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Abstract

The shear free condition is studied for dissipative relativistic self–gravitating flu-

ids in the quasi–static approximation. It is shown that, in the Newtonian limit, such

condition implies the linear homology law for the velocity of a fluid element,only

if homology conditions are further impossed on the temperature and the emission

rate.It is also shown that the shear free plus the homogeneous expansion rate condi-

tions are equivalent (in the Newtonian limit) to the homology conditions. Deviations

from homology and their prospective applications to some astrophysical scenarios

are discussed, and a model is worked out.
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1 Introduction

As it is well known the shear plays an important role in general relativistic and cosmo-

logical models (see [1] and references therein).

In the case of slowly evolving (quasi–static) non–dissipative systems, it can be shown

that in the Newtonian limit, the shear–free condition leads to the homologous contraction

(or expansion) law for the velocity [2]. However this is not necessarily the case in the

presence of a heat flow vector [3] and/or free streaming radiation (see below). This fact,

and the great relevance of homology conditions in astrophysics (see [4]) provide the main

motivation for this work.

It is our purpose here to explore deeper the link between these two conditions and

present some astrophysical scenarios where departures from homologous evolution (keep-

ing the shear free condition) migth drastically change the whole picture of the system.

Accordingly, we shall consider dissipative systems. Indeed, dissipation due to the

emission of massless particles (photons and/or neutrinos) is a characteristic process in

the evolution of massive stars. In fact, it seems that the only plausible mechanism to

carry away the bulk of the binding energy of the collapsing star, leading to a neutron star

or black hole is neutrino emission [5].

In the diffusion approximation, it is assumed that the energy flux of radiation (as that

of thermal conduction) is proportional to the gradient of temperature. This assumption

is in general very sensible, since the mean free path of particles responsibles for the

propagation of energy in stellar interiors is usually very small as compared with the

typical length of the object. Thus, for a main sequence star as the sun, the mean free

path of photons at the centre, is of the order of 2 cm. Also, the mean free path of trapped

neutrinos in compact cores of densities about 1012 g.cm.−3 becomes smaller than the size

of the stellar core [6, 7].

Furthermore, the observational data collected from supernovae 1987A indicates that

the regime of radiation transport prevailing during the emission process, is closer to the

diffusion approximation than to the streaming out limit [8].

However in many other circumstances, the mean free path of particles transporting

energy may be large enough as to justify the free streaming approximation. Therefore

we will include simultaneously both limiting cases of radiative transport (diffusion and

streaming out), allowing for describing a wide range situations.

As mentioned before homologous evolution, an assumption widely used in astrophysics

[4], is known to be equivalent, in the non–dissipative case, to the shear–free condition in
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the Newtonian limit [2]. As we shall see here, the presence of dissipative terms requires

further the assumption of homology conditions on temperature and emission rate, in

order to keep the homologous linear dependence of the velocity. It will also be shown that

imposing the rate of expansion to be independent of the radial coordinate (together with

shear free condition) amounts to the full set of homology conditions.

Although deviations from the homologous evolution are shown to introduce extremely

small modifications in the expression for the velocity, these terms might be relevant in

some very specific situations which we will discuss later.

It is also worth mentioning that although the most common method of solving Ein-

stein’s equations is to use commoving coordinates (e.g. [9],[10]) we shall use noncomoving

coordinates, which implies that the velocity of any fluid element (defined with respect to

a conveniently chosen set of observers) has to be considered as a relevant physical variable

[10].

The plan of the paper is as follows. In Section 2 we define the conventions and give

the field equations and expressions for the kinematical and physical variables we shall use,

in noncomoving coordinates. In Section 3 we give the general expression for the velocity

and evaluate the dissipative terms. A very simple model is presented in Section 4. Finally

a discussion of results is presented in Section 5.

2 Relevant Equations and Conventions

2.1 The field equations

We consider spherically symmetric distributions of collapsing fluid, which for sake of

completeness we assume to be locally anisotropic, undergoing dissipation in the form of

heat flow and/or free streaming radiation, bounded by a spherical surface Σ.

The line element is given in Schwarzschild–like coordinates by

ds2 = eνdt2 − eλdr2 − r2
(
dθ2 + sin2θdφ2

)
, (1)

where ν(t, r) and λ(t, r) are functions of their arguments. We number the coordinates:

x0 = t; x1 = r; x2 = θ; x3 = φ.

The metric (1) has to satisfy Einstein field equations

Gν
µ = −8πT ν

µ , (2)
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which in our case read [11]:

−8πT 0
0 = − 1

r2
+ e−λ

(
1

r2
− λ′

r

)
, (3)

−8πT 1
1 = − 1

r2
+ e−λ

(
1

r2
+
ν ′

r

)
, (4)

−8πT 2
2 = −8πT 3

3 = − e−ν

4

(
2λ̈ + λ̇(λ̇− ν̇)

)

+
e−λ

4

(
2ν ′′ + ν ′2 − λ′ν ′ + 2

ν ′ − λ′

r

)
, (5)

−8πT01 = − λ̇

r
, (6)

where dots and primes stand for partial differentiation with respect to t and r, respectively.

In order to give physical significance to the T µ
ν components we apply the Bondi approach

[11].

Thus, following Bondi, let us introduce purely locally Minkowski coordinates (τ, x, y, z)

dτ = eν/2dt ; dx = eλ/2dr ; dy = rdθ ; dz = rsinθdφ.

Then, denoting the Minkowski components of the energy tensor by a bar, we have

T̄ 0
0 = T 0

0 ; T̄ 1
1 = T 1

1 ; T̄ 2
2 = T 2

2 ; T̄ 3
3 = T 3

3 ; T̄01 = e−(ν+λ)/2T01.

Next, we suppose that when viewed by an observer moving relative to these coordinates

with proper velocity ω in the radial direction, the physical content of space consists of

an anisotropic fluid of energy density ρ, radial pressure Pr, tangential pressure P⊥, radial

heat flux q̂ and unpolarized radiation of energy density ε̂ traveling in the radial direction.

Thus, when viewed by this moving observer the covariant tensor in Minkowski coordinates

is 


ρ + ε̂ −q̂ − ε̂ 0 0

−q̂ − ε̂ Pr + ε̂ 0 0

0 0 P⊥ 0

0 0 0 P⊥



.

Then a Lorentz transformation readily shows that
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T 0
0 = T̄ 0

0 =
ρ + Prω

2

1 − ω2
+

2Qωeλ/2

(1 − ω2)1/2
+ ε, (7)

T 1
1 = T̄ 1

1 = −Pr + ρω2

1 − ω2
− 2Qωeλ/2

(1 − ω2)1/2
− ε, (8)

T 2
2 = T 3

3 = T̄ 2
2 = T̄ 3

3 = −P⊥, (9)

T01 = e(ν+λ)/2T̄01 = −(ρ + Pr)ωe
(ν+λ)/2

1 − ω2
− Qeν/2eλ

(1 − ω2)1/2
(1 + ω2) − e(ν+λ)/2ε, (10)

with

Q ≡ q̂e−λ/2

(1 − ω2)1/2
(11)

and

ε ≡ ε̂
(1 + ω)

(1 − ω)
. (12)

Note that the coordinate velocity in the (t, r, θ, φ) system, dr/dt, is related to ω by

ω =
dr

dt
e(λ−ν)/2. (13)

Feeding back (7–10) into (3–6), we get the field equations in the form

ρ + Prω
2

1 − ω2
+

2Qωeλ/2

(1 − ω2)1/2
+ ε = − 1

8π

{
− 1

r2
+ e−λ

(
1

r2
− λ′

r

)}
, (14)

Pr + ρω2

1 − ω2
+

2Qωeλ/2

(1 − ω2)1/2
+ ε = − 1

8π

{
1

r2
− e−λ

(
1

r2
+
ν ′

r

)}
, (15)

P⊥ = − 1

8π

{
e−ν

4

(
2λ̈ + λ̇(λ̇− ν̇)

)

−e−λ

4

(
2ν ′′ + ν ′2 − λ′ν ′ + 2

ν ′ − λ′

r

)}
, (16)

(ρ + Pr)ωe
(ν+λ)/2

1 − ω2
+

Qeν/2eλ

(1 − ω2)1/2
(1 + ω2) + e(ν+λ)/2ε = − λ̇

8πr
. (17)

Outside of the fluid distribution, the spacetime is that of Vaidya, given by
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ds2 =

(
1 − 2M(u)

R

)
du2 + 2dudR−R2

(
dθ2 + sin2θdφ2

)
, (18)

where u is a coordinate related to the retarded time, such that u = constant is (asymp-

totically) a null cone open to the future and R is a null coordinate (gRR = 0). It should

be remarked, however, that strictly speaking, the radiation can be considered in radial

free streaming only at radial infinity.

The two coordinate systems (t, r, θ, φ) and (u,R, θ, φ) are related at the boundary surface

and outside it by

u = t− r − 2M ln
(

r

2M
− 1

)
, (19)

R = r. (20)

In order to match smoothly the two metrics above on the boundary surface r = rΣ(t), we

first require the continuity of the first fundamental form across that surface. Which in

our notation implies (see [12])

eνΣ = 1 − 2M

RΣ
, (21)

e−λΣ = 1 − 2M

RΣ
. (22)

Where, from now on, subscript Σ indicates that the quantity is evaluated at the bound-

ary surface Σ and R = RΣ(u) is the equation of the boundary surface in (u,R, θ, φ)

coordinates. And

[Pr]Σ =
[
Qeλ/2

(
1 − ω2

)1/2
]
Σ
, (23)

expressing the discontinuity of the radial pressure in the presence of heat flow, which is a

well known result [13].

Next, it will be useful to calculate the radial component of the conservation law

T µ
ν;µ = 0. (24)

After tedious but simple calculations we get

(
−8πT 1

1

)′
=

16π

r

(
T 1

1 − T 2
2

)
+ 4πν ′

(
T 1

1 − T 0
0

)
+
e−ν

r

(
λ̈ +

λ̇2

2
− λ̇ν̇

2

)
, (25)

which in the static case becomes
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P ′
r = −ν ′

2
(ρ + Pr) +

2 (P⊥ − Pr)

r
, (26)

representing the generalization of the Tolman–Oppenheimer–Volkof equation for anisotropic

fluids [14].

2.2 The kinematical variables

The components of the shear tensor are defined by

σµν = uµ;ν + uν;µ − uµaν − uνaµ − 2

3
ΘPµν , (27)

where

Pµν = gµν − uµuν ; Θ = uµ
;µ ; aµ = uνuµ;ν , (28)

denote the projector onto the three space orthogonal to uµ and the expansion, respectively.

A simple calculation gives

Θ =
e−ν/2

2 (1 − ω2)1/2

(
λ̇ +

2ωω̇

1 − ω2

)
+

e−λ/2

2 (1 − ω2)1/2

(
ων ′ + 2ω′ +

2ω2ω′

1 − ω2
+

4ω

r

)
, (29)

σ11 = − 2

3 (1 − ω2)3/2

[
eλe−ν/2

(
λ̇ +

2ωω̇

1 − ω2

)
+ eλ/2

(
ων ′ +

2ω′

1 − ω2
− 2ω

r

)]
, (30)

σ22 = −e−λr2 (1 − ω2)

2
σ11, (31)

σ33 = −e−λr2 (1 − ω2)

2
sin2 θσ11, (32)

σ00 = ω2e−λeνσ11, (33)

σ01 = −ωe(ν−λ)/2σ11, (34)

and for the shear scalar σ

σ =
√

3

(
Θ

3
− e−λ/2

r

ω√
1 − ω2

)
. (35)
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2.3 The Weyl tensor

The model to be presented in Section 4 is obtained from the assumption of conformal

flatness. Furthermore, since the publication of Penrose‘s work [15], there has been an

increasing interest in studying the possible role of Weyl tensor (or some function of it) in

the evolution of self-gravitating systems [16]. This interest is reinforced by the fact that

for spherically symmetric distribution of fluid, the Weyl tensor may be defined exclusively

in terms of the density contrast and the local anisotropy of the pressure (see below), which

in turn are known to affect the fate of gravitational collapse [17].

Therefore it is worthwhile to include here some expressions for the Weyl tensor. Thus,

using Maple V, it is found that all non–vanishing components of the Weyl tensor are

proportional to

W ≡ r

2
C3

232 = W(s) +
r3e−ν

12

(
λ̈ +

λ̇2

2
− λ̇ν̇

2

)
(36)

where

W(s) =
r3e−λ

6

(
eλ

r2
− 1

r2
+
ν ′λ′

4
− ν ′2

4
− ν ′′

2
− λ′

2r
+

ν ′

2r

)
, (37)

corresponds to the contribution in the static (and quasi–static) case.

Also, from the field equations and the definition of the Weyl tensor it can be easily

shown that (see [18] for details)

W = −4π

3

∫ r

0
r3
(
T 0

0

)′
dr +

4π

3
r3
(
T 2

2 − T 1
1

)
. (38)

2.4 The slowly evolving approximation

In this work we shall consider exclusively slowly evolving systems. That means that our

sphere changes slowly on a time scale that is very long compared to the typical time in

which it reacts on a slight perturbation of hydrostatic equilibrium, this typical time is

called hydrostatic time scale. Thus our system is always in hydrostatic equilibrium (very

close to) and its evolution may be regarded as a sequence of static models linked by (6).

This assumption is very sensible because the hydrostatic time scale is very small for

almost any phase of the life of a star. It is of the order of 27 minutes for the sun, 4.5

seconds for a white dwarf and 10−4 seconds for a neutron star of one solar mass and

10Km. radius [4].
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Let us now express this assumption through conditions for ω and metric functions.

First of all, slow contraction (or expansion) means that the radial velocity ω measured

by the Minkowski observer, as well as time derivatives are so small that their products as

well as second time derivatives can be neglected. Thus we shall assume

ν̈ ≈ λ̈ ≈ λ̇ν̇ ≈ λ̇2 ≈ ν̇2 ≈ ω2 ≈ ω̇ = 0 (39)

Then, it follows from (6) and (10) that Q and ε are, at most, of order O(ω).

In this approximation, (25) becomes

(Pr + ε)′ + (ρ + Pr + 2ε)
ν ′

2
− 2

P⊥ − Pr − ε

r
= 0 (40)

which is the equation of hydrostatic equilibrium for an anisotropic fluid radiating a null

fluid of energy density ε.

Thus, as mentioned before, the system, although evolving, is in hydrostatic equilibrium

(up to order O(ω)), this allows for a very simple extension of any static solution to the

slowly evolving case.

3 Shear–free and homology conditions

As mentioned before the only relevant component of the shear tensor is σ11 given by

equation (30).

Evaluating this last equation in the slowly evolving approximation, we obtain

σ11 = −2

3
eλ
(
e−ν/2λ̇ + e−λ/2(ων ′ + 2ω′ − 2ω

r
)
)

(41)

Next, using (17) and

Pr + ρ =
e−λ

8πr
(ν ′ + λ′) − 2ε (42)

easily obtained from (14) and (15),one gets

σ11 = −2σ22

r2
eλ = − 2σ33

r2sin2θ
eλ = −4

3
eλ/2

(
ω′ − ωλ′

2
− ω

r
− 4πrQe3λ/2 − 4πrεeλ

)
(43)

.

We can solve (43) for ω, to obtain

ω = ωΣ

(
r

rΣ

)
e(λ−λΣ)/2 − 4πreλ/2

∫ rΣ

r

(
Qeλ + εeλ/2 − 3

16π
e−λσ11

r

)
dr (44)
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From the above equation we we find that in the non–dissipative, shear free case we

obtain

ω = ωΣ(
r

rΣ
)e(λ−λΣ)/2 (45)

In the Newtonian limit we have M(u) ≈ λ ≈ ν ≈ 0 and we recover the well known

linear expression, typical of the homologous evolution [4]

ωNewt. =
ωΣ

rΣ
r (46)

Also, from (35) evaluated in the slowly evolving approximation, it follows that in the

shear–free motion

Θ = (
3ω

r
)e−λ/2 (47)

which of course is valid also in the dissipative case. Using (45), we can write

Θ = (
3ωΣ

rΣ
)e−λΣ/2 (48)

Implying that even in the general (relativistic) case, the expansion rate is homogeneous

(independent of r) for the slow, and dissipativeless shear–free motion.

Let us now consider the dissipative shear–free case.

¿From the relativistic Maxwell-Fourier law, we have

qµ = κP µν (T,ν −Taν) (49)

or

q1 = Q = −κe−λ

(
T ′ +

Tν ′

2

)
(50)

where T is the temperature and κ denotes the coefficient of conduction. It should be

reminded that in the quasi–static approximation, the system is assumed to be relaxed at

all times (the relaxation time is zero) and accordingly, any hyperbolic transport equation

reduces to (49).

Then feeding back (50) into (44) and using (22) together with the shear–free condition,

we obtain

ω =


ωΣ

rΣ

(
1 − 2M(u)

rΣ

)1/2

+ 4πκ (TΣ − T ) + 2πκ
∫ rΣ

r
Tν ′dr − 4π

∫ rΣ

r
εeλ/2dr


 eλ/2r,

(51)

which in the Newtonian limit yields

ωNewt. =
ωΣ

rΣ
r − 4πr

∫ rΣ

r
εdr + 4πκ (TΣ − T ) r. (52)
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Also, it follows that the expansion (47) with (51) can be written

Θ = ΘΣ + 3
[
4πκ (TΣ − T ) + 2πκ

∫ rΣ

r
Tν ′dr − 4π

∫ rΣ

r
εeλ/2dr

]
(53)

Thus, unlike the non-dissipative case (see also [3]), the shear-free collapse in the New-

tonian limit does not yield the linear law of homologous contraction [4], unless we impose

further homology conditions on T and ε, i.e. unless we assume that for any given fluid

element, all along the evolution
T

TΣ
= constant

ε

εΣ
= constant.

¿From (51) we observe that the sign of ω for any value of r, is not necessarily the same as

that of ωΣ (as is the case in the non-dissipative evolution). In particular, for sufficiently

large (negative) gradient of temperature and/or sufficiently large (positive) ε term, we

may have ωΣ > 0 and ω < 0. The same conclusion of course applies to Θ.

In other words the system may be evolving in such a way that inner shells collapse,

whereas outer ones expand.

This effect, which we have called “thermal peeling” [3], is also present in the relativistic

regime, provided the third term in the right side of (51) is not too large. It represents the

analog of the “cracking”, however whereas the later takes place, under some conditions,

when the system abandons the state of equilibrium or quasi–equilibirum [19], the former

occurs while the systems is evolving quasi–statically.

However, observe that expressing variables in c.g.s. units, we have that,

κT ∼ 10−59 [κ][T ]cm−1

where [κ] and [T ] denote the numerical values of these quantities as measured in erg s−1 cm−1 K−1

and K respectively. Therefore extremely high conductivities and/or �T are required for

thermal peeling to be observed in Newtonian regime. Also, we have

ε ∼ 10−59 [ε]cm−2

where [ε] denotes the numerical values of this quantity as measured in erg s−1 cm−2.

Before closing this section, it is worth mentioning that, in general, such high thermal

conductivities are associated to highly compact, degenerate objects where Newtonian limit

is not reliable.

Also, it should be noticed that in (52) it has been assumed that terms of order O(M/rΣ)

and higher are negligible with respect to κ (TΣ − T ). This of course is not always true,
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as commented above, in which case eq.(52) is not valid. Finally, it is worth noticing that

demanding Θ to be homogeneous, we are lead to the homologous contraction, implying

thereby that (in the Newtonian limit), the shear free and homogeneous expasion rate

conditions are equivalent to the whole set of homologous conditions.

4 A model

In order to illustrate the point raised in Section 3, let us present a very simple model

based on the assumption of conformal flatness and shear–free condition. Also, since local

anisotropy does not enter explicitly in (51) we shall assume Pr = P⊥
Thus assuming W = 0, it follows from (38)

ρ′ =
3ε

r
(54)

Next, taking for simplicity Q = 0 (pure free streaming dissipation) and

ε = βr(1 − r

rΣ
) (55)

with β = β(t) one obtains

ρ = 3βr(1 − r

2rΣ
) + γ(t) (56)

with γ = ρ(0, t). Observe that with this choice of ε (if we assume Q = 0, i.e the dissipa-

tion takes place at the free streaming approximation exclusively), the evolution proceeds

adiabatically (the total mass is constant) even though ε �= 0 within the sphere.

Next, from the definition of the mass function [2]

m(r, t) = 4π
∫ r

0
r2T 0

0 dr =
r

2
(1 − e−λ) (57)

and junction conditions, it followws

m =
4πr3

3

(
3βr + γ − 3βr2

2rΣ

)
. (58)

and

β =
2

3rΣ

(
3M

4πr3
Σ

− γ

)
. (59)

with M = mΣ. As expected, if we put β = 0 we recover the well known interior

Scwarzshild solution (evolving quasi–statically). The remaining of the metric and physical

variables may now be easily obtained from field equations. Feeding back (55) into (44)

one sees that playing with β it is possible (at least in principle) to obtain ω < 0 for some

values of r, even though ωΣ is assumed possitive (peeling).
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5 Conclusions

We have seen how dissipative terms affects the radial dependence of ω and the expansion

rate, in the shear–free case, if we relax the homology conditions on dissipative variables.

We have also seen that the dissipative terms may lead to a “peeling”. However these

contributions appear to be extremely small and therefore it is pertinent to ask if there

exist astrophysical scenarios where dissipative contributions might have some effect on ω,

and in particular if they could produce a “peeling”.

Assuming the highest values for luminosity at the last stages of stellar evolution, of

the order of 105 times the sun luminosity, produced at a shell of radius of 1/10 of solar

radius, we only get

ε ∼ 10−36 cm−2.

A more promising case is provided by the Kelvin–Helmholtz phase of the birth of a

neutron star [20]. Indeed in this phase, during tens of seconds, some 1053 ergs are radiated

away. If this energy is transported via difussion to the surface, then assuming [21]

κ ≈ 1023[ρ/1014g cm−3][108K/T ]erg s−1 cm−1 K−1 (60)

we see that the corresponding contribution to (51) is still too small.

However if we assume that part of this 1053 ergs are propagated in the free streaming

regime, then the last term in (51) for sufficiently small r (as compared to rΣ) is of the

order of 1
rΣ

1052. Therefore for positive surface velocities of the order of 30m/s there may

be a peeling (ω < 0 for r < rΣ).

Finally, let us mention that in a pre–supernovae event, values of the order of 1013 and

1037 have been estimated for [T ] and [κ] respectively [22]. With these values, it is clear

that peeling is also possible, in particular for sufficiently large values of rΣ
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