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ABSTRACT

Maxwell’s equations with source are investigated using the background of Bianchi
cosmological models. Exact solutions are given for all Bianchi types. For class A models,
the electric current must be spacelike. For class B models, the current can be either
spacelike or timelike.
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1 Introduction

The discovery of a cosmological magnetic field of order 108 Gauss/!! increased
the interest in the study of cosmological models that admit electromagnetic field. The
presence of such field requires the use of a class of spacetimes more general than the
Friedmann-Robertson-Walker ones, since isotropy is broken. The most natural extension
is the study of spatially homogeneous models, which were classified as the Bianchi type
modelsi?®. A great number of solutions of exact Einstein-Maxwell equations has been
found and many physical results have been obtained using Bianchi type modelsi,

A class exhaustively studied is the Bianchi magnetic models!**¢l. In this class, the
electrical conductivity is supposed to be infinity. This implies a vanishing electrical field
to avoid an infinite electrical current. These models can be said to be in a perfect mag-
netohydrodynamic regimel’], in contrast with those that have finite conductivity, which
are said to be in a (generic) magnetohydrodynamic regime.

The study of cosmological models with finite and non-zero electrical conductivity was
initiated, as far as the author knows, by Dunn and Tupper®®19, They studied spatially
homogeneous cosmological models of Bianchi type I, II, III and IV, with perfect fluid
plus electromagnetic field as material content. They found expanding exact solutions
for Einstein-Maxwell equations with finite conductivity satisfying the relevant physical
constraints, such as the dominant energy conditions, positivity of conductivity etc.

Dunn and Tupper!!® called attention to the importance of the study of cosmological
models with finite conductivity, since the assumption of infinite conductivity lead to
plasma models that have ‘little contact with reality’ ™ .

Portugal and Soares(!?*¥ found new contracting cosmological solutions for axisym-
metric Bianchi type I, III and Kantowski-Sachs models. They showed that the Bertotti-
Robinson-like models can evolve to contracting Kantowski-Sachs models in magnetohy-
drodynamic regime.

An important study is the phenomenological application of magnetohydrodynamic
cosmological models to describe the Universe in the era prior to recombination, when the

material content of the Universe was a hot radiating plasma. It is in general argued that
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the conductivity is too high in this period implying a vanishing electrical field*4l. Those
calculations of the conductivity are valid under some assumptions, for example, when the
electron Larmor frequence eB/m is small compared to the inverse of the mean collision

time. In this case, the conductivity is given by

where n,, e and m are the electron’s density, charge and mass and 7 is the collision time.
When the plasma is in the presence of a magnetic field, the conductivity is given by!'%]
nqeir

7= m(l + (eB/m)?)

where B is the modulus of magnetic field. For strong magnetic fields, it is no longer valid
that o == oo,

Our interest here is the study of the Maxwell equations with source in spatially ho-
mogeneous models. The Bianchi cosmological models can be treated through a unified
formalism using the theory of differential forms. Hughston and Jacobs!'®! used this formal-
ism to study sourceless Maxwell equations in Bianchi models. They solved these equations
for vanishing Poynting vector and pure magnetic field. They also studied massive-vector-
meson fields. Their work was further developed by Ftaclas and Cohen('”) and Lorenz[*®l.
The latter found new solutions of sourceless Maxwell equations with non-vanishing elec-
trical field and non-vanishing Poynting vector. The former authors, on the other hand,
analyzed the Maxwell equations with source. They showed that the models of class A
must have spacelike current regardiess of any consideration on the dynamics of the mod-
els. Only local arguments were used. They also showed that models with timelike current
do not admit pure magnetic field, and models with vanishing Poynting vector are pure
electric. In the present work we extend this analysis for a more general electric current.

In section 2 we establish the Maxwell equations for the Bianchi models following
Hughston & Jacobs!'®l and Lorenz®l. In section 3 we discuss the form of the electric

current and in section 4 we present the exact solutions.
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2 The Maxwell Equations

The Maxwell equations can be written as

dF = 0 1)

dF =

Sy

where F is the electromagnetic field 2-form, F is its dual and J is the dual electrical
current 3-form. We use an orthonormal synchronous basis of 1-forms o%(a = 0,1,2,3),

defined byl®18l
0® = W'=dt (2)
¢ = Ru' (i =1,2,3)

where w'* satisfy

do’ = -% Clupw’ AWt (3)

where C"jk are the structure constants of the 3-dimensional isometry groups. There are
alternative conventions for the choice of C%;,. We follow the conventions of Lumineti!®!

and Eardley®®, The non-vanishing values of the structure constants are shown in table I.

CLASS A (C%, =0)

BianchiI: C'; =0

Bianchi I : C'y, =

Bianchi VIp: C%y = C%, =1
Bianchi VIIp: C'y3 = C%, =11
Bianchi VIII: C')y = C%, =C%, =1
Bianchi IX := C%y = C%, = C%; =1
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CLASS B (C%, # 0)

Bianchi III : Bianchi VI_,

Bianchi IV:CY = CY=CY, =1

Bianchi V: C%, = C%,; =1

Bianchi VI, : C4g=Cl3=1, C% =C%=vV—k , h<0
Bianchi VI : Cly = C% =1, Cly = Cly=vE , h>0

TABLE I: Structure constants of Bianchi models: C*

1k

= —Ci,;
The metric of the spacetimes is given by
ds? = —dt® + (R1w')? + (Rpw?)® + (Raw?®) (4)

We choose u® = (1,0,0,0), therefore the components of the electric and magnetic fields

are

E' = F% (5)
B" = %E"ijjk

where % is the totally antisymmetric permutation symbol. Due to the homogeneity of
the spatial section, we assume that E and B are function of time only.

We can project F and J in the basis w”, to obtain

X 1 . .
F = ERuW A w? + ‘2- SijkBQRij W AwF (6)
}?‘ = —B;R.'wi A+ % EijkEiRij W A

- . . 1 . .

J % E;ijOR.'Rijw' A’ Awf — E E.'ng'R_,'Rk W Aud A WF

The index of the term E; is not subjected to the summation convention, it just follows a
neighbouring index of the same name.

Equations (1) yield, for ¢ # j # k:
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B'R;R.C%, =0
E‘R;RiC%, = —J°R\R3R; -7
0

. 1 .
5 (B'RiR) — 5 e“mE,R,C%,. =0

& 1 .
5 (E'RiBY) + 3 e E,R,C?, = ~J'R;R;

From these equations we conclude that['7):
1. The electric charge density vanishes for models of class A.
2. Pure magnetic solutions are forbidden when Jp # 0.
3. The magnetic field must vanish when Jy # 0 and B = f(t)E (vanishing Poynting

vector).

3 The Electric Current

In general, the electric current is supposed to obey the Ohm’s law
J* = pu* + aE* (8)

where p is the charge density measured by the comoving observer and ¢ is the conductivity.

In the collision time approximation, ¢ is given by

nedr

o=
m

where n, ¢ and m are the electron’s density charge and mass and 7 is the collision time.
In the presence of a magnetic field, there are new terms due to the Hall effect, and

the current obeys Ohm’s generalized law(!®!
o o a o o 1 144
J* = pu +m—,[qﬁ+xqﬂ”u,3,—x=s Bf| E; (9)

where A = er/m.

There are two important situations where expression (9) simplifies to expression (8).
First, when the Poynting vector vanishes, i.e., £;;+E'B* = 0. Second, when the Larmor
frequency eB/m is small compared to the collision frequency. In this case the terms in

(9) involving the magnetic field are small compared to the term on°?Ejg.



_6- CBPF-NF-003/95
4 Solutions

Let us solve Maxwell’s equations for the electric current satisfying eq. (8). The form
of the solutions will depend on the choice of the structure constants. In our case, they
are given by table I. We solve the equations in a general form and afterwords we discuss
the restriction for each Bianchi model. We analyze the classes A and B apart.

For models of class A, the structure constants vanish when there are repeated indices,

then eq. (7) simplify to
% (B'R;Ry) — e E'RiC* =0 (i # j # k, no sum) -(10)
—g—t— (E'R;Rz) + SijkBiRioijk = —oE'R;R;

and p=0.

For B = 0, we have

E' = R:;ﬁ exp/—adt (11)
with the restriction E‘C‘jk = 0. This restriction implies that for Bianchi II we must put
the constant e¢; = 0. For Bianchi VII; and VIy we must put e; = ¢; = 0. For Bianchi
VIII and IX we must put all constants ¢; equal zero, then B=0 implies E=0.

For B # 0 and €ymE'B™ = 0 (vanishing Poynting vector), we impose B' = B* =
EF = E* = 0. For the values of i such that C%;, = 0, the solutions are

i bs' . . )
B = TN i#j#k (12)

. e:
Po= : —odt
E AR exp] o

where b; and e; are constants. For the value of ¢ such that C "jk # 0, we impose the relation

_ 2R
= %E, (13)

o

where k is a positive constant. The solutions of egs. (10) depend on k
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0<k<l

B = 5 oin (VI=Fin — m)) expl—kn) (14)
) ik '

B = "m (ksin(VI=F(n - 10)) + V1= K2 cos(VT = RA( — 10)) ) exp(—kn)

k=1

E= ;ijf exp(—1) (15)

i___atbthy
B =- et‘jkcijk R;R; exp(-7)

k>1
B = g sinh(VT=R(n ~ o)) exp(—kn) (16)
B = C‘G:;;:Rk (k sinh(v'1 — k*(n — no)) + V1 — k? cosh(n — qo)) exp(—kn)

where dnp = R;dt/R;R:.

By inspection of Table 1, we see that

Bianchi I: For ¢ = 1,2,3 solutions are given by eqs. (12)

Bianchi II: For ¢ = 2,3 solutions are given by eqs. (12) and for ¢ = 1, by eqs. (14-16)

Bianchi VI and VIIp: For ¢ = 3, solutions are given by egs. (12) and for ¢ = 1,2 by

eqs. (14-16)

Bianchi VIII and IX: For i = 1,2, 3, solutions are given by eqs. (14-16).

Still in Class A, let us consider now the case of non-vanishing Poynting vector. For

Bianchi I, the solutions are given by eqs. (12). For Bianchi II, the solutions are given
by eqs. (12) for : = 2,3 and by eqs. (14-16) for ¢ = 1 and with ¢ = 2kR,/R;R3. For
Bianchi VI, and VI, the solutions are given by eqs. (12) for ¢ = 3 and by eqgs. (14-16)
for i = 1,2, with the restriction B; = R; and ¢ = 2k/ks. For Bianchi VIII and IX,
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the solutions are given by eqs. (14-16) but with one of the following restrictions: First,
E' =0, R; = R; and o = 2k/R; where i # j # k. Second, R, = R; = R3 and o = 2k/R.
Now, let us analyze models of class B. The Maxwell equations (7) simplify to

B*=0
C£3¢E3

- 17
p R an
9 i 1 fm 14
i (B'RiBe) — 5 e EppClyy, = 0
% (E"'R,'Rk) + % SumeRpCpcm == —aEiRij

where 1 # § # k.
For B = 0, we have
E' = R‘-;;?, exp ] —odt (18)
r)

Claz €3

e —odt
P Ry R R, *P 7

with the restrictions E,R,C%; = 0 and E,R,C%, = 0. For Bianchi III these restrictions
are automatically satisfied. For Bianchi IV, V, VI (A # —1) e VII, these restrictions
imply E' = E? = 0.

For vanishing Poynting vector, E? and p satisfy eqs. (18). To obtain the other com-
ponents we impose Ry = R; = R. and o = 2k/S, where k is a constant and S = R3. We
give the solutions for each Bianchi type

Bianchi III:

1
75 ¢
B? = —Rl—S (& — 2kc + bexp(—2kn))

B' = a + bexp(—2kn))

E' = % (c+ (d + 2kb) exp(—2kn))

1
E? = RS (e + dexp(—2kn))

where a,b, ¢, d are constants and dy = dt/S.
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Bianchi IV:

—a;xi(A; + 2k) exp(»\:'f?))

(%
(Z a; eXP('\‘n))
(%

=1

%lw a|~ a|-

—a; )\ exp(/\.-q))
i=1

E? =75 (Z —a; 2} (A + 2K) exP(Aiﬂ))

=1

where a; are constants and \; are the roots of
My 4k)3+ (4 -1 —2kA+1=0
Bianchi V:
1
B! = ﬁ(aa.,. exp(a_n) + bexp(asn))
1
B = po(cexp(asn) + dexp(a_n))
1
E* = —(cay exp(ayn) — dor- explaes))
1
B = Tg (bowexp(ayn) — aexp(ayn))

where ay = —k + +/k? +1 and a, b, ¢, d are constants.

Bianchi VI;, A <0

B = RIS (cexp(aw) + \/E;:' exp(a—n))
B = E((aa- + V/=he) exp(ayn) + dexp(a-n))

' = g5 (Ve can)exple + 22202 et )

1
E? = p=(aexp(asn) + bexp(ayn))

where ay = -k £vk? —1— k and a, b, ¢, d constants
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Bianchi VII;, A>0

3 ai(h—1- m, 2 oo ( /\m))

=1

a,A (A2 + 2kA; + 1 — 3h) |
=1 (l + h)\/_ exP(’\""))

—ah(N? + 2% +3 —h) |
B'= o= (g = exp(hin)

a|- a|~ -

(
- 5o s ,,))
(%

where a; are constants and A; are the roots of
A4 4kD3 + 22k — R+ )N +4k(1 - A)A+ (A + 12 =0

In these solutions dp = dt/S. For Bianchi IV, VI, and VIl we must take the real part

of the solutions.
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