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Abstract

In contrast to the usual representations of of the Poincar�e group of �nite spin or helicity the

Wigner representations of mass zero and in�nite spin are known to be incompatible with pointlike

localized quantum �elds. We present here a construction of quantum �elds associated with these

representations that are localized in semi-in�nite, space-like strings.
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It is well-known that free �elds for particles of �nite spin (or helicity in case of m = 0) can be

constructed in two ways, either by (canonical or functional integral) Lagrangian quantization, or within

the setting of Wigner's particle classi�cation [1] based on positive energy representations of the universal

covering of the Poincar�e group [2]. There is, however, a family of representations where the standard

�eld-theoretical procedures fail. These representations correspond to particles of zero mass and in�nite

spin and can be regarded as limiting cases of representations of mass m > 0 and spin s < 1 as m ! 0

and s ! 1 with the Pauli-Lubanski parameter m2s(s + 1) = �2 �xed and nonzero. In the Wigner

classi�cations they are associated with faithful representations of the noncompact stabilizer group (\little

group") of a light-like vector. In this case no Lagrangian description is known; in fact there exists a No-

Go theorem [3] stating that these representations are incompatible with pointlike localized �elds ful�lling

the general principles of quantum �eld theory [4]. Special examples that indicate the diÆculties to make

these representations compatible with the structure of local �elds can also be found in [5, 6].

In this Letter we report on the construction of string-localized �elds for these representations; the

string turns out to be a semi-in�nite space-like line characterized by an initial point x in Minkowski

space and a space-like direction e from the unit space-like hyperboloid (a point in a de Sitter space). In

this paper \localization" is always understood in terms of the vanishing or nonvanishing of commutators

of �eld operators, and string-localization means that the commutator of two �eld operator vanishes if

the corresponding strings are space-like separated but in general not if this holds only for the end points.

The existence of string-localized objects as the best possible (with the tightest localization) for these

representations is suggested by recent general results on localization in space-like cones that apply to

all positive energy representations of the Poincar�e group [7]. Our string-localized �elds transform in a

simple way under the Poincar�e group and their internal degrees of freedom consist in the in�nite helicity

tower of a faithful representation of the Euclidean stabilizer group E(d�2) in spacetime dimension d � 4

For d = 3 the representation is one-dimensional but leads also to string-localized �elds. For concreteness

sake we consider here the case d = 4 and integer helicities. Our �ndings solve an old problem that

has attracted the attention of physicists of several generations [8, 3, 5, 6], namely to incorporate these

representations into quantum �eld theory in a way compatible with causality.

An interesting feature of our construction is a subtle interplay between the pointlike localization of

the end point of the string in d-dimensional Minkowski space and the directional localization in a (d�1)-

dimensional de Sitter space in the sense of [15]. We note that in his search for a classical local equation

for the zero mass in�nite spin representations Wigner [8] proposed a description in which the Poincar�e

group also acts on a space-like vector besides the points in Minkowski space. The wave equations of [8],

however, are inconsistent with string-localization in the sense considered here.

The in�nite spin Wigner representations are not the only irreducible representations leading to string

localization; massive representations in d = 1+2 with spin not equal to an integer or half-integer (anyons)

can only be string localized. In that case the string localization results from the richer covering structure

of the d = 1+ 2 Poincar�e group which also leads to braid group statistics which requires the presence of

vacuum polarization even in the absence of a genuine interaction (absence of real particle creation) [9].

The anyonic string is a special case of the string-like localized objects envisaged in [10].

In this context it is worth pointing out that there is a signi�cant di�erence between string localization

in our sense and localization in string �eld theory. The lightfront quantization of the free bosonic Nambu-
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Goto string leads according to the analysis in [11] to pointlike localization in the sense that the commutator

vanishes for space-like separation of the centers of mass of two string con�gurations, irrespective of an

overlap of their internal coordinates. For interacting string �eld theory there are no rigorous results of

this kind, but perturbative calculations [12, 13] seem to indicate that if such a theory is meaningful at all

(which is by no means clear) the string �elds can be expected to be totally delocalized. On the available

evidence it seems in any case fair to say that the strings of string �eld theory are not string-localized in

the sense of the present paper.

Our construction of string-localized �elds is based on Tomita-Takeski modular theory (see [14] for a

survey of its applications to quantum �eld theory) in the context of modular localization for Poincar�e

covariant positive energy representations [7, 17, 18]. A full treatment in the modular setting will be given

in [19]. Here we only describe the main result and give an argument which (in the present condensed

version) is less systematic and rigorous but has the advantage of being more accessible to readers with a

standard �eld-theoretic background.

We start by recalling the de�nition of the irreducible zero mass, in�nite spin representations of the

orthochronous Poincar�e group P"
+. They are de�ned by inducing unitary representations of the stabilizer

group of a �xed light-like vector to the whole of P"
+. The stabilizer group is in our case isomorphic to

the two-dimensional Euclidean group E(2), consisting of rotations R# by an angle # 2 Rmod 2� and

translations by c 2 R
2 . Let H� be the Hilbert space of functions of k 2 R

2 , square integrable with

respect to the measure d�� = Æ(jkj
2
� �2)d2k. (Hence only the restrictions of the functions to a circle

of radius � matter.) The Pauli-Lubanski parameter �2 labels nonequivalent representations of E(2); the

representation on H� is given by the formula

(D�(R#; c)') (k) = eic�k'(R�1
# k): (1)

Let  (p) be an H�-valued wave function of p 2 R
4 , square integrable with respect to the Lorentz

invariant measure d�(p) = �(p0)Æ(p �p)d4p on the mantle @V + of the forward light cone V +. The unitary

Wigner transformation law for such a wave function reads

(U(a;�) ) (p) = eip�aD�(R(�; p)) (�
�1p) (2)

where

R(�; p) = B�1
p �B��1p 2 E(2) (3)

denotes the Wigner \rotation" (actually a boost combined with a rotation) with Bp an appropriately

chosen Lorentz transformation that transform the standard vector �p = (1; 0; 0; 1) to a (nonzero) p 2 @V +.

Our string-localized �eld operators are de�ned on the Fock-space over the irreducible representation

space with the creation and annihilation operators a�(p)(k), a(p)(k) for the basis kets jp; ki of the one-

particle space, p 2 @V +, k 2 R
2 , jkj = �. In fact, we de�ne a whole family of �elds, depending on a

complex parameter � that labels representations of the 3-dimensional de Sitter group as will be explained

in the sequel. The �eld operators have the form

��(x; e) =

Z
@V +

d�(p)
n
eipxu�(p; e) Æ a�(p) + e�ipxu��(p; e) Æ a(p)

o
(4)

withH�-valued prefactors u
�(p; e) that are determined by the intertwining property (7) below and certain

analyticity requirements for their dependence on e. The circle \Æ" between the prefactors u�(p; e) and
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the creation and annihilation operators (the dependence on k is suppressed by the notation) stands for

integration over k 2 R
2 with respect to the measure d��(k), and the bar denotes complex conjugation.

The �elds are singular in x and the space-like direction e, i.e., operator valued distributions, and they

have the following properties:

� If x+ R
+e and x0 + R

+e0 are space-like separated 1 then

h
��(x; e);��0(x0; e0)

i
= 0 (5)

while the commutator is nonzero as a distribution in e; e0 if only the the endpoints of the strings, x

and x0, are space-like separated.

� The transformation law of the �eld is consistent with this localization:

U(a;�)��(x; e)U(a;�)�1 = ��(�x+ a;�e): (6)

� After smearing with tests functions in x and e, where it is suÆcient to let x and e vary in an

arbitrary small region, the �eld operators generate a dense set in Fock space when applied to the

vacuum vector j0i. (Reeh-Schlieder property [4].)

The second statement (6) is a result (as in the standard �nite spin case) of the intertwining properties

of u�, namely u� and u�� absorb the Wigner rotation of the creation/annihilation operators (which is

contragradient to that of the wave function (2)) and trade it for a transformation of e according to

D�(R(�; p))u
�(��1p; e) = u�(p;�e): (7)

The localization (5), on the other hand, results from (6), TCP covariance, and analyticity properties

of the two point function in x � x0 and in e, e0. The third property is proved in a similar way as the

Reeh-Schlieder theorem for point-localized �elds [4], using also analyticity in e. The �eld operators for

di�erent values of the parameter � all generate the same Fock space and Eq. (5) implies that they are

relatively (string) localized to each other. Hence they all belong to the same Borchers class [16].

The intuitive basis of this construction is the idea that one can obtain the relevant representation

by a suitable projection from a tensor product representation, where one factor is a scalar massless

Wigner representation of the Poincar�e group in d = 4 dimensional Minkowski space and the other a

representation of the Lorentz group associated with a d�1 = 3 dimensional de Sitter space. Without any

relation between the tensor factors, one would obtain a factorizing two-point function associated with a

commutator that vanishes if both the Minkowski- and de Sitter localizations points are space-like. The

action of the Poincar�e group in the tensor product space H = H0 �
HdS is Utens(a;�) = U0(a;�)�
UdS(�);

where U0(a;�) is the Wigner representation of a massless, scalar particle, and UdS(�) is a representation

of the homogenous Lorentz-group on functions on d � 1 dimensional de Sitter space as in [15] of degree

�, which is unitary if � = �d�2
2 + i�; � 2 R 2 It turns out that for our purpose all values of � are allowed

(except � = 0; 1; 2; : : : for which u� � 0 for k 6= 0 by Eqs. (8) and (9) below), but the unitary case,

1The distributional character of the �elds requires in fact strict separation in the sense that that some open neighborhoods

of the strings are space-like separated.
2A closely related use of representations of the homogeneous Lorentz group is made in [5]. The essential di�erence is

that string-localization, which is our main concern, is not visible in this earlier construction.
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Re� = �1, is perhaps the most natural choice. For unitary UdS the representation Utens(a;�) is a direct

integral of the continuum of in�nite spin Wigner representations corresponding to all real values of the

Pauli-Lubanski parameter �. Projecting out one of these uncountably many irreducible representations

weakens the independent localizations in x and e in such a way as to be consistent with the mutual

causal dependency of strings. The decomposition of the tensor product representation into its irreducible

components is carried out by �rst bringing it into the Wigner form (i.e., the form of (2)) by means of a

unitary transformation  (p) ! UdS(Bp) (p) and then decomposing it according to the spectrum of the

Casimir operator of the little group. A de�nite value of � is then picked out. The resulting intertwiners

are

u�(p; e)(k) = e�i��=2

Z
d2zeik�z (Bp�(z) � e)

�
(8)

with

�(z) =
�
1
2

�
jzj2 + 1

�
; z1;�z2;

1
2

�
jzj2 � 1

��
: (9)

Here � 2 @V + is a de Sitter momentum space variable, and (� � e)
�
(the dot denotes here the Minkowski

inner product) is the analog of a plane wave, i.e., as a function of � and the exponent � it is the Fourier-

Helgason transform of the Æ-function at the point e in de Sitter space as explained in [15]. The power t�

is de�ned with a cut along R� and (�1)� = exp(i��). Instead of integrating � over time-like or space-like

cycles � as the authors of [15], we chose the light-like cycle �(1;0;0;1) = f� 2 @V +; (� � e) = 1g that leads

to the parametrization (9) in terms of points z 2 R
2 . The integral in (8) is understood in the sense

of tempered distributions, but by partial integration one sees that for k 6= 0 the result is a continuous

function of k 2 R2 that can be restricted to jkj = �.

Since Bp�(z) 2 @V + has a positive scalar product with any vector in the forward light cone V +, it

follows from (8) that u�(p; e)(k) can be de�ned for complex vectors e, provided the imaginary part of e

is in V +. Moreover, u�(p; e)(k) is analytic in e in this domain.

The nontrivial coupling between initial points and directions arises from the presence of the p-

dependent boost Bp and of the 2D plane wave factor eik�z which produces the variable k on which the

Lorentz group acts through the Wigner \rotation" D�(R(�; p)), c.f. (1) and (3). This action, consisting

of a two-dimensional translation c and a rotation R# both depending on � and p (i.e., R(�; p) = (c; R#));

can be pulled through to the z in �(z) as follows:

D�(R(�; p))u
�(��1p; e)(k) = eic�ku�(��1p; e)(R�1

# k)

= e�i��=2

Z
d2zeik�z

�
B��1pR(�; p)

�1� (z) � e
��

= e�i��=2

Z
d2zeikz

�
��1Bp� (z) � e

��
= u�(p;�e)(k); (10)

verifying (7). Here we have in the second line used the relation �(R#z + c) = R(�; p)�(z) that follows

directly from the above formula (9) for �(z): The passing to the third line uses the formula (3) for Wigner

rotation R(�; p). Besides the representation of P"
+ an antiunitary TCP transformation is de�ned by

jp; ki ! jp;�ki, which means that u�(p; e)(k)! u�(p; e)(�k) = u��(p;�e)(k). This sets the stage for the

application of the modular localization [7] of one-particle states that can be shown to imply the desired

string commutation relation. We shall not discuss this approach here but pass directly to the commutator
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via the two-point function

W��0(x � x0; e; e0) =
D
0j��(x; e)��0 (x0; e0)j0

E

=

Z
@V +

d�(p)e�ip�(x�x0)M��0(p; e; e0); (11)

M��0(p; e; e0) = u��(p; e) Æ u�
0

(p; e0);

where Æ again denotes integration over k on the circle jkj = �. In contradistinction to pointlike localized

�elds, where M��0 is a polynomial in p, we cannot express this two-point function in terms of known

functions but we can read o� its covariance properties from Eq. (7) and the TCP symmetry in the

one-particle space:

M��0(p; �e;�e0) =M��0(��1p; e; e0) (12)

M��0(p;�e;�e0) =M�0�(p; e0; e): (13)

Since the measure d�(p) has support on @V + the two-point function W��0(x�x0; e; e0) is an analytic

function of x � x0 in the complex domain R4 � iV +. Moreover, by the analyticity of u� in e, W��0 is

analytic for complex e0 with e0 �e0 = �1 and imaginary part in V +. Likewise, it is antianalytic for complex

e in the same domain.

If two strings, x+R
+e and x0 +R

+e0 are space-like separated (cf. footnote [22]), there is a space-like

wedge W with causal complement W 0 such that x + R
+e 2 W and x0 + R

+e0 2 W 0. By translational

invariance of the two-point function it can be assumed that the edge ofW (and hence also ofW 0) contains

the origin; then x; e 2 W and x0; e0 2 W 0. The covariance law (12) and the TCP symmetry (13) imply

the following \exchange formula":

W�0�(x0 � j�(�t)x; e0; j�(�t)e) =W��0(x� j�(t)x0; e; j�(t)e0): (14)

Here j is the re
ection across the edge of the wedge W which transforms W into W 0 and V + into �V +,

and �(t) is the one-parameter group of Lorentz boosts that leave W invariant. Note that j and �(t)

commute. The matrix valued function �(t) is entire analytic in the boost parameter t. Moreover, for t in

the strip R + i(0; �) the imaginary parts of j�(�t)x, j�(�t)e, j�(t)x0 and j�(t)e0 all lie in V +. Eq. (14)

extends from the boundary at Im t = 0 to the whole strip by the analyticity of the two point function

and the Schwarz re
ection principle. The boundary values for Im t = i� are therefore also identical for

both sides. Since j�(�i�) is the identity matrix, this leads to the desired stringlike commutativity in the

form W�0�(x0 � x; e0; e) =W��0(x� x0; e; e0) if x+ R
+e and x0 + R

+e0 are space-like separated.

The structure of the two-point function also permits the de�nition of a KMS (thermal equilibrium)

state at inverse temperature �, replacing M��0(p; e; e0) by

M��0

� (p; e; e0) =
�
1� e��p0

��1 h
�(p0)M��0(p; e; e0) ��(�p0)M�0�(�p; e0; e)

i
(15)

with � the step function. The KMS property is

M��0

� (p; e; e0) = e�p
0

M�0�
� (�p; e0; e): (16)

The existence of a KMS state is the prerequisite for the thermalization of a system. In his discussion of the

possible physical signi�cance of his zero mass in�nite spin representations in [8] Wigner expressed concern
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about the in�nite degeneracy of each energy level in the one-particle space, that apparently would lead to

a divergence of the partition function in a box. It is not clear, however, if such a treatment is legitimate

for objects with a semi-in�nite string localization. This question merits a further study, including a

comparison with the results of [20] on the thermodynamic properties of conventional quantum �elds.

An important open problem in this context is the existence of local observables in the sense of [21],

i.e., operators that are localized in bounded domains of Minkowski space and relatively local for the �elds.

From the modular duality results of [7] it follows that such operators must be contained in the intersection

of the operator algebras generated by string �eld operators localized in wedge domains containing the

bounded localization domain, so the question is whether the intersections of the wedge algebras contain

nontrivial local operators.
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