
completely different from that met in Born-localized quantum mechanical algebras.
Together with the technique of holographic projection this leads to the universal
area proportionality.

The main aim in this paper is to describe a derivation which is more in the spirit
of recent work on entanglement entropy in condensed matter physics, especially to
that of the replica trick as used by Cardy and collaborators. The essential new
ingredient is the use of the split property which already has shown its constructive
power in securing the existence of models of factorizing theories.
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1 Review of known facts

Whereas quantum mechanics (QM) has reached its conceptual maturity a long time ago,
relativistic quantum field theory (QFT) is a sophisticated and computational very de-
manding theory whose conceptual closure remains still a future project. This is evident
from the scarcity of mathematically reliable results about interacting models. After almost
four decades of stalemate, there has been some modest progress on the central ontological
problem of QFT, namely the existence and nonperturbative constructions of interacting
models with noncanonical short distance (strictly renormalizable) behavior.

In a classic paper [1] of the 60s entitled “When does a Quantum Field Theory describe
Particles?”, the issue of the phase space degrees of freedom, which finally led to the split
property, entered QFT for the first time. In that paper it was shown that, contrary to
naive analogies claiming that QFT is essentially relativistic QM, the phase space structure
of QFT is sufficiently different from QM as to merit attention for a better understanding
of the field-particle relation1 [2]. As the title reveals, the authors conjectured that this
property is indispensable for the understanding of asymptotic completeness of particle
states i.e. of the equality of the Wigner-Fock space with the Hilbert space defined by
the quantum fields. This structure of the Hilbert space and its connection to the local
properties of the observables via scattering theory were expected to play an important
role in establishing the existence of nontrivial models.

The phase space properties of that paper were later significantly sharpened [3] and used
in order to prove that a theory in the ground state with a suitable phase space structure
also exists in a thermal equilibrium state [4], in other words one can directly pass from the
theory in its ground state representation to the thermal setting without running through
a different “Thermo-field” quantization procedure. The nontrivial aspect of the argument
lies in overcoming the barrier of the inequivalence of the two representations which results
in a difference of the von Neumann type of the operator algebras. This is where the split
property as a consequence of the phase space requirement plays a crucial role.

Recently it was established that the issue of the asymptotic particle completeness
and the mathematical existence of QFTs are indeed inexorably linked; within the class
of factorizing models they are consequences of verifiable phase space properties. Hence
within this setting, the Haag-Swieca conjecture about phase space properties leading
to the complete particle interpretation within a mathematically controlled QFTs was
vindicated. Since the conceptual and mathematical tools are very different from the
better known Lagrangian quantization and functional integral setting, some additional
introductory remarks on this topic may be helpful.

Factorizing models are two-dimensional models whose S matrix is purely elastic, a
property which is very atypical in QFT. The only known way in which thiis can be
consistent with the multi-particle matrix elements of S factorize in an appropriate way
(consistent with the cluster property and macro-causality) in terms of S(2). Elasticity
is a property which is known to contradict the structure of interacting QFTs in higher
spacetime dimensions [5]. In this factorizing context the requirements of the old (aborted)
S-matrix bootstrap approach really work in the sense that it possible to classify unitary,
Poincaré invariant S(2) with the very nontrivial crossing property [6].

But very different from the dreams the protagonists of the bootstrap had in the 60s,

1Interacting fields do not create one-particle states; in fact they do not even create states which contain
only a finite number of particles.
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these principles are not only incapable to select a unique theory of everything (TOE),
but they rather act in the opposite direction of generating more models than can be
“baptized” by local interaction Lagrangians. The infinitely many bootstrap S-matrices
can be arranged into families according to symmetry principles and they possess uniquely
associated QFTs whose formfactors were constructed within the bootstrap-formfactor
program. An important technical tool was added in form of the Zamolodchikov-Faddeev
algebra which represents a specific nonlocal modification of on-shell creation/annihilation
operators.

The absence of on-shell particle creation (through scattering) is reminiscent of particle
number-conservation in QM. But the characteristic property of interactions in QFT is the
presence of vacuum polarization clouds in compactly localized states and less the on-shell
reation2.

The generators of the Z-F algebra obtained a physically important spacetime when
it was recognized that they play a role in the covariant but nonlocal generating fields of
the wedge-localized operator algebras [7]. With this spacetime interpretation it became
possible to reformulate the bootstrap-formfactor program in terms of local properties
based ob the concept of PFGs. This notion of vacuum-polarization-free-generators, i.e.
of operators which generate vacuum-polarization-free one particle states if acting on the
vacuum, turned out to be extremely useful as a local indicator for the absence/presence of
interactions. If a subwedge localized PFG exists in a theory, then it possesses a description
in terms of a free field.

PFGs always exist as a consequence of scattering theory within the global algebra
which lives on full Minkowski spacetime. Modular operator theory assures the existence
of wedge-localized PFGs i.e. the wedge region is the best compromise between fields (as
carriers of localization) and particles. In general these wedge generators have very bad
domain properties which prevent their successive application to the vacuum. To arrive
at a manageable situation one demands temperateness of the wedge-localized PFGs [8]
and shows that they lead to pure elastic S-matrix of two-dimensional theories. With a
mild additional assumption one then arrives at factorizing theories. In this way one gets a
very different spacetime characterization of field theoretic integrability in which vacuum
polarization clouds play the central role. The advantage of this construction is that one
always maintains the connection with the general physical principles which underlie all
QFTs and, last not least, for the first time one obtains an existence proof for noncanonical
QFTs [9].

In this context it should be recalled that standard methods of showing the existence
of pointlike covariant off-shell field generators in terms of on-shell Z-F operators remained
inconclusive since formfactors are at best bilinear forms of would-be operators; to obtain
the existence of bona fide operators and their algebras one has to use alternative methods
which avoid the use of pointlike field coordinatization and address the nontriviality of the
local algebras in a more intrinsic manner. The experience with divergent perturbative
series casts doubts about the convergence status of the two known formally exact nonper-
turbative series representation of interacting quantum fields namely the Glaser-Lehmann-
Symanzik (GLZ) series in terms of incoming free fields and the closely related series3 for

2The relativistic QM of direct interactions allows the introduction of creation channels “by hand”,
whereas it is not possible to add vacuum polarization, i.e. there is no passage from the relativistic direct
interaction setting to QFT.

3The convergence of these series within the Wigner-Fock space of the asumptotic particles would justify



CBPF-NF-004/08 3

fields in factorizing models in terms Zamolodchikov-Faddeev (Z-F) creation/annihilation
operators of representation of Heisenberg fields. Hence the algebraic existence proof is
much more than an elegant reformulation of an already existing result. We will return to
these ontological issues of interacting QFTs within a more detailed setting in the third
section.

The algebraic existence proof for two-dimensional factorizing QFTs uses the simplicity
of temperate PFGs as generators of wedge-algebra in an essential way. A perturbative con-
struction of wedge generators in higher dimensions, where no temperate wedge-localized
PFGs are available, is an interesting open problem. But it would almost certainly re-
introduce those unsolved convergence problems connected with the perturbative series.
Its main advantage is expected to be the enlargement the realm of renormalizable in-
teractions (finite-parametric QFTs) through avoidance of pointlike fields. In [17] it was
shown that already the use of covariant stringlike localized free fields instead of pointlike
fields does improve the short distance behavior so that many more interactions acquire
the formal renormalizabilty status in terms of power counting. One expects that starting
with wedge-like localized generators one reaches the frontier of renormalizability i.e. the
most general class of interactions for which perturbation theory remains polynomially
bounded and permits a finite parametric description which is stable under the action of
some suitable defined renormalization group.

A promising rigorous nonperturbative idea in higher dimensions consists in working
with holographic mappings of wedge-localized algebras. Holographic projections in which
a localized bulk algebra is projected onto the null horizon of the causally completed bulk
lead to significant simplifications in the description of localization-caused properties as
energy and entropy densities. Naturally simplifications which do not modify the content
of models can only consist in looking at a model from a different vantage point, so that
certain aspects one wants to focus on become simpler at the expense of complicating other
aspects. QFT still hides many surprises but there are no miracles.

The most prominent alternative approach with this aim is quite old and known under
the name of “lightcone quantization” (closely connected to the “p→ ∞ frame” method).
The name suggests that it was originally thought of as an alternative quantization to
the standard Lagrangian approach from which one expected a simpler understanding of
certain high-energy aspects. Since a change of quantization generally leads to a change
of the QFT model, this raises the question if, and in what way, the new method is
conceptually as well as computationally related to the standard formulation [10][11], a
problem which unfortunataly was not addressed in most papers.

Lightcone quantization or (in the more appropriate terminology used in this paper)
lightfront restriction suffers the same formal limitations as equal time commutation re-
lations, namely it becomes meaningless in the Wightman representation using x-space
correlation functions (Wightman functions) whenever the wave function renormalization
constant Z ceases to be finite and non-vanishing.

The fact that in these cases of infinite wave function renormalization the canonical
equal time formalism breaks down has no serious consequences since physical requirements
in QFT do not demand that the commutation relations of pointlike fields ought to allow
an equal time restriction. Within the perturbative setting this is fully taken into account
in the so called causal perturbation theory which is only subject to the more general and

the interpretation of formfactors as multi-particle matrix elements of operators in the W-F Hilbert space.
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much weaker requirement of renormalizability.
In the following section we use the simplicity of lightfront restriction for free fields in

order to explain some important concepts which were absent in the old lightcone quan-
tization work and which have no natural formulation in Lagrangian quantization. In the
same section some algebraic concepts, which highlight the completely different nature of
localized algebras in QFT from those in QM, will be introduced. The distinction between
quantum mechanical entanglement and the thermal aspects of localized algebras in QFT
(which being monads have no pure states [15] at all), whose causal horizon is surrounded
by a vacuum polarization cloud with an attentuation length ε depending on the vari-
able splitting arrangement, are important manifestations of this significant conceptual
difference between QM and QFT.

The third section presents the algebraic holography in the presence of interactions.
In that case the connection between the algebraic holography, which uses the notions of
modular inclusions and modular intersections of wedge algebras, and the (at the present
time less rigorous) projective holography of pointlike fields (which requires a mass-shell
representation of the interacting fields in terms of an infinite series in the incoming or
the Z-F creation/annihilation operators with an unclear convergence status) still needs
further clarification.

Some observations, which suggest the way in which the two holographies are related,
can be made in the setting of factorizing models and will be presented in the fourth
section. There we also comment on the conceptual difference between the holographic
projection and the critical limit theory of the bulk (the representative of the universality
class ) which is known to be a conformal QFT in a different Hilbert space. This has
an interesting but still somewhat speculative relation to the issue of Zamolodchikov’s
deformation of chiral models into factorizing theories.

In the fifth section we remind the reader of the close structural algebraic relation of
the thermodynamic limit of a heat bath system and the thermal aspects of localization
in QFT. We show that for chiral algebras the length (= one-dimensional volume) factor
passes via conformal covariance to the logarithmic attenuation factor. The transversely
extended chiral theory, which results from holographic projection of the bulk, turns out
to be the raison d’etre for the universal area proportionality of localization-entropy.

In order to arrive at a completely intrinsic alternative derivation via direct use of
the split property, we adapt the replica idea of the derivation of localization-entropy
as used by the condensed matter physicists [30] to the present setting. The result is a
conceptually transparent implementation of the replica trick which avoids the very artful
but nevertheless metaphoric functional integral representations which will be presented
in the sixth section.

The concluding section contains some speculative remarks about the future of QFT
which are of a more philosophical nature
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2 Holographic projection for free fields, an illustra-

tive example

The shortcomings of the old “lightcone quantization” become more explicit if one com-
pares it with its modern successor which, for reasons which become obvious, will be re-
ferred to as “lightfront holography” (LFH). The main idea of LFH can be illustrated with
the help of the mass shell representation of the free scalar field A(x) and its restriction to
the wedge region [12][28]

A(x) =
1

(2π)
3
2

∫
(eipxa∗(p) + h.c.)

d3p

2p0
(1)

AW (r, χ; x⊥) ≡ A(x)|W =
1

(2π)
3
2

∫
(eimeff rch(χ−θ)+ip⊥x⊥a∗(θ, p⊥) + h.c.)

dθ

2
dp⊥

meff =
√
m2 + p2

⊥ (2)

where we have chosen as our standard wedge the x1−x0 wedge (invariant under the x1−x0

boost subgroup) and parametrized the longitudinal coordinates in terms of x-space and
p-space rapidities. The encoding of structural properties of the A(W ) bulk into simpler
properties of its holographic projection onto the causal horizon A(H(W )) can then be
described by passing to the limit4 r → 0, χ → ∞ such that x− = 0, x+ > 0 and finite.
In this limit the mass looses its physical significance and becomes a mere placeholder for
keeping track of the engineering dimension

AH(W )(x+, x⊥) =
1

(2π)
3
2

∫
(eimeff x+eθ+ip⊥x⊥a∗(θ, p⊥) + h.c.)

dθ

2
dp⊥ (3)

〈
∂x+AH(W )(x+, x⊥)∂x′+AH(W )(x

′
+, x

′
⊥)

〉 � 1

(x+ − x′+ + iε)2 · δ(x⊥ − x′⊥)[
∂x+AH(W )(x+, x⊥), ∂x′+AH(W )(x

′
+, x

′
⊥)

] � δ′(x+ − x′+) · δ(x⊥ − x′⊥)

For convenience we have taken the lightray derivatives of the generating fields; this saves
us the usual ritual of restricted testfunction spaces for zero mass chiral free fields; upon
Haag-dualization the algebras generated by the derivative fields are identical to those
defined with modified testfunction smearing.

The lightfront fields ALF (x+, x⊥) are obtained by linearly extending the AH(W )(x+, x⊥)
to all values of x+. The fields AW (r, χ; x⊥) and AH(W )(x+, x⊥) (respectively their deriva-
tives) generate operator algebras5 A(W ) and A(H(W )). The local algebras generated by
the derivatives are smaller, but the extension via Haag dualization restores equality [13].
It is fairly easy to see that

A(W ) = A(H(W )) (4)

In fact by using the relation between the on-shell restriction of W-supported smearing
functions and smearing on H(W ), the generators can be directly placed into correspon-
dence.

4Whereas the holographic projection of fields in the mass-shell representation (see below) could have
been done directly by setting x− = 0, algebraic holography needs the setting of modular operator theory
which only works for localized algebras which fulfill the Reeh-Schlieder property.

5The relation between free field generators and operator algebras is defined in terms of the Weyl
generators but these well-known technical points are left out in these notes.
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This identity is surprising at first sight since A(H(W )) or its linear extension A(LF )
does not distinguish between a massive and a massless theory. However this identity does
not extend to compactly localized subalgebras; the knowledge of lightfront generators (3)
on one lightfront only does not suffice to reconstruct compactly localized algebras in the
bulk. Vice versa on cannot construct the local substructure on the horizon from the bulk
substructure of its associated wedge. With additional information about certain LF chang-
ing action of the Poincaré group, and by taking algebraic intersections and unions, one can
however recover the local bulk structure and its pointlike generating field coordinatiza-
tions (which includes besides the free fields also its Wick-monomials). The reason behind
these exact connections is that, different from the critical limit of a massive theory which
leads to a conformal invariant massless theory, the Hilbert space and certain noncompact
localized subalgebras are shared between the bulk and the lightfront, a fact which in our
example is obvious since we never changed the Wigner particle creation/annihilation op-
erators for our massive particles i.e. the full content of the representation of the Poincaré
group remained encoded in both descriptions.

The main point of lightfront holography (as we will denote the present setting in
order to distinguish it from the old lightcone quantization) is precisely a radical change
of spacetime ordering while maintaining the material substrate. Since the spacetime
ordering of matter is crucial for its physical interpretation, certain concepts for which the
bulk description was important, as e.g. scattering theory of particles, become blurred
in the holographic projection and concepts like localization entropy/energy, which are
essential for the understanding of the area behavior of entropy on causal/event horizons,
are not very accessible from a pure bulk point of view. Already the above free field
calculation reveals that the holographic generator AH(W ) is in many aspects simpler since
it generates a transversely extended chiral theory with no transverse vacuum fluctuation.
It can be used to generate A(W ), but is is of no use for generating all the subalgebras
contained in A(W ), for this one would have to use the bulk free field AW (x).

There is no direct reconstruction of the bulk field AW from the boundary field AH(W ),
rather one has to pass through intermediate purely algebraic steps as intersecting wedge
algebras to obtain double cone algebras A(O) which for arbitrary small O′s in turn lead
back to the pointlike covariant fields which generate all subalgebras. Hence a constructive
approach in this setting starts from the algebraic structure of a wedge algebra A(W ) in
general position (obtained from a special one by applying the Poincaré group) and the aim
is to obtain the compactly localized double cone algebras A(C) from algebraic intersection.
If these intersection algebras are trivial (scalar multiples of the identity) then there are
no local observables we say that the model does not exist as local QFT.

Opposite to the standard approach which moves from pointlike fields to more extended
observables, the direction of the algebraic approach is outward→inward; the local field
only appears at the end in its role as the generator of algebras for all spacetime regions.
These algebraic constructions have been backed up by explicit calculations which estab-
lished the existence [9] of a two-dimensional class of so-called factorizing models whose
S-matrix and formfactors had already been known before.

The rather direct relation between free fields and their holographic generators holds
only for linear nullsurfaces i.e. the lightfront. The causal horizon of a double cone C (the
intersection of two lightcones) has also chiral generators in lightray direction and vacuum-
polarization-free transverse angular generators, but they cannot be obtained by a restric-
tion procedure on free fields which generalizes the above limit leading to AH(C)(xH(C)).
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For conformally invariant models they can be obtained by applying the relevant con-
formal transformation (i.e. that one which maps the wedge into a double cone) to the
AH(W ) generator [28]. Sine the holographic projections are conformally invariant even if
the bulk theory is not conformal, the application of conformal maps between different
null-horizons even in case where the bulk is not conformal has a certain plausibility, but
a rigorous mathematical justification is still missing.

The structure of the localized operator algebras in QFT are very different from those
one meets in QM. Whereas the operator algebra representing the total (generally infinitely
extended i.e. open) system6 at zero temperature in both cases is the irreducible algebra of
all bounded operators in a Hilbert space B(H), this does not extend to local subalgebras
of QFT. Using the notation N (V ) ⊂ B(H) for the von Neumann subalgebra associated
to the 3-dim. region V ⊂ R3 and V ′ = V \R3 its complement, the quantum mechanical
tensor factorization reads

N (R3) = N (V ) ⊗N (V ′), H = HV ⊗HV

N (R3) = B(H), N (V ) = B(HV ), N (V ′) = B(HV )

Pure states of the form
∑
λi |ψi〉 〈ψ′

i| which are superpositions with respect to the tensor
factorization are called entangled (with respect to the tensor decomposition) and the
averaging over the unobserved degrees of freedom in the say observational inaccessible
region V ′ leads to a density matrix ρV for the observer confined to V. The impurity of the
state can be measured in terms of the von Neumann entropy associated to ρV but there is
no thermal manifestation of Born localization i.e. the uncertainty relation is not related
to thermal behavior. The quantum mechanical entropy resulting from “Born”-entangled
states on a tensor product lead to a “cold” entropy in the sense of informations theory
[15]. The localization entawking radiation. As there is no problem of loss of information
in properly understood black hole physics, the entanglement in tensor products of QM
cannot be used to generate thermal manifestations.

The situation changes radically if one passes from QM to QFT [14][15] In that case
a covariant localized subalgebra A(O) ⊂ A(M), O ⊂ M = Minkowski spacetime. In
this case the complement is replaced by the causal disjoint O′ whose algebraic coun-
terpart is the commutant i.e. A(O′) = A(O)′ (Haag duality, a property which can be
always achieved by suitably enlarging the local algebras) and the generating and causal
commuting property

A(O) ∨A(O′) = A(M) = B(H) (5)[A(O),A(O′)
]

= 0

In the classification of Murray and von Neumann field theoretic algebras as wedge-localized
algebras A(W ) and its causal complement A(W ′) = A(W )′ are still factor algebras7, but
there is no tensor factorization and hence no prerequisite for defining the analog of the
above entanglement.

In fact the local factor algebra does not admit any pure state, rather all states are
impure. Any attempt to go ahead and ignore this difference will lead to infinities and

6In order to have a common setting for QM and QFT one should use the Wigner-Fock multiparticle
formulation of QM.

7Under very mild assumptions the algebras for subwedge localization regions A(O) are of the same
type as A(W ).
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ill-defined expressions for measuring the impurity in terms of an entropy. Although we
will not enter mathematical subtleties, the basic reason for this unusual state of affairs
can be traced back to the radically different nature of these local covariant subalgebras
of which the most prominent example in this article is A(W ). They are all (as long as
the localization region has a nontrivial causal complement) isomorphic to the unique
hyperfinite type III1 von Neumann factor which for reasons which will become later will
be shortly referred to as the monad in the rest of this article. It is however not our aim
to enter a systematic mathematical discussion about operator algebras [16][14], rather
we will pay attention to those aspects of operator algebras which are important for the
problematization of holography and thermal/entropic aspects of localization [12][28].

Although, as mentioned before, monads does not arise in global zero temperature al-
gebras N (R3) or A(M), they do however make their appearance in the thermodynamic
limit of finite temperature systems. This preempts the thermal aspects of localization
in QFT on the very fundamental level of single operator algebras. The vastly different
behavior of localized subalgebras in QM and QFT is of course a reflection of the difference
between “Born localization” [15] and modular localization [17]. The origin of the termi-
nology “modular” will become clearer in the sequel. but in the present context it stands
for an intrinsic formulation (i.e. independent of the myriads of field coordinatizations
which a particular model admits). “Born localization” is the standard quantum mechan-
ical localization which is directly associated with projection operators and probabilities
to find the system at a given time in a certain spatial region. In the relativistic context
the Born localization is usually referred to as the Newton-Wigner localization. Its lack
of local covariance makes its rather useless for the problems of causal propagation over
finite spacetime distances.

But instead of pointing to its shortcomings outside QM it is more important in the
context of our present discussion to stress the fact that it is asymptotically covariant in
the sense of large timelike distances. Without this property (which usually goes unmen-
tioned) there would be no covariant scattering theory with an invariant S-matrix and
no associated asymptotic Born probabilities and projection operators. As Born localiza-
tion goes together with the quantum mechanical type I∞ algebras, modular localization is
inexorably linked with the monad of QFT. It is fully locally covariant and permits the for-
mulation of causal propagation over finite distances in terms of expectation values which
however do not permit a further going resolution in terms of projectors. The absence
of probabilities and projectors is related to the so-called Reeh-Schlieder property namely
that the algebra A(O) generated by localized fields applied to the vacuum creates a dense
set of states and has no vacuum annihilators.

Ignoring these structural differences produces well-known superluminal paradoxes as
e.g. the alleged causality violation of Fermi’s Gedankenexperiment [14]. Although not
part of the present investigation, many of the recent paradoxes in connection with black
holes (information paradox,...) which often are attributed to the still elusive QG probably
also have their origin in an insufficient awareness about the structural differences between
QM and local algebras in QFT.

Some historical remarks are in order. Vacuum polarization as a result of localiza-
tion in QFT has been first noticed by Heisenberg when he attempted to study the well-
known Noether connection between global conserved charges and conserved currents. The
Heisenberg infinities in the vacuum fluctuations caused by the sharp spatial cutoff R can
of course be avoided by suitable testfunction smoothing; in that case the total charge is
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the R → ∞ limit of the partial charge (without changing the testfunction smoothing at
the boundary).

Even more spectacular was the observation of Furry and Oppenheimer that the appli-
cation of interacting pointlike fields to the vacuum Ω does not only create a one-particle
state but also an unavoidable particle-antiparticle polarization cloud. In modern termi-
nology this observation is part of a theorem which states that necessary and sufficient
for a subwedge algebra8 A(O) to be generated by free fields is the existence of a PFG
(vacuum polarization free generator, generally an unbounded operator G) affiliated with
A(O) such that GΩ = one-particle.

In view of these early perceptions it is a little bit surprising that the thermal manifes-
tation of modular localization came as late as 1975 [29]. It entered the general conscious-
ness of most particle physicists only (if at all) through the thermal aspects of black hole
horizons [18][19]. Sometimes these thermal manifestations are linked to the uncertainty
relation but this is somewhat misleading. Whereas it is true that uncertainty relations
are behind most phenomena of QM, the thermal manifestation (KMS states, entropy
through localization) of field theoretic monads A(O) ⊂ B(H) are outside their quantum
mechanical reign. The entropy related to quantum mechanical entanglement is a “cold”
i.e. information-theoretical kind of entropy whereas the localization entropy is genuinely
thermal.

The rather simple relation between the generators AH(W )(x+, x⊥) and the original free
fields appears much more involved if one asks questions about inverse holography.

The content of the subsequent sections is as follows. The third section presents the
algebraic setting of lightfront holography in the presence of interactions. In case of fac-
torizing two-dimensional models for which the relation between the S-maztrix and the
generators of wedge algebras and the associated chiral holographic projection becomes
more explicit. The fourth section presents two quite different methods to calculate lo-
calization entropy; as expected they agree in their leading behavior in their attenuation
distance for their vacuum polarization at the boundary. Some generic consequences as the
area proportionality of localization entropy and the necessity to adjust the Bekenstein-
Hawking black hole setting to these general structural facts of QFT before entering the
more elusive terrain of QG are pointed out in the concluding remarks.

3 Lightfront holography in the presence of interac-

tions

Since Lagrangian perturbation theory is not really suited for the investigations of hologra-
phy and localization thermality, and since there are presently no reliable nonperturbative
construction of models, the passing from bulk to its holographic projection presently
amounts to a purely structural model-independent discussion. The free field construc-
tions of the previous section suggests to start the holography from the position of a local
operator algebra monad A(W ) ⊂ B(H).

In the interacting situation there is an additional physically stronger argument which
is related to the nature of the modular objects of the standard pair (A(W ),Ω) [7]. It
is well-known that the modular group acts as the W -preserving boost whereas the anti-

8This means that the causal closure can be enclosed in a wedge O′′ ⊂ W.
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unitary modular inversion J depends on the interaction via the S-matrix and the free
(incoming) modular inversion J0

J = J0Sscat (6)

This form of course requires the validity of a complete particle interpretation which ac-
cording to S-matrix folklore is expected to follow from a mass gap. This result (which
follows from the TCP invariance of the S-matrix) shows the close connection between the
S-matrix and the monad. which we want to interpret as a wedge-localized algebra. It
can be strengthened by assuming the validity of crossing “symmetry” for formfactors9

i.e. the vacuum to n-particle matrixelements of a localized operator. In that case the
inverse scattering problem can be shown to have a unique solution i.e. if there is at all a
QFT associated to an S-matrix it is necessarily unique (the S-matrix is the special in-out
formfactor of the unitary operator). The physical significance of the modular objects
∆it, J associated to standard subwedge localized pairs (A(O),Ω) is not known apart from
the fact that the action of the modular group is “fuzzy” i.e. cannot be encoded into a
spacetime diffeomorphism. For this reason the wedge algebras play a prominent role in
a new algebraic classification and construction program of interacting QFTs. Without
the use of the simplifications which result from the holographic projection of the bulk
localized in a wedge to its lightfront horizon such a program would not probably not be
feasible. But the fact that a lot is known about the classification and construction of
chiral theories generates some hope.

The important property of lightfront holography in the context of this paper is the
transverse tensor-factorization for subalgebras [12][28] {A(O)}O⊂LF where O now stands
for regions on LF

A(O1∪O2) = A(O1) ⊗A(O2), (O1)⊥ ∩ (O2)⊥ = ∅ (7)

〈Ω |A(O1) ⊗A(O2)|Ω〉 = 〈Ω |A(O1) |Ω〉 〈Ω| A(O2)|Ω〉

This total absence of transverse entanglement is somewhat surprising. Whereas this is a
rigorous mathematical theorem, the following formulation of transverse factorization in
terms of transverse extended chiral fields BLF (x+, x⊥) in analogy to the free field case (3)
is only on the level of a consistency argument

[
B

(i)
LF (x+, x⊥), B

(k)
LF (x′+, x

′
⊥)

]
�

{∑
l

δnl(x+ − x′+)B(l)(x+, x⊥)

}
δ(x⊥ − x′⊥) (8)

where in the case of transversely extended rational theories the algebraic structure of the
theory permits a characterization in terms of a finite number of LF generating fields B

(i)
LF .

The transverse delta functions result from transverse derivatives in the B-fields; they are
associated to non-fluctuating quantum mechanical degrees of freedom since in contrast
to the lightlike positive energy condition they suffer no frequency restriction and hence
appear already on the level of correlation functions. This commutation relation certainly
holds for Wick-monomials of free fields. Note however that unlike the free field case (3),
in the presence of interactions one should not expect a factorization into longitudinal

9Rigorous (but unfortunately very elaborate) proofs of crossing only exist for formfactors with few
particles. For two-dimensional factorizing models the crossing is veryfied as part of the explicite con-
struction.
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and transverse part i.e. the B′s will remain x⊥ dependent, i.e. holography leads to a
(transversely) extended chiral theory.

In the presence of interactions one expects the appearance of fields with anomalous
dimensional (non-integer dimensional but bosonic) fields in the bulk. Whereas in the
bulk the anomalous dimension is independent of its bosonic spacelike commutativity, in
(extended) chiral theories the spin-statistics relation together with the relation between
spin and scale dimension excludes bosonic observables with anomalous scale dimension.
This indicates that the global algebra which the compactly localized subalgebras algebras
of A(LF ) and A(∂W ) generate maybe smaller than these algebras i.e.

⋃
O⊂∂W

A(O) ⊆ A(∂W ) ≡ A(W ) (9)

We will return to this important problem in the more restricted context of d=1+1 fac-
torizing models.

Whereas in higher spacetime dimensions the pointlike generating property of algebraic
nets still depends on certain technical assumption, it is well-known that the simpler chi-
ral algebraic nets always have pointlike generators [20]. Looking at the representation
theoretical nature of the argument there can be no doubt that conformal nets in higher
spacetime dimension also share this pointlike generator property. For massive factorizing
models these fields are known in terms of infinite series whose convergence status is not
yet known.

Many profound ideas of the old bootstrap of the 60s were lost as a result of its ideolog-
ical hubris which led to a positioning of the S-matrix bootstrap against QFT instead of
considering the use of on-shell objects and their properties (e.g. the crossing property) as
a valuable enrichment of QFT. In the new context of a mass-shell based construction of
QFT which tries to extend Wigner’s representation theoretical approach for one-particle
spaces to the realm of interactions some of these old bootstrap ideas come to new life.
A pure bootstrap approach in which the classification of interacting S-matrices can be
pursued separated from the construction of an associated QFT is limited to two spacetime
dimensions; in higher dimensions the S-matrix plays the role of a special formfactor and
the formfactor program in turn becomes incorporated into the construction of generators
for wedge algebras.

4 The special case of factorizing models and their

holographic projection onto a chiral QFT

Many profound ideas of the 60s, which were lost in the aftermath of the “TOE hubris”
when the S-matrix bootstrap program was positioned against instead of within QFT, were
later on vindicated when it was observed10 that there is a rich class of interacting two-
dimensional massive QFT which are uniquely associated with bootstrap S-matrices. The
first observation which led to a kind of revival within a more limited context of integrable

10It was based on the integrability features oberserved in quasiclassical approximation of the particle
spectrum in certain two-dimensional QFTs by Dashen, Hasslacher and Neveu which in case of the Sine-
Gordon theory was afterwards explained in terms of the bootstrap S-matrix properties restricted to
two-particle elastic scattering [21].
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QFT was about the possible integrability of certain two-dimensional Lagrangian QFT on
the basis of their quasiclassical mass spectrum. This was followed by the remark that in
case of the Sine-Gordon model the mass formula follows from an exact computation based
on applying the bootstrap requirements to an elastic two-particle S-matrix Ansatz [21].
In two dimensions it is consistent with macro-causality (in particular with the cluster
factorization property) to have a purely elastic S-operator which factorize in terms of
an elastic two-particle scattering amplitude; the associated QFTs were therefore were
named factorizing models. These S-matrices were susceptible to a systematic classification
obtained from the bootstrap principles: unitarity, Poincaré invariance and the crossing
property [6]. This bootstrap S-matrix setting was then connected via the bootstrap-
formfactor program with a new way of nonperturbative construction of factorizing QFTs
[22].

Different from the original hope that the bootstrap principles would lead to unique
TOE11, it turned out that the factorizing setting rather led to a extraordinary rich family
of infinitely many nontrivial two-dimensional nonperturbatively controllable models. Be-
sides those models which permit a Lagrangian description (in the sense of a Lagrangian
”baptism” and a divergent perturbative series rather than a construction), there is an
enormous number of non-Lagrangian models (the oldest and most prominent being the
Z(N) model .[23]) which is a consequence of the fact that there are more elastic two-
particle bootstrap S-matrices S(2) (i.e. more solution of the Yang-Baxter equations) than
interactions Lint. There is no physical principle which distinguishes Lagrangian QFT rel-
ative to those of non-Lagrangian origin since the quantization parallelism to classical
physics is not a physical principle and there is no intrinsic autonomous property of QFT
which is capable to reveal a Lagrangian origin.

The next step was to encode the elastic S-matrix data into an algebraic structure.
The resulting Zamolodchikov-Faddeev (Z-F) algebra has the appearance of a non-local
generalization of the Wigner momentum space creation/annihilation operators into which
the S-matrix data enter as structure coefficients which characterize the commutation
structure (11). The observation that the on-shell Fourier transforms into x-space yields a
covariant on-shell generator of a wedge-localized algebra bestows a physical interpretation
in terms of spacetime localization to these initially purely auxiliary nonlocal operators
[7]. Modular localization and the related Tomita-Takesaki modular operator theory of
operator algebras plays a crucial role in obtaining these results.

As mentioned in the previous section modular theory also shows that, contrary to
the old bootstrap philosophy, the S-matrix of a QFT is not completely void of spacetime
localization aspects. Rather it is deeply connected with wedge-localization in the sense
that S is a relative modular invariant of the wedge-algebra (6). Considered as a in-out
formfactor of the unit operator, and combined with the formfactors of all other operators,
the S-matrix leads to the uniqueness of an associated QFT (if it exists) if the formfactors
fulfill the crossing property [24]. In general crossing only assures the uniqueness of the
inverse scattering problem; no argument is presently known which secures its existence in
a general setting including crossing.

Crossing is a deep analytic on-shell property which is not valid in other non QFT based
relativistic S-matrix theories which implement interactions directly (without the media-
tion of QFT) in a Wigner multiparticle representation theoretical setting, the so-called

11Apart from gravity which was already missing in the Heisenberg’s “Weltformel”, probably the first
futile attempt at a TOE before this strange ideas like that became fashionable in particle physics.
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direct particle interactions [25][15]. Hence crossing may be considered as the on-shell
imprint of the field theoretic locality and spectral properties in conjunction with the as-
sumption of completeness of asymptotic particle configurations. In the nonperturbative
setting of QFT it was only proven for special particle configurations; but since in factoriz-
ing theories crossing is part of the construction, the existence proof for those models also
shows the validity of this property within this class of factorizing QFTs.

The setting of two-dimensional factorizing models is presently the only known case in
which the bootstrap-formfactor conjecture (S-matrix, formfactor) → QFT can be backed
up by constructive mathematical steps. This class of factorizing models is not only inter-
acting in the global sense of a nontrivial S-matrix, but it also permits a local character-
ization in the sense of possessing no subwedge localized A(O)-affiliated PFGs (vacuum-
polarization-free-generators12). The different type of interactions in the latter case would
instead of corresponding to different Lagrangians be characterized by different S-matrices
(different wedge generators) or on the local level by different shapes of the local vacuum
polarization clouds (still somewhat futuristic). These properties are expected to continue
to hold also in the general case when there are no so called temperated wedge-localized
PFGs (see below).

The characteristic feature of factorizing models, which entails the relative simplicity
of their construction, is that they possess no real (on-shell) particle production. But the
characteristic feature of interacting QFT is not particle production (which can also be
incorporated into direct particle theories [25]) but rather the interaction-caused infinite
vacuum polarization clouds which result from compact spacetime localization. This is
in contrast to the localized interaction-free algebras which always admit PFGs leading
to the existence of underlying free field generators for arbitrary localizations and for
which the composite fields (Wick-powers) generate vacuum polarization with only a finite
number of particle/anti-particle pairs (the number depending on the degree of the Wick
monomial). The existence of temperate PFGs for wedge regions only maintains the on-
shell wedge generators cIose to their free field form; they obey the slightly more general
Z-F commutation relations which lead to the factorization of the S-matrix which is the
origin of the terminology for this class of models.

A systematic structural study of PFGs in the presence of interactions in general QFT
was initiated in [8] and it was found that whereas for compact localization regions any
operator has the infinite vacuum polarization cloud (confirming previous results), it is
only for the noncompact wedge region where modular theory leads to the existence of
PFG.

Unfortunately modular theory does not guaranty reasonable domain properties which
permit a successive application of these unbounded operators as for smeared Wightman
fields. Only if these wedge-localized PFGs are temperate [8] in the sense of good domain
properties one has been able to extract interesting consequences from their existence. Ac-
cording to an old theorem [5] this is impossible in higher dimensions; using some rigorous
analytic properties for the scattering amplitude one finds that this is only possible in
d=1+1 [8]. With the help of crossing for formfactors one can exclude higher direct elastic
multiparticle amplitudes so that the higher multiparticle scattering has to go through S(2)

which is the S-matrix definition of factorizing QFTs.
So the notion of integrable or factorizable theories can be fully substituted by the

12PFGs are operators which applied to the vacuum generate a one-particle state with admixture of
vacuum polarization clouds. Only for free fields they exist for compact localization regions.
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notion of theories with temperate PFG’s. With this change of paradigmatic emphasis,
QFT returns to its beginnings when Furry and Oppenheimer discovered (perturbatively)
the omnipresence of interaction-caused vacuum polarization clouds; but now with rich
additional conceptual additions from modular localization theory and the hope that per-
turbative Lagrangian quantization can be replaced by characterizing interacting theories
in terms of wedge generators and structural properties of subwedge polarization as it is
presently happening in factorizing models.

Modular operator theory applied to the wedge-localized algebra of QFT A(W ) leads
to a new semilocal interpretation of S-matrices: as mentioned before (6) they are relative
modular invariants (relative to the free wedge algebra A0(W ) without interactions). This
important insight which links scattering to fields (i.e. part of the inverse scattering pro-
gram) was missing in the old S-matrix bootstrap approach. It confirms that the S-matrix
preempts an important semiinfinite localization aspect of QFT and that it was not wise
to position the S-matrix bootstrap program against QFT not to mention the aborted
attempt to convert it into a TOE.

The for the time-being last step in this interesting sequence of events is Lechner’s
recent existence- and particle completeness- proof [9] in the setting of factorizing models.
It is based on the phase-space property of modular nuclearity; this result in some way
vindicates the four decades old Haag-Swieca paper on the connection of local fields and
asymptotic particles via phase space properties by giving a positive answer to the question
in the title of their paper. It also shows that particle physics does not only consists of
changing fashions but that there are once in a while ideas with a historical breath.

Let us sketch some details of these constructions. The starting point is the for-
mula for the wedge generators in terms of the Z-F algebra operators. In the scalar
one-component case these generators have a form similar to free field, except that the
on-shell creation/annihilation operators which appear in their Fourier transform fulfill
the Z-F commutation relation13 (which are slightly more general than the Wigner cre-
ation/annihilation operators).

Z(x) =
1

(2π)
1
2

∫
(eip(θ)xZ̃(θ) + h.c)

dθ

2
, p(θ) = m(chθ, shθ) (10)

Z̃(θ)Z̃∗(θ′) = S(θ − θ′)Z̃∗(θ′)Z̃(θ) + δ(θ − θ′) (11)

Z̃(θ)Z̃(θ′) = S(θ − θ′)Z̃(θ′)Z̃(θ)

This has the consequence that although the Z̃# commutation relations remain close to
those of the Wigner-Fock creation/annihilation operators and the field Z(x) transforms
like a would be pointlike field under the Poincaré group, the Z(x) is not pointlike local in
the sense of spacelike commutation relations. It also shows a covariant coordinate label x
is not necessarily indicating pointlike localization, although in the opposite direction the
statement is correct.

On the other hand Z(x) is not completely nonlocal either; since the application of
modular operator theory reveals that operators Z(f) with suppf ∈W are only W−local

13The Z̃#(θ) in general are multi-component and the *-algebra requirement forces the matrix-valued
structure functions S(θ) algebra to be unitary solutions of the Yang-Baxer equations. It follows in
the course of construction of the theory that the S-coefficients of the algebra are also the two-particle
matrixelements of the scattering matrix (showing again the close relation of the scattering matrix to local
aspects of QFT).
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(semilocal), no matter how sharply one localizes the support inside W. The exponentiation
of unbounded smeared Z(f) operators leads to the well known Weyl algebra structure
whose weak closure (or double commutant) defines the operator algebra A(W ) which
according to modular theory is W-localized.

In this way the Z-F operators, which at first appeared as purely formal auxiliary ob-
jects in the formfactor-bootstrap program, are given a spacetime interpretation. They
are objects which have better relative locality properties (always relative to the pointlike
interacting fields) than the in-out free fields. Instead of being completely relatively non-
local they at least are relative wedge local with respect to the interacting fields and with
respect to themselves and hence fully wedge local. The nonlocality (better semilocality)
of Z(x) is the prize to pay for the absence of the vacuum polarization in the vector-valued
distribution Z(x)Ω.

It is not our aim here to study nonlocal theories for their own sake; it is the fact
that they are semilocal in the sense of wedges which makes the Z(x) very interesting as
intermediate objects on the way to genuine local theories.

This has an interesting connection with a kind of the particle–field complementarity in
the presence of interactions14. In a free theory one-particle states can be generated from
the vacuum by the application of smeared fields with smearing functions of arbitrary
small support (PFG’s exist for arbitrary small localization regions). The presence of any
interaction radically changes this state of affairs [15]: there is no relative compact region
for which the PFG property prevails and the smallest noncompact causally complete
region (causal completion is automatic in the algebraic approach) for which PFGs prevail
even in the presence of interactions are the wedges. In this sense the wedge region leads
to the best compromise between particles and fields.

Particles are not only important in scattering theory15 but they play the crucial role in
nonperturbative construction of models via the bootstrap-formfactor construction of fac-
torizing models and the relative modular invariance property for wedges of the S-matrix.
In contradistinction to quantum fields which coordinatize algebras (similar to the role of
coordinates in the modern formulation of differential geometry) and are therefore not of
direct physical significance, particles have an ontological individuality/objectivity [15]. But
in the presence of interactions they are in the above sense nonlocal, and therefore it is not
surprising that nonlocal intermediate steps are helpful in nonperturbative constructions.

Schematically one proceeds as

temperate PFG for wedge −→ ZF − algebra −→ A(W ) (12)

One-particle states free of vacuum-polarization can always be created from the vac-
uum by the application of unbounded wedge-localized PFGs [8], which permits a particle
interpretation. But in but in order to be able to utilize them for constructive purposes one
must presently require that they be ”temperate”, i.e. their range is tuned to their domain
in such a way that an iterative applications (as in Wightman field theory) is possible. It
is precisely this requirement which forces the restriction of factorizability and therefore

14It should not be confused with Bohr’s particle-wave complementarity which persists without inter-
action.

15Scattering theory is build on the idea that multiparticle states asymptotically stabilize: if at as-
ymptotically large times by counter coincidence and anticoincidence arrangements one established the
presence of an precisely n-fold localized state then it remains this way.
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the two-dimensionality QFT on us and it is only in this special setting that the boot-
strap classification and computation of S-matrices can be separated from the formfactor
construction which requires the setting of QFT.

In view of the fact that historically the first investigations of factorizing models pro-
ceeded through the quantization of classically integrable field models, and in view of the
complicated nature of classical integrability (infinitely many conservation laws), it comes
as a pleasant surprise that a simple restriction in terms of vacuum polarization leads to
the same result in a purely intrinsic QFT way. It is one of several known instances in
which quantum arguments are conceptually simpler than their classical counterparts.

The construction of the wedge algebra A(W ) from the Z-generators is entirely analo-
gous to the construction of the Weyl algebra from the free fields. Whereas on the level of
the S-matrix and the wedge generators of the form 10 the theory has the appearance of a
relativistic potential theory, this state of affairs changes radically if one passes to compact
localizations as the Poincaré covariant family of double cone algebras A(C) which arise as
relative commutants of wedge algebras

A(C) =
⋂

W⊃O
A(W ) (13)

where in the two-dimensional case one only needs to intersect the standard wedge (with
apex at the origin) with its translated opposite. Intersecting algebras is a task for which
presently no tools exist. However, as a result of the simplicity of the algebraic structure
of factorizing models, there two ways to do this. The more formal procedure starts from
a general Ansatz (p(θ) = m(chθ, shθ))

A(x) =
∑ 1

n!

∫
C

dθ1...

∫
C

dθne
−ix

P
p(θi)a(θ1, ...θn)Z̃(θ1)...Z̃(θ1) (14)

where for reasons of a compact notation we view the creation part Z̃∗(θ) as the Z̃(θ+ iπ)
i.e. as the Z on the upper boundary of a strip16 (we could have introduced this notation
already in (10)).

This is similar to the GLZ representation of the interacting Heisenberg field in terms of
incoming free field, in which case the spacetime dependent coefficient functions turn out
to be on-shell restrictions of Fourier transforms of retarded functions except that instead
of the on-shell incoming fields one takes the on-shell Z operators which conceptually are
somewhere between Heisenberg and incoming fields.

In the latter case the coefficient functions are precisely those formfactors which feature
in the bootstrap-formfactor approach to factorizing theories. Together with a certain
analytic requirement on the coefficient functions, the space of these formal power series
represent the space of formal (in the spirit of vertex operators) W-localized fields. Taking
for O a double cone D whose left apex coalesces with the origin and representing D as the
intersection of the standard right wedge with an a > 0 translated standard left wedge, the
calculation of A(D)-generating operators is based on the relative commutant restriction
placed on the coefficient functions:

[A(x), U(a)U(j)Z(f)U(j)∗U(a)∗] = 0 (15)

16The notation is suggested by the the strip analyticity coming from wedge localization. Of course only
functions but not field operators or their Fourier transforms can be analytic.
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In words: the generators of the right wedge (the A′s whose coefficient functions have the
correct θ-strip analyticity corresponding to the right wedge localization) are subjected to
the restriction that only those which commute with the generating Z’s of the a-shifted
opposite wedge are admitted (i.e. the ones which generate A(D)). Here U(j) is the free
TCP operator i.e. the one which acts on the multiparticle wave functions in the standard
way and therefore Zopp(f) = U(j)Z(f)U(j)∗ are generators of the opposite wedge. Since
the commutation with the restricting operators Zopp

a map the nth order term in A with
the adjacent n+1 and n-1, one obtains a rather simple linear recursion for the coefficient
functions.

In praxis one uses this commutation relation together with covariance in order to
construct a basis of composite fields within each superselection sector. Formally the space
of generating operators17 for compactly localized operators is given in terms of infinite
series in the Z operators with coefficient functions which obey the same relations which
are known as ”the formfactor axioms” in the bootstrap formfactor approach [26]. One
obtains an infinite space of field generators in terms of the infinite space of formfactors in
the bootstrap-formfactor program.

As in the case of free fields and their Wick composites one has ”basic” (there is no
Lagrangian hierarchy here) fields which by definition are those pointlike fields which if
together successively applied to the vacuum generate the Hilbert space (they act cyclically
on the vacuum) and the remainder are composites. The latter are expected to look like
classical local monomials in the basic fields except that there is a spacetime limiting
normal order prescription. In the Z-expansion it is easy to see that the composites share
with the basic fields the nucleus of the formfactor construction (minimal formfactor) and
deviate only in certain momentum space polynomials, but to translate these observations
into normal product formulas for composites is not possible within the present state of
QFT technology.

Since attempts to show convergence of (14) have failed18, it is deeply satisfying that
there is at least an existence proof for nontrivial intersections of wedge localized algebras
based on phase-space behavior (”nuclear modularity”) [9] which allows to bypass the
convergence problem of such series representations. This shows that the algebraic setting
is not only a valuable conceptual field-coordinatization-free guide to the get to the right
starting point for doing calculations in terms of field coordinates (which is the way we used
it), but that it is also capable to shed some new light on age old problems of QFT, as the
problem of their existence beyond formal perturbative power series with the unresolved
convergence status.

The on-shell representation of Heisenberg fields (10) as an infinite series is a particu-
larly useful starting point of the holographic projection since apart from the convergence
problem it is mathematically and conceptually less demanding. It avoids the use of the
still somewhat unfamiliar modular theory and uses the more standard apparatus of QFT.
Instead of aiming at rigorous proofs it satisfies itself with consistency checks. and dele-
gates the more ambitious existence proofs based on modular theory to a second stage of
mathematical refinement.

17For unbounded operators associated to algebras (of bounded operators) it is more appropriate to
speak about spaces than algebras if one has not said anything about dense domains.

18It is perfectly consistent (with everything which one knows about divergence of perturbative series)
that these series diverge; since each single term is analytic in a small circle around zero coupling, this
would put the blame of divergence of perturbative series of off-shell objects on vacuum polarization.
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With the help of the infinite series expansion (14) we can proceed along the lines of a
naive restriction argument (restricting plane wave factors to a lightfront) as was done for
the free field by using its on-shell representation. But there is one stain which should not
be supressed In order to arrive at on-shell formulas one has to go through the nonlocal
steps of scattering theory. Hence the use of such on-shell formulas is somewhat against
the spirit of simplification of certain properties (as the short-distance behavior) through
lightfront holography before starting any calculation.

Let us take two well studied models and extract some interesting informations from
their two-point function using their holographic series representation. According to the
previous remarks, the general formfactor series representation for the holographic two-
point function reads (x+ translational lightray variable, p−(θ) = e−θ)

w(x+) = 1 +
∑ 1

n!

∫
dθ1...

∫
dθne

−ix+
P

p−(θi)b(θ1, ...θn) (16)

= exp
∑ 1

n!

∫
dθ1...

∫
dθne

−ix+
P

p−(θi)bc(θ1, ...θn) (17)

b(θ1, ...θn) = |a(θ1, ...θn)|2

where in the second line we have used the Ursell-Mayer expansion which expresses the
coefficient functions in terms of their cumulants bc. Obviously the lnw series is more
convenient if we are interested in the anomalous dimension of the holographically projected
field.

¿From this series one may read off the anomalous dimension of the respective field.
Apart from the critical limit in the work of Babujian and Karowski [23] which in the
holographic approach is replaced by an exact bulk-boundary relation (and not by another
bulk theory in the same universality class), we can take over all their formulas, in particular
the formula for the dimension dA of a algebra-affiliated field A(x)

w(x+) = const (x+)−2dA (18)

dA =
1

2

∑ 1

n!

∫
dθ1...

∫
dθn−1bc(θ1, ...θn−1, 0)

For the Ising field theory one can do all the integrals as in [23] and then sum the series in
order to obtain the expected result dA = 1

16
. For the Sinh-Gordon model the contribution

to the series up n=2, the authors arrive at a rather complicated function in terms of
the Sinh-Gordon coupling strength whose further evaluation has to be done numerically.
Holography with pointlike fields leads to the same integrals, its only advantage is that its
relation to the bulk is exact since it does not change the algebraic substrate but only its
spacetime ordering.

The main difference to the present derivation is conceptual; whereas Babujian and
Karowski go to the critical limit which is associated with a massless QFT associated
with different operators which act in a separate Hilbert space, holography takes place in
the same Hilbert space and certain wedge-localized algebras whose upper causal horizon
lies on the lightfront are shared between bulk and holographic projection. The set of
shared algebras is invariant under a certain 2-parametric subgroup of the 3-parametric
Poincaré group P and in order to re-construct the mass spectrum one must know how
the missing Poincaré transformation (e.g. the opposite lightray translation) acts on these
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shared subalgebras. The action on LF is necessarily nonlocal (fuzzy) i.e. it cannot be
described in terms of geometry.

On the other hand the holographic projection acquires a new symmetry whose presence
was not noticed in the bulk description, namely the Moebius rotation which together with
the two transformations inherited from the bulk constitutes the 3-parametric Moebius
group SL(2, R). The reason why it was not noticed in the bulk is because its action on
the bulk is ”fuzzy”; only on the horizon it becomes geometric. The concept of algebraic
transformations of the bulk which become which are not related to Noether ’s theorem
and become only geometric upon restriction is a new not yet explored structure of QFT.

In fact one expects the holographic projection to have the covariance under the full
diffeomorphism groupDiff(S1), even though it does not arise from a chiral decomposition
of two-dimensional conformal QFT. The beauty of factorizing models is that as a result
of the presence of the Z-F algebra one can study all these questions in a reasonably
controllable setting i.e. factorizing models are presently the best theoretical laboratory for
testing conjectures beyond perturbation theory.

Among the ideas waiting for a test is the conjecture that not only the free field hologra-
phy for which the Diff-invariance is an obvious consequence of the transverse-longitudinal
factorization of the two-point function (3), but also the holographic projections of factoriz-
ing models are automatically Moebius invariant and (under mild additional restrictions)
even Diff(S1)-covariant. In higher dimensions the invariance group is expected to be
even larger in the sense that the algebraic holographic structure also allows certain x⊥-
dependent chiral diffeomorphisms which are automorphisms of the algebraic commutation
structure of extended chiral theories.

The fact that the holographic projection has more symmetries than those of the in-
variance group of the lightfront has been called symmetry enhancement on the horizon
[27]. In the case of the Moebius rotation within factorizing models it means in particular
that the rotation generator L0 can be written as an infinite series in the Zs, whereas
the translation and dilation retain their usual bilinear form. Besides the commutation
relations the L0 is restricted by the requirement that the vacuum is annihilated. Since the
one particle creation in the bulk looses its physical meaning in the holographic projection,
the application of L0 to the one-Z state Z(x)Ω adds infinitely many Z-”quanta”. In other
words the Z-description is not a very natural basis if used within in a chiral theory since
it has these unusual aspects.

Another important structural problem which still awaits clarification is the question
how the more rigorous algebraic holography (for details we refer to [12][28][15]) is related
to the holographic projection in terms of pointlike fields. The obvious conjecture in case
of factorizing models is that the holographic bosonic observable algebras are generated by
the holographic projection from bulk field which in addition of being bosonic also have
integer short distance dimension. Here the free field is atypical because in that case all
composites have integer dimension and there are no bulk fields with anomalous which
survive the algebraic holography process which only passes the those operators which are
bosonic in the sense of the lightray and which therefore must have integer scale dimension
on the lightray.

On the other hand the holographic projection in the sense of pointlike fields does not
suffer these restrictions to integer short distance behavior in the bulk, but those anomalous
dimensional bulk fields will loose their bosonic spacelike commutation structure upon
holographic restriction and have braid-group commutation relations on the lightray. So
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in case of algebraic holography for factorizing theories there seems to be no alternative
than to reconstruct the missing plektonic fields via the DHR superselection theory.

Most of the statements and conjectures, except those involving Zs can be formulated
in higher dimension. The higher the spacetime dimension, the more lightfront changing
transformation one must apply in order to recover the local structure of the bulk from
that of the lightfront by inverse holography.

The holographic projection is an excellent method for calculating properties which are
caused by the spacetime localization of quantum matter as e.g. the entropy of localization.
Since this entropy results from the infinite vacuum polarization cloud on the boundary of
localization, it is not necessary to know details about the localization substructure inside
the bulk. This legitimizes to perform entropy calculations in the holographic projection
i.e. to reduce the calculation of localization entropy for the wedge algebra to that for a
semi-line which is conformally equivalent to an interval.

We know since Heisenberg’s times that the vacuum polarization of sharply localized
relativistic matter is infinite and therefore we have to attenuate19 those particle/anti-
particle pairs by a ”split procedure” (see next section) which requires to approximate
the interval from the inside by a sequence of smaller intervals. Conceptually this is not
much different from the formation of the thermodynamic limit for a heat-bath thermal
theory. The prerequisite for this relation is that the global algebra in the heat bath
representation defined by a KMS state and the global algebra in the vacuum representation
after restriction to a localized subalgebra are of identical type. This is the case since both
algebras are of the same type, they are what we called a monad in [15] As a result
of the conformal invariance after holographic projection, even the geometric description
becomes conformally equivalent; the infinite volume factor (i.e. infinite length l) of the in
the holographic lightray theory is to be replaced by the logarithm of a diverging invariant
ε which one can form from 4 points and which goes to zero as the shortest distance of the
endpoint of the smaller to those of the bigger interval the distance i.e. diverges as |lnε|
The result which will be derived in the next section.

There is one more reason why the holographic projection is the preferred method
for dealing with bulk properties in particular in the case of factorizing models. The Z-
generators (10) of the half-lightray are the same as those for the wedge, except that the
plane wave factors are those of a one-dimensional QFT. Instead of determining operator
algebras associated with intervals on lightlike lines via algebraic intersections and derive
the Moebius covariance via modular theory, one can also try to find a formula for the
Moebius rotation in terms of a series in the Z-operators.

One expects that the Moebius invariance continues to be valid beyond the holographic
projection of the free theory. The convergence of the infinite series which represents the
anomalous dimension (17) of the holographic projection of the bulk disorder field in the
massive Ising model to the correct value for the chiral Ising model is an encouraging
consistency check.

The formal arguments in favour of the Moebius covariance of holography are on the
same level of rigor as the ”proof” of dilation invariance of the zero mass limit, but here
we want to stay close to the spirit of mathematical physics where consistency checks are

19In the case of ”partial” charges which are formally obtained by integrating the zero compontent of
a quantum current over the volume V this is done by smearing with a test function which goes to zero
smoothly within a finite ”attenuation collar” which is attaches to the volume. In the infinite volume limit
the dependence on the smearing function drops out and one obtains the global charge.
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not sufficient.
It is very important to understand these connections between bulk and its holography,

and the factorizing models provide presently the best theoretical testing ground. For
people who know chiral QFT via the standard approach, it is highly surprising that such
theories (at least in those cases where they arise via holographic projections) have another
(in addition to the L0 Fourier decomposition) particle-like description in terms of a non-
Moebius covariant Z-system (it lacks rotational Moebius covariance since the presence
of Z-polarization clouds causes a complicated transformation property under Moebius
transformations).

Whereas several results in this section depend on the factorizability of the model,
the idea that the structure of the wedge algebra should form the central spine of a new
completely intrinsic constructive approach to QFT is generic. Naturally nobody with any
experience in particle physics would expects that outside of factorizing models one can
calculate an S-matrix exactly using only the bootstrap prescription. Since the S-matrix
in the present setting is the formfactor of the identity operator, on should rather view the
determination of the S-matrix as part of the formfactor program where all formfactors
must be determined together. The crucial hint comes from modular theory which relates
the S-matrix to the so-called modular inversion (6) which coalesces (apart from a spatial
rotation) with the TCP operator.

This permits to think about an onshell perturbative approach for formfactors in which
the interaction input is not a Lagrangian but rather a lowest order S-matrix . Since in such
an approach there is no place for singular pointlike fields but only for generators of wedge
algebras, one does not expect new parameters arising from renormalization Hence in such
a still futuristic perturbative setting there should be many more finite parametric models
invariant under renormalization group transformation than in the pointlike Lagrangian
renormalization approach. Such an explosion of new finite parametric models is already
evident in the factorizing situation where e.g. the infinitely many Sinh-Gordon type S-
matrices which one obtains via CDD pole modifications all have uniquely related QFT
but no Lagrangian name [9].

A very interesting soluble theory (as a result of its exotic statistics and crossing rela-
tion) is the Z(N) model. It derives its name not from a Lagrangian (In fact for N>2 it is
not expected to have any). but rather because it was defined by the requirement that its
S-matrix should implement the idea: antiparticle = bound state of N-1 particles Which
is the minimal way of implementaing nuclear democracy within Z(N) symmetry. There
is no reason to believe that QFT is tight to ”baptizations” in higher dimensions.

5 The area density of localization-entropy via the in-

verse Unruh effect

After having established the d-2 dim. area proportionality of localization entropy, the
remaining task is to use the rather detailed knowledge about chiral theories in order to
calculate the dependence of this area density on the variable attenuation size ε of the
vacuum polarization cloud.

There are two quite different ways to achieve this. One is based on a kind of inverse
Unruh effect for chiral theories: the monad A(0,∞) with respect to the vacuum is uni-
tarily equivalent (via a conformal map) to a KMS state at T = 2π on the global algebra
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A(−∞,+∞), in terms of the standard pair notation (the halfcircle after the compactifi-
cation Ṙ = S1)

(A(0,∞),Ω) � (A(−∞,+∞),Ω2π) (19)

This conformal equivalence has a generalization to the restriction of the vacuum to chiral
algebras A(a, b) localized in arbitrary intervals; in this case the temperature changes with
the interval.

One expects the energy and entropy of the right hand side to have the usual (one-
dimensional) volume proportionality i.e. s = ls2π where l corresponds to the standard
volume factor and s2π to the volume density. The unitary equivalence map intertwines
the the translation of the heat bath theory on the right hand side with the dilation on
the left hand side. In particular it transforms the length l into ε = e−l so that the area
density in question behaves as20

sarea = |ln ε| s2π + finite, ε → 0 (20)

The remaining problem consists in verifying the l−proportionality and computing the
coefficient s2π in its dependence on the data of the chiral model. This is achieved by
approximating the divergent entropy of the heat bath system by the high temperature
limit of a rotational system where the temperature is interpreted as a radius whose size is
related to l). This ”relativistic box quantization”, which constitutes the second step, holds
also in higher dimensional conformal QFTs [31]. The last crucial step consists in using
the temperature duality which holds for the rotational partition function of L̂0 = L0 − c

24
.

In this way one verifies the l−proportionality and finds s2π = c
12
. The three steps have

been described in more detail in [12][28].
A more refined formulation of the split process in which the localization entropy of a

chiral interval (a,b) is approximated from the inside by (c, d) relates ε with the conformally
invariant cross ratio

ε2 =
(b− a) (d− c)

(c− a) (b− d)
(21)

This conformally invariant dependence instead of the volume factor could have been in-
troduced as a conformal refinement for for the l dependence already for the chiral heat
bath entropy. .

Note that whereas the above ”inverse Unruh effect” as well as the temperature duality
is not expected to hold beyond chiral theories, the ”relativistic box” approximation of
the heat bath thermodynamic limit is well-defined in every in every conformally invariant
theory independent of spacetime dimensions.

With the insight that chiral localization entropy is equal to heat bath entropy apart
from a change in the parametrization resulting from the conformal equivalence, the holo-
graphic localization entropy and its universal area proportionality has been considerably
demystified. The main open problem in the application to black holes is to understand
whether and how quantum gravitation is capable to lead to a numerical value for ε; accord-
ing to its microscopic derivation all values of ε are consistent with the Hawking’s thermal
radiation. Arguments that the value can be obtained by thermal re-interpretation of a
classical area density are still frail; the preservation of a classical value in the quantum set-
ting would appear totally unusual. Since the realistic derivation of the Hawking radiation

20A more refined analysis reveals that the attenuation length ε is really a short hand notation for a
unharmonic conformally invariant ratio.
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of a collapsing star cannot be done in a thermal equilibrium setting but rather involves
a stationary entropy flow, one may question the applicability of all thermal equilibrium
ideas (including the present one) to black hole physics.

Although the relativistic box approximation is a conformal improvement of the stan-
dard box approximation in the formulation of the thermodynamic limit, it is desirable
to have a more intrinsic formulation in which the thermodynamic limit is approached by
a sequence of genuine subsystems (Boxes are belonging to unitary inequivalent systems
which are only subsystems in a metaphorical sense). This will be done in the next section
which does not use any of the three previous facts but is solely based on the split property.
In this way one is able work with a definition of localization entropy which in principle
is capable to describe the dependence on the attenuation cloud for finite ε and not only
the leading terms (in the heat bath case the box quantization is only trustworthy in its
leading volume term).

6 Localization entropy via the split density matrix

The second approach to localization entropy also draws its strength from chiral simplifica-
tions, but instead of conformally connecting the localization thermality of a chiral system
to its heat bath KMS properties via the somewhat metaphoric ”relativistic box approxi-
mation” of the previous section addresses it makes direct use of the split property which
identifies the approximating algebra as a bona fide subalgebra of the same mathematical
description.

In the algebraic setting a QFT is fixed in terms of a space-time indexed net of operator
algebras. In the context of a chiral theory this means the net of operator algebras indexed
by proper intervals I on a circle S1 � Ṙ where we will use the Ṙ setting of the one-point
compactified line. We pick 4 points on the line b1 < a1 < a2 < b2 and consider the
algebras A(Ia) ⊂ A(Ib) where Ia = (a1, a2), Ib = (b1, b2) are properly included intervals.
Under rather mild assumptions about phase-space degree of freedoms which are certainly
valid in chiral models with a finite partition function Z = tre−τL̂0 the split property (as
studied in the second section) is valid and leads to the following tensor factorization

A(Ia) ∨A(I ′b) � A(Ia) ⊗A(I ′b) (22)

B(H) = N ⊗N ′
, A(Ib) ⊂ N ⊂ A(Ib)

V (N )A(Ia) ∨ A(I ′b)V (N )∗ = A(Ia) ⊗A(I ′b)

Here I ′b denotes the complement of Ib and we used Haag duality A(Ib)
′ = A(I ′b). To every

concrete split i.e. the existence of an intermediate quantum mechanical type I factor
between two monads A(Ib) ⊂ N ⊂ A(Ib) there exists a unique (by suitable normalization)
implementer V (N ) of the split isomorphism.

The many different splittings correspond vaguely to classical boundary conditions, but
as a result of the increase of possibilities caused by the finite thickness a1 − b1 and b2 − a2

of the two boundary between Ia and I ′b there are vastly more possibilities than in the
classical case, although one expects (as for the heat bath systems in the thermodynamic
limit) that they share the leading ln ε behavior.

Mathematically there is one preferred split in which the two monads A(Ia) ⊂ A(Ib)
uniquely determines a ”canonical” split. The formula for this type factor Nc which is
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functorially determined by the two monads reads

Nc = A(Ia) ∨ JA(Ia)J = A(Ib) ∧ JA(Ib)J (23)

i.e. it is the operator algebra generated by the monad A(Ia) and its image under an
antiunitary involution J which comes from the modular theory of the standard pair
(A(Ia) ∨ A(I ′b),Ωvac). In case the inclusion is split one can show that the algebra Nc

defined by this formula is really a type I factor in terms of which H and B(H) tensor-
factorizes. The advantage of this canonical choice is that it maintains the covariance
under spacetime transformations, in this case the conformal covariance. Since there are
many more intermediate type I subfactors with ”fuzzy boundaries” than classical geomet-
ric boundary conditions any comparison with classical theory has its limitation; but if one
looks for an analogy for the canonical functorial determination on may think perhaps of
free boundary condition.

We are interested in the density matrix ρ which is obtained by the restriction of the
vacuum state to Nc, a concept which was not available on A(Ia) since monads have no
density matrix states (and a fortiori no pure states). Note that ρ represents a thermal
Gibbs state; the thermal KMS aspect is a property of any algebra which is either (sharply)
localized or contained in a localized algebra as Nc ⊂ A(Ib) and KMS states on type I
algebras are Gibbs states. The Hamiltonian is a operator in the factor space and can be
read off from ρ i.e. it is an operator whose localization is inside Ib.

It is this step which replaces the somewhat artistic arguments based on functional
integrals, the rest we take from the innovative and inspiring work of condensed matter
physicists who use the field theoretic setting of factorizing models. In spite of the in-
trinsicness in the definition of ρ, I would presently not be able to write down an explicit
formula for the canonical ρ(b1, a1,a2, b2) ∈ A(Ib) even though it is conformally covariant
according to its functorial construction. But if one wants to extract the entropy from that
thermal density matrix one may first use the replica trick to compute trρn for n=1,2,....
and from there a representation of the entropy [30] in terms of an differentiation with
respect to n at n=0. After legitimizing the uniqueness of the analytic continuation in n
by checking the prerequisites of Carlson’s theorem one obtains

s = −trρ ln ρ =
d

dn
trρn|n=0 (24)

The conformal invariance of these traces follows from the conformal covariance of ρ which
in turn is a result of the functoriality of its construction in terms of conformally covariant
algebras and the conformal invariance of the vacuum. As in the previous section this
forces the traces and hence the entropy to be a function of the cross ratio of the four
end-points.

In order to avoid confusions it should be stressed that these four points are not to be
thought of as end points of localization regions but rather as parameters which designate
a sharp localization region Ia together with an attenuation region for vacuum polarization
given by the complement Ib \ Ia. The shape of the fuzzy attenuation cloud is completely
fixed by the canonicity of the above split procedure in terms of the modular object asso-
ciated with the canonical split of the inclusion of two monads (A(Ia) ⊂ A(Ib),Ω).

This is of course much more than the method of the previous section can deliver be-
cause the thermodynamic limit approximation by (relativistic) boxes can only be trusted
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in the leading volume (here length) proportionality which according to the previous sec-
tion passes in chiral theories to the logarithm of the in the attenuation length ε = 1

r
(with

r given by the cross ratio below (30)21) via a conformal transformation to the logarithm
). The higher corrections from vacuum polarizations are only accounted for by the split
property and the associated canonical attenuation picture.

Such a simple correspondence between quantum heat bath- and quantum localization-
thermality is only valid in chiral theories. Whereas this is not sufficient to relate heat bath
and localization aspects in higher dimensional QFTs, it does just that for the holographic
projections.

Unfortunately the present state of mathematical technology in operator algebras only
permits to compute the leading term in the vanishing attenuation length i. e. in praxis
one presently does not obtain more than in the previous section. But since the method is
quite interesting and allows us to make contact with recent results from condensed matter
physics as in ([30] and references cited therein), we will present it in the sequel.

The next step in the derivation consists in the use of the replica trick. In the algebraic
setting one starts from an n-fold tensor product of a chiral observable algebra on the
circle. The following two formulas denote cyclic and permutation orbifold associated to
the tensor product.

(A⊗A⊗ ....⊗A)Zn (25)

(A⊗A⊗ ....⊗A)Pn

whose construction requires the split property. It was introduced in [32] as an auxiliary
tool to analyze problems with multi-interval inclusions. The second line denotes the
closely related permutation orbifold whose irreducible representations are similar. The
representation theory for tensor products is defined with the above split map but in order
to come to a splitting situation we first apply a map which transforms an interval I ⊂ S

As usual the Riemann surface associated with n
√
z is the n-fold ramified cover of

C \ {0} . We may use this as for the definition in order to map its n-fold ramified covering
of the Moebius group into the following subgroup of Diff(S1) formally written as

z → n

√
αzn + β

β̄zn + ᾱ
(26)

The representations of the Z(n) orbifold are constructed from the n right inverses of
f(z) = zn which are injective maps g0, g1, ..gn−1 of R →S1 which remain comtinuous at
±∞. On each interval I ⊂ R these maps are unitarily implemented and the resulting
net Φgi,I(A) can be used to define a representation of the tensor product algebra A(I)
⊗...⊗A(I) as

πf,I ≡ χI · (Φg0,I ⊗ ...Φgn−1,I) (27)

where χI is the natural isomorphism from A(I) ⊗...⊗A(I) to A(I0) ∨... ∨A(In−1) from
the canonical implementation of the split property. The net πf,I defines a soliton of A0

⊗...⊗A0 where the subscript is a reminder that the circle has been punctured at ∞.
It turns out that the restriction to the cyclic orbifold i.e. the restriction

τf ≡ πf |(A⊗...⊗A)Zn (28)

21In fact the conformal invariance of the chiral entropy permits to generalize the thermodynamic limit
by limits in which the right and left hand side approach infinity with different velocities.
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has an extension to the full circle i.e. is a conformal field theory (indicated by omitting
the subscript). It is quite common that a soliton representation passes to an ordinary
representation. In the case at hand the irreducible soliton representation decomposes
into a direct sum of n diffeomorphism covariant representations τf

(0), ..., τ
(n−1)
f whose

statistical dimension and scale dimensions (of their generating fields) were determined in
[32]. The anomalous spin spectrum can be red off directly from the embedding of the
n-fold covering of the Moebius group into the Diff(S1) (26). For the following we only
need the lowest scale dimension is

dn =
n2 − 1

12n
c (29)

where c is the Virasoro constant.
The purpose of the orbifold representation in the present context is to identify the

nth power of the Ib-localized density matrix ρn with an operator in the τf representation
and to extract information of the singular behavior for coalescent points when Ib → Ia
by using the fact that the singularities of the branch points of this singular limit are
determined by the lowest dimensional ”twist” fields of the Z(n) orbifold with dimension
(29). This is precisely what Cardy et al. [30] arrive after (metaphoric) use of functional
arguments in order to implement the replica trick.

The remaining steps are identical to theirs. For the cross ratio r we choose

r =
(a2 − a1) (b2 − b1)

(a1 − b1) (b2 − a2)
(30)

which becomes singular in the limit Ib → Ia. Unfortunately trρn is a function of r which,
although uniquely fixed in terms of Ia ⊂ Ib, is presently out of reach of our computational
abilities. Its singular behavior leads to the formula

trρn = r
n2−1
24n

cFn(r) (31)

F1(r) = 1

where the singular branch point behavior has been split off. Assuming finiteness of the
derivative d

dn
Fn(r)|n=1 ≡ G(r) at r → ∞ one obtains the limiting formula of the condensed

matter literature

− trρ ln ρ =
c

12
ln

(a2 − a1)
2

ε2
(32)

ε = a1 − b1 = b2 − a2 → 0

This is not the first time I have used the split property for the calculation of local-
ization entropy. In [33] I used a formula for the unitary implementation of the splitting
transformation which is limited to free fields. The resulting leading logarithmic depen-
dence in the attenuation depth of the vacuum polarization led me to expect that this
behavior is generic. In order to show this I looked for other ways and found the relation
with the thermodynamic limit formula of the previous section. But it was only after
I recently became aware of the work in condensed matter physics that I succeeded to
complete my old program of computing at least the leading behavior of the canonically
defined localization entropy.
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In order to avoid misunderstanding, it is not our intention to compete with the beauti-
ful results obtained about localization entropy in condensed matter physics [30]; my main
point is a methodological. Functional integrals, even in cases where they exist and are
backed up by measure theory, as for superrenormalible QFT (finite wave function renor-
malization), are unsuitable for the description of localized subtheories as needed to define
localitation entropy or localization energy. They are in fact blind against the thermal
manifestations resulting from the local monad structure of localized algebras as compared
to the quantum mechanical structure of the global algebra. Monads only occur in QFT
and not in QM and functional integrals have the same appearance in QFT and QM.

In [30] the functional integral representation is only used in a metaphoric way in order
to implement the replica idea. All the calculations are done in the bootstrap-formfactor
setting. Indeed the setting of functional integrals is the most marvelous metaphoric
instrument of QFT. For the purpose for which it is used by Cardy et al. it is particularily
suitable, and the fact that factorizing models are outside the range of validity of functional
integral representations will not leave a pragmatically inclined quantum field theorist
sleepless as long as his consistency checks work.

But even the staunchest pragmatist cannot fail to perceive the deep irony which lies in
the fact that in those cases where the functional integral is exact, namely in QM, it is not
possible to teach a normal course on QM using only functional integration22; on the other
hand modern textbooks tend to equate the definition of QFT with functional integral
quantization despite its metaphoric content. As a result there are particle physicists who
think that perturbative divergencies and their renormalization via cutoffs or regulaters are
intrinsic attributes of QFT. It is often not noticed that the causal approach has shown al-
ready many decades ago that the principles of QFT implemented iteratively, starting with
the Wick-ordered lowest order interaction density, lead to a finite formulation which how-
ever in certain cases has an increasing number of free parameters (nonrenormalizability)
and as a result ceases to be useful.

Though in most cases (including the present one) one does not really have to rely
on metaphors, their use often significantly facilitate the communication between particle
physicists. Writing a specific functional integral on a blackboard generates a strain of
associations which is generally sufficient to initiate a meaningful discussion; it is hard to
think of any other compact effective way. The metaphoric power is strongest when the
setting is used as a vehicle to discover new mathematical structures as it was first done
in the work by Atiyah and Witten in the 70/80s.

By during the last two decades the limitations of this metaphoric power having become
increasingly evident. The local covariance principle in the context of QFT in generic
curved spacetimes is not even metaphorically compatible with a functional integral setting,
and neither are QFT with braid group statistics as chiral models. Also there are factorizing
models which are metaphorically consistent with a functional representation most of them
are not; and even if they are, as e.g. the Sine-Gordon model, the functional metaphor is
of no help in its solution.

22It is an interesting intelectual exercise and a test of one’s conceptual understanding of QM to con-
template how quantum theory would have evolved if Feynman’s approach would have appeared before
Heisenberg’s. The idea is not as harbrained as it appears at first sight because the functional integral
approach is conceptually much closer to the old Bohr-Sommerfeld QM than Heisenberg’s rather abstract
setting. For calculating quasiclassical approximations the Feynman approach is the most elegant and
effective starting point.
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The present state of QFT is that of an ongoing paradigmatic change where at the
end one expects to arrive at a setting which parallels the conceptual cohesion and the
mathematical precision of the operator formalism of QM. During this transition time the
functional integral setting will continue to be the source of new ideas. There is no harm in
using its suggestive power as long as one remains aware that it is of a metaphoric nature.

There is an interesting conceptual difference which remains between my work on lo-
calization entropy and the work by condensed matter physicists even though both used a
QFT framework. From my point of view the use of the terminology ”cutoff” in connection
with localization entropy is not helpful because its creates the wrong association; for this
reason I have avoided it ever since I started my work at the beginning of this decade [33]
and used instead the concept of an attenuation length ε. Hardly anybody would asso-
ciate the divergent volume factor which appears in the thermodynamic limit of thermal
systems with a cutoff, yet the attenuation length parameter of the vacuum polarization
cloud is nothing but a conformal transform of the length factor L which appears in the
thermodynamic limit of a chiral heat bath QFT.

Cutoffs in QFT are uncontrollable changes of theories caused by cutting out the high
energy contributions in certain integrations in the hope that despite the uncontrollable
change certain numerical quantities of interests may change only little. The notion of
attenuation length for localization-caused vacuum polarization on the other hand is a
rigorous concept within each fixed QFT model.

7 The conceptual-philosophical basis of a modular-

based approach, messages for QG

A radically different approach to QFT as the present one, which substitutes any kind
of quantization parallelism to classical fields by completely autonomous concepts should
come with different conceptual-philosophical message of what constitutes the essence of
QFT. Indeed the scenario of holography and its inversion via reconstruction wedge asks for
a different philosophical setting than that of Lagrangian quantization. Whereas similar
to QM the latter harmonizes with a Newtonian view of quantum matter as something
that fills spacetime, the monad structure of local operator algebras in QFT and their
intersection and generating properties require Leibniz’s more abstract view of spacetime
as an ordering device such that holography is a radical change of this ordering device.

The underline the radical aspect of this new viewpoint we refer to [15] where it was
pointed out that quantum matter together with its spacetime symmetries as well as all
its inner symmetries can be encoded into the position of a finite number of monads (i.e.
copies of the unique abstract monad) in a common Hilbert space [15]. Even the kind of
quantum matter (hadrons, leptons, photons) is resolved in terms of positioning, with other
words the ultimate reality of QFT is relative positioning of a finite number of monads
in a Hilbert space. What makes this different perspective of QFT so interesting is that
it is completely rigorous as well as conservative. It does not replace or add any physical
principle, yet it implies a strong change of paradigm. This is the strongest indication yet
that QFT is still a very young theory with expected changes and certainly nowhere near
to its closure.

In the form as applied in this paper modular theory was used to address the localization
problems and symmetries of QFT in Minkowski spacetime. It is natural to ask whether
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these ideas using modular groups can be applied in the more general context of QFT
in CST. A more modest question in this direction would be to understand whether the
Diff(S1) symmetries beyond Moebius symmetries which do not preserve the vacuum can
be obtained by modular methods (i.e. without assuming the existence of an energy-
momentum tensor which for chiral theories originating from holography is in any case not
a reasonable assumption). Preliminary studies indicate that this is the case if one relaxes
some of the modular concepts.

An important issue is how to view the generic area proportionality of localization
entropy of quantum matter on null-horizons in connection with Bekenstein’s classical
area behavior in Einstein-Hilbert like classical field theories. The standard argument
consists in using Bekenstein’s quantum re-interpretation as a key to learn something
about the elusive QG. Whatever one wants to use it for, one can certainly not claim that
the entropy area law is direct evidence of manifestation of QG. The thermal aspects of
Hawking radiation as well as the area proportionality of entropy are perfectly describable
in the setting of QFT in CST; no appeal to a still elusive QG is necessary.

The formation of a black hole through a collapsing star, as envisaged by Hawking [18]
and described in more detail within an algebraic QFT setting by Haag and Fredenhagen
[34], is outside the static equilibrium thermodynamic setting. For such stationary non-
equilibrium states the recent notion of entropy flux in the operator algebra setting [35]
may be more appropriate.

Acknowledgement: I thank Henning Rehren for a helpful comment.
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