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ABSTRACT

Fackerell-Crossman’s solutions to a generalized spheroidal wave equation
are extended for the case In which there is no free parameters in that
equation. The results, together with Leaver’s exﬁansions in serles of Coulomb
wave functions, are used to find the tlme dependence of massive scalar test

fields in nonflat Friedmann-Robertson-Walker models of unlverses with dust.

Key-words: Spheroidal wave equations; Kleln-Gordon equation Iin Frledmann-

-Robertson-Walker universes
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I. INTRCDUCTION

In nonrelativistic quantum mechanics generalized spheroidal wave
equations (GSWEs) occur when one tries to solve the two-center problem
approximately, e.g., the Schridinger equation for the 1lonlzed hydrogen
molecule'. More recently, Leaver- showed that Teukolsky's equation; are also
special instances of ‘the GSWEs and, at the same time, developed
representations to their solutions supposing that there 1s no free parameter
in the differential equation. In fact, the usual expanslions in series for the
solutions of the GSWE present coefflicients that satisfy three-term recurrence
relations. These relations lead to characteristlc equations from which we can
compute values for some undetermined parameter occurring in the differential
equation; only for these values may the series converge. *In order to satlsfy
those characteristic equations, when all the parameters in the differentlal
equation are previously known, Leaver inserted an arbitrary phase parameter in
the series expansions. This is an important point, but hls expansions In
Coulomb wave functions and in confluent hypergeometric functions are
solutions approprlate solely for the so-called “radial" wave equation. Here we
shall be concerned mainly with the problem of finding solutions to the
»angular" wave equation when there is no free parameter in it. We proceed as
outlined below.

In section II we modify one of Fackerell-Crossman's expansions in series
of Jacobi polynomials3 for the solutions of the angular GSWE by introducing in
it a parameter v in order to satisfy the characteristic equation. Another

expansion is constructed from the preceding one by employing a symmetry of the
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differential equation. In section III we apply the expansions of section II
and Leaver’'s expansions in series of Coulomb wave functions to find the time
dependence of massive scalar test fields in l nenf lat
Fr1edmann-Robertson—Halker (FRW) universes filled with dust. Additional
comments are provided in section IV, whereas in Appendix A we write down the

general expressions for expansions in serles of Coulomb wave functions.

1I. EXPANSIONS IN SERIES OF HYPERGEOMETRIC FUNCTIONS

Let

x(x-x ,g_g + (B +Bx) 5= +[B +w x(x—x )-2un{x-x J] - 1)

dx

be the GSWE in Leaver's version, o, 7, X, and B1 being constants. We suppose
that x and x, are real and that Osxsxo. Besides we assume that all the
parameters in (1) are known, but do not ascribe them any particular values.
For this situation we modify one of Fackerell-Crossman’s expansions, the
modification consisting in rewriting the Jacobi polynomials in terms of
hypergeometric functlons and, then, substituting n+v for n in the parameters
of the hypergeometric functions. The parameter v, Iintroduced in order to
guarantee the validity of a characteristic equation, requires that we extend
the range of the summation index n from 0sn<w to -eo<n<w. Another solution is
not obtained from the second Fackerell-Crossman expansion: it results from a
symmetry of the differential equation. From these expansions we trivially

obtain two independent limits for w=0.
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In eq. (1} there are two regular singular points, X, and 0, while the
infinity is an irregular singularity. The indicial equation for expansions of

U({x) in power series about X, has the roots

r1=0 and rz=1-Bz-B1/xo'

According to Frobenlus's method , one solution to {1) has the form
U1= U1(x—xo). - (2).
where the right hand side is a serles regular at X=X, Moreover, if

Bz+B:/xo=0 or negative integer, - (3)

Y

a second solution linearly independent with respect to U1 is given by

r
U,=(xx) 2 glxx,), (4)

g being regular at X=X . Replacing U by U2 in eq. (1), we see that g also

satisfies that equation, provided that we make the substitutions

B B
V2O R = » 212 -4
B2 > B2-2 B2 2!31/xo and Bs > Bs-:Bz-l- % [ % + Ba 1] | (5)
Thence 1t follows that®, if
Ulﬁi(B’.Ba.Ba;w,n;x-xol {6a)

is a solution to eg. (1), then
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1-B_ - B_/x
10

U2=(x-xo} Ul(Bl,B;,Ba;w,n;x-xol (6b)

is another solution.

Accomplishing the following changes of variables in (1):

—iwxoy : o
y=(xo- x)/xo and U=e Y, _ (7)
we find
2 B
da'y 1 2] dY
y(l--y)-—2 + [B2 Aol [B2 +21m:o]y + Zlmxoy] ay +
dy 0 .
B1 .
-lwxo[Bz + x—o ]- 83 + 1«»{0[32 + Zin]y Y = Q. (8)

-

We note at once that in the limit w30 (8) reduces to the hypergeometric

equation

2
y(1-y) E_X.,.[.,_ (0 +a + 1)y -g!-ua Y=0 (9a)
. dy® * - y v

with

B, -1 2 qur2
> (9b)

Under the hypothesis (3), twe linearly independent solutions to eq. (9) are®

Bz—l
¥y=B, +B/x, a =-—5-211B-

Y1 = U1 = F(¢+, o« , ¥ Y), {1Ca)
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: 1-Ba-Bl/xo '
Y. =U =y F(a: @ L5y, (10b)

where a), and 7’ are obtained from the right hand side of (9b) by means of (5)

and F is the hypergeometric function. However, if Ba+B1/x°=m= integer, {(10a)
stands for m=1 and (10b),for m=0. Thus (10) represents only one solution to
each value of m; the other independent sclution would be logarithmic and may

be dliscarded 1if we demand regularity at y=0.
Coming back to eq. (8) and writing a solution to it as

iwxoy n=w
Y =e U1= ) bn F(-n-v, n+v+B_-1, Bz+Bl/x°; ¥}, -;'.{11}

we find, after some straightforward calculation, the recurrence relations

ab + Bnbn + 1nbn_ = 0, (12a)

n n+l 1

for bn. where

(n+v+1)(n+v-81/x°)(n+v+82/2-1n]
n o 2(n+v+Ba/2)(n+v+Bz/2+1/2) '

(Bz+Bi/x°)(Ba-2}+2(n+v)(n+v+Bz~l]
2 (n+v+Bz/2-1 ) (n+v+82/§) ’

Bn=--B3-(n+v)(n+v+B2-1]-nwxo {12b)

(n+V+Bz'2}[n+"+Bz+B1/xo'1)(n+”+Bz/2+1"'1)
2{n+v+Bz/2-572)(n+v+Ba/2-1)

1n = ~1wxo

Hence we obtain the infinite continued fractlions
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-
bn+1 an’ni-i ¢n+11n+2 un+27n03 .
@ 3 =" F = 5 = {13a)
n n+1l n+2 n+3 .
and .
I:,1-11-1 un-iwn an-z‘;n-i un-37n-2
« 5 =B, - g -—fF - F = (13b)
n n-1 n~2 n-3

Taking n=0 and equating the right hand sides of (13} we get the characteristic

equation

® %o %%, %57 ¥y * ¥, %7

B, = - B —;1:3 et ;11 B, 333 (14)
Other solution to eq. (8), resulting from (6b), (7) and (1\1}, is
1wxoy 1-B-B, /x, n=® *
Y2= Uz-—-y R b;F(-n-v’ ,nep’ +B’2-1,B’a+81/xo;y) (15a)
where the b; satisfy the relations
o bl tB Bty b =0 (15b)

Here «', f° and y’ are obtained from «, B8 and ¥y, respectively, by
n n n n n n

performing the substitutions given in (5) and changing v by v'. Once more, v’

is evaluated from a characteristic equation entirely analogous to (14).

Furthermore, if B2+Bl/xo=m=integer, the remarks following eq. (10) are still

valid in the present case: the solutions (11) hold for mz1 and (15) for m=0.

To study the convergence of the series (11), we must find
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b F(-n-v-1, n+v+Bz. Bz+Bi/xo= y)

n+1

1im — - (16a)
o brll F(-n-v, n+v+Ba——1 , Bz"'Bx/xo' y) |
and
b F(-n-v, n+v+B_-1, B_+B /%X ; y)
lim bn F{-n-p-1 nin - Bl-t-Bo/x i vy o (16b)
R>-0  nel ! 2 271 70"
From relation (13a) and
bn = - a_n_ anwiwn n-2 n-1
bn+1 Bn- ﬁ1'|-1l_ Bn-z-
we find that
LI b Lux . o
linm b_ & 1im & - T N N {17)
n-mw n n->-0 n+l . .

On the other hand, from the asymptotic expansion of F(a,b,c;y) when the
parameters a and b tend to 1nﬁn1ty6. we find that the ratio of the
hypergeometric functions in (16) is finite. Thus, for USXSXO, the series
converges whenever the characteristic eq. (14) is satisfied. The same is true
for the series in (15).

The solutions (11) and (15) reduce to the solutions (10) when w=0. In

effect, for thig limit the recurrence relations (12a) and (15b) read

[Bn bn]«m } [ B, by ]u-o =0 (18)
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or, in order to have nontrivial solutions,

Ba+(n+v]{n+v+B2-1) =0 and B;+(n+v’)(n+v’+B;-1) = 0.

This implies that

1-B B -1 Y213 1-B’ B’ -1 )2
5 2 4 1[ Bs—[-%-— ] ]2, ne = - 2 ¥ 1[ B;—[-;- ]_ i (19)

Inserting these results into (11} and (15a) and suppressing the summatlon, we

n+y =

obtain (10a) and (10b), respectively. However, these are only formal limits
since we have no a priori guarantee that those solutions converge. Actually,
in general, we have to lmpose boundary conditions in ordqf that solutions (10)
be regular at x=X . |

So far we have assumed that there is no free paramefer in the GSWE (1)
and have introduced v and v»' iInto the solutions aiming to assure the
characteristic equations. However, when x represents an angular variable,
there is an arbitrary constant of separation and we must have v=¢’=0. In this
case, a careful analysis of the process by which we have obtained (12a} and
(15b) shows that we can restrict n to 0=nse on condition that g;1=0. On the

other hand, the definition of the Jacobi polynomlalv.
plBY 2y = L F(n, neaspsl, 1ea; 1/2-2/2) (20a)
n n!(1+¢in * iy !

where the Pochammer symbol is given by

(1+nr.]n = IN'(n+1+a)}/T{1+a), (20b)
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-g—
allows us to write our solutlons as
flw{x-x ) n=w (B +B /x -1, -B /x -1}
U =e 'y ap 210 VO axx -1), . (21a)
1 nn o
n=0
fwix-x ) 1-B,-8 /%,
U2 = e (x—xo) x
n=w (né-»nl/xo-:, —nixxo-tl :
I AP {Z2x/x -1). _ {21b)
n n 0
n=0
Here we again used the Pochammer symbols to write
- l ] = » i ]
An n! (Bz+31/xo]n bn and A . n! (B2 +31/x°)n bn . (21c)

-

The expansion (21a) is a 1little more general than the solution (19) of
Fackerell and Crossman, in the sense that we have not specified the parameters
appearing in (1). However, the expansion (21b) — derived from (6b) and (21a)
— does not include the second Fackerell-Crossman solution; in desgpite of
this, it affords (10b)}) when w=0 on the contrary of that second
Fackereli-Crossman expression. A generalization of the second Fackerell and

Crossman expansion could be obtalned by taking

y=(x_- x}/x .and U=e¢ Y,

007 9 0

instead of (7); then we would find
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-10-

2 B
dy 1 21 dY
y(1 y]——; + [Bz + = - [B2 -Ziwxoly - Ziwxoy ] ay +

dy xo

B
1 =
[imxo[Ba + E; ] B3 1ua<o[B2 Zln]y]Y' 0.

This means that, if U(Bl,Ba,Ba;n,w;x-xb) is a solution to eq. (1), then

5
U(Bx'Bz’Ba’ n,—m,x~xo} is another one™.

ITI. APPLICATION: SCALAR TEST FIELDS IN FRW UNIVERSES WITH DUST

In this section we deal with the equation for the time dependence of
massive scalar test fields coupled conformal and minimally to the gravity of
nonflat FRW unliverses fllled wlth dust. By changes of variables we reduce it
to a GSWE and, since there is no free parameters in it, we expand its
solutlons in series of hypergeometric or Coulomb functions (with wp=0)
depending on whether the spatial curvature 1is positive or negative,
respectively.

Thus, consider the FRW line element iIn the conformally static form

ds®=[A(7) la[d‘rz-dxz-sinz (Vex) d82+sin28d¢2]] , (22)
E

where g£=*1 is the spatlal curvature. Then the time dependence of a scalar test

field with mass M satisflies the equation8 (h=c=1)

2 2
a1 +[k2+HZA2+(6E—1)[ 144, e]]T=0, (23)
dr? A dr
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N -11_.

in which £ is zero or 1/6 for minimal or conformal coupling, respectively. k

is a constant of separation that 1s determined by imposing boundary conditions

on the spatial dependence of the scalar field; 1ts values are

k=1,2,..., 1if £=-1 and O<k=real<e , if e=1.
For an universe filled with dust, that ls, for the scale factor

Azao{l—cos(VET)]/s,

the equation (23) becomes

a® : k +[Ha ) [ 1-cos (Ve r)] ——Eiég:ll— }T;O.
dt 1-cos (Vet)

Defining a parameter d by

-

d=1 (1f &€=0) and d=0 (if £=1/6)

and performing the substitutions
x=1+cos (Vet), T=(x-2)? U(x)
in the eq. (26), it results that U must satisfy the equation

2
x{x-2}gag +[ 1+(1+Zd)x]3§+[d-ek -eM2a x(x-2)+2M2a (x—2)]U—0

which 1s a GSWE in the form given in eq. (1) and with the constants

(28)

(25)

(26)

(27a)

{27p)

(28a)

w, N, X
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and B1 given by

— — 3 —_—— = =20 2 -
w =n—Hao1/_£:, X 2, 13l 1, 132 2d+1 and B3—d €k”. (28b)

As the constant of separation k is given by (24) and d by (27a), all these
parameters are known and , consequently, we have to use representations to the
solutions with an arbitrary parameter in order to satisfy the characteristic
equations. On the other hand, for M=0 we have w=0. Then from {10) and (27) we

find the solutions

T, =y'F (d+kvVE, d-kVE, 2d+1/2: y), (29a)

T,=y'*"°F(1/2-d+kve, 1/2-d-kVE,3/2-2d;y), (29b)

&

where y=[1-cos(Ver)1/2. For conformal coupling (d=0) the hypergeometric
functions in (29) may be written in terms of elementary functions and the

solutlions reduce to linear combinations of exponentlials, as expected.

II1.1. EXPANSIONS IN SERIES OF HYPERGEOMETRIC FUNCTIONS (e=1)
Now let us consider (26) when £=1. We have

=n= = =— = ——2 ' -
(8] -n-iMao, X, 2, B1 1, B2 2d+1, Bs—d kK, Bz=2 2d,

(30)

_ l-cost

5— = (sin(t/2)1°.

B;=(d-1/2)2-k2 and y
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Thus, (11}, (15) and (27) yleld

Mao{l-cosr)

T1= e (sin(z/2))%¢ «
n=cw 2 :
YL b, Fl-n-v, ntwe2d, 2d+1/2; (sin(v/2))7], (31a)
n=-o
Mao{l-COSt} 1-24d
T2 =e (sin(t/2)) x
n=co 2.
Z_ . b; Fl-n-v*, n+v’+1-2d,3/2-2d; (sin(7/2))°L (31b)

The recurrence relations for bn and b; are cbtained by substituting (30) into

(12) and (15); we'find:

(n+v+1)(n+v+1/2){n+v+d+1/2+Ma°}
a =-Ma, (iived +1/2) (n+v+dsT) »

2 {2d+1/2)(2d-1)+2(n+v) (n+v+2d)
)

2
B =k -d- (n+v) (n+v+2d) +M°a (n+v+d+1/2) (ntv+d+1) ’ (32a)

(n+v+2d-l}{n+v+2d-1/2)(n+v+d-1/2-uao]

7, Ma, (nev+d-1) (n3v+a=172) ;
(n+v'+1)(n+v’+1/2)(n+v'—d+1+Ha°}
% =-M""o (n+y’ =d +1)(n+v’ -d+3/2) '
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-14-

8 2k~ (d-1/2)2-(n+v’ ) (n+v’ -2d+1)+

2 d(372-2d)-(n+v’ ) (n+v’ ~2d+1)
2Ma S S Y nev D) > (32b)

(n+v'-2d)(n+v'-2d+1/2)(n+v'-d-Ha°)
1n=Ma° (n+v’ —d-1/2) (n+v’' -d) ’

The limits for vanlshing masses are given by (29) . On the other hand, for
conformal coupling (d=0), the hypergeometric functions in (31) can be written

6
as

F(-n-v,n+v, 172; sin’(t/2) )=cos [ (n+v) <], (33a)
R , e sin{(n+»’ +1/2)1]
F(-n-v’ ,n+p’ +1,3/72;8in (1/2) )= Gnezy +lsinlt 2}’ (33b)
and then we have
Mao(l-cosﬂ na
T=e I b cosl(n+v)t], (34a)
n=-o n
Hao(l-cost] n=w b;
TB = g E--ﬂ nm sin[(n-l-v +1/2)t]. (34b)

These solutions are both finite at v=0, that is, at the singularity of the
spacetime defined by (22) and (25). For minimal coupling (d=1), on the

contrary, the solution T2 given in (33b) is divergent at t=0.Nevertheless, the
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-15~

full wave function appears multiplied by AT and, consequently, diverges at

=0 1in either cases.

II1.2 EXPANSIONS IN SERIES OF COULOMB WAVE FUNCTIONS (e=-1)

Taking e=-1 in (27-28) we obtain

x=1+coshTt, T=[x-2)d Uix), . {35a)

—] = = = = 2
(A =n—Mao, X, 2, B1 1, B2 2d+1 and Ba—d +K (35b)

and we see that 2=x=real<w . In terms of Leaver’s exﬁénsions in series of
Coulomb wave functions (Appendix A} a general solution to‘(26-28) consists of

linear combinations of T'*’ and T(-), where

n=o
T (x-2) P ()= (x-2)% 82 7 b U (Ma_,Ma x), (36a)
n=— n n+y o] 0
with
(%) r(n+v+111Ma°) 172
u o (Ma ,Max) = (-n)* exp[uMao/Z T 1u{v+1/21]x
» I(n+v+1¥iMa )
tzuaox)“"’“exp(ﬂua %) Uln#veitiMa ,2n+2v+2,721Ma ), (36b)

being Ul(a,b;z) the Iirregular confluent hypergeonmetric function®. The

coefficients bn in (36a) satisfy the relations (A3) with
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-16-

1/2 (n+v-d+1) (n+v-d+3/2)

(n+p+1) (2n+20+3) °*

o= —ZMao[{n-l-vH )2 (Maolz]

d{d-1/2) ] (37)

_ _ 2
3n—(n+v+1/2 ik) (n+v+1/2+1ik) + 2(Ma°) [1+ {(n+v) (n+v+1)

2 (n+v+d=1/2) (n+v+d)
(2n+2v-1) (n+v)

1/
z'“=-2Mao[(n+v)a + (Ma )2]

With these redefintions, the characteristic equation (14) remains valid. From
the asymptotic behavior of U(a,b;2) (see Ref.4) and from (35-36) we obtaln

that for x-o

+iMa

) o x'uz(ZMaox) °exp(—1uaox1->o . (38)

T

On the other hand, the full time dependence is obtained multiplying (36a) by

A-—ilz-

Thus, we see that for d=0 1t diverges at x=2 regardless of the
convergence of the series in (36a). For d=1, it must also diverges since so
happens with its limit when M30. For e=1 the solutions (35) were obtained
trivially as limits of (31). Now we want to show how and in what sense we can
obtaln the above solutions for e=-1 as a limit of the expansions in series of
Coulomb wave functions given in (36). In this case, the nontriviality of the
limits comes from the behavior of the irregular confluent hypergeometric

functions when w30. In effect, for w0, Leaver found that we must have

1 bt 1
vEy =5 {-12[1+Ba(82-2]-433] 2} =<5 + ik . (39)
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Let us choose v=-1/2+ik. Then, in (37) we can perform the approximations

n=—Ma°(n+1k+1/2-d]{n+ik+1-d)+(n+1k+1],
Bn=n(n+21k), (40)

7n=-Mao[n+d+ik—1)(n+d+1k—1/2)+(n+ik-1).

Observe that now we cannot put an=z‘n=0 as we did in eq. (18). In effect, for

M50 the argument of U(a,b;z) in (36b) also goes to zero and we obtain®

) _ TI'{2n+2ik) -2n-2ik
1im U(a,b,;ZiMaox)- Fln+173+1K) (:21"&01() s (nz1) (41a)
N0 '
. . T(-2n-2ik) _
lim U(a,b,IZiMaox) ri72—n-ik) — * (n =-1) (41b)
H-0
. _ I(-2ik) , r(2ik) ~21k |
iiz U(a.b,¥21Haox]- r72-ik)'T 1/2+21k)(¥21Maox) » (n=0) {41c)

We see that the expressions on the right hand side present the factor M,
except for n=0. In addition, since (41c) is Just (41a}+(41b) with n=0, we can

write

() ~d-1/2 =0 ey
lim U™ (x)=x lim I::}:-l—}:]
H->0 Bv0 mz-o a=0

and use (41a,b) also for n=0, Thus using also (36) we find
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n=0m n=0 )
1inU (x)=x d[(ZMaox) ik T cl;nx-n_'_eiuk(maox)ik ¥ cr{;)"n] (42)

M-»0 n=0 n=—t

where we left off an irrelevant common constant and defined c;i, as

(4)_ T(+2n#2ik) ¥
S T Tli/2intio) (23, b, - | (43)

Once these new constants are related with bn, we can infer thelr recurrence
relations from the limit of the recurrence relations to bn. Taking also into

account eqs.(40), we find two-term relatlions as M=0, namely,

(dtik), (dik+1/2),
NIRRT T NP tn in b, - (44)
n Yr (4n)! (1221K),

Y

Hence (42) and the definition of the hypergeometric function furnish

-d
- -+
1im U= p X [H‘ (x) + e K H“'(x)] (45a)
]
H-0 2VR
where
. +ik

H ™ (x)-r(tlk}[Maox/Z] F(d+1/221k,d+ik, 1+21ik;2/%). (45b)

+
In {45) it is impossible teo absorb the indefinite limits M‘ik in bo' However,

the general solution to eq. (1) is given by linear combinations of u'* and

U(_), say,
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_19_
U(x)=KlU‘+)(x)+K2U(-)(x) (46a)
and, consequently, we find that
1im Ulx) « x_d[iill(-) (x)+K, B (x)]. (46b)
N0 .
being El and Kz given by
nk -nk

K=K+ and K=e K +e K .
1 1 2 2 1 2

As K:l and Ez are linearly Iindependent they may be chosen so as to eliminate

)

the indefinite factors that appear in H'™) and H'*'. At last, to recover the

solutions given in (29), we must use (27b) and apply a linear transformation

on the hypergeometric functions of (45b), for examples.

F{a,b,c;z}ﬂ..lz_a F(a,a+l~c,a+b+l-c;1-1/2)+

a—c( c-a-b

L:z 1-z) F(c-a,1-a,c+l-a-b;1-1/2),

where

r'(c)r(c-a-b) r'{c)l(a+b-c)

L1= I'(c-a)}C(c-b) and L2= T(a)(b) )

Finally, note that we selected only one of the roots given in (39). The

reason for thls is that the other root gives the same result cited above.
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IV . FINAL COMMENTS

Our main results are in section I1I, where we found generaliZzations of
Fackerell-Crossman’s solutions to a GSWE. Our expansions in series of
hypergeometric functions are convergent for Osxsxo (x being a real variable
and X, @ real constant) and they allow us to satisfy the characteristic
equations even when there is no free parameter in the GSWE. In addition, they
formally give two Independent 1limits for w - 0, contrarily to
Fackerell-Crossman’s expansions. On the other hand, if there 1s an arBitrary
parameter in equation (1), we must take v=v"=0 and restrict the summation
index to the range 0= n <w; then we can rewrite the hypergeometric functions
in terms of Jacobi polynomials, as in Fackerell and Crossman. We remark that
Leaver’'s expansions in series of Coulomb wave functions and in series of
confluent hypergeometric functions are valid only when there is no free
parameter in the differential equation, In contrast with the solutions of
section II.

It is worthwhile to emphasize that the results of section II, as well as
Leaver’s expansions, hold only when the independent variable is real. This is
important because, when we try to solve the Dirac equation for massive test
fermicns in FRW universes with radiation, we find GSWEs for its time
dependence. However, 1f the radiation effective pressure is negative, as in
Ref. 9, the dependent variable in eq. (1)} will be complex.

In section III, results of sec. II, along with Leaver’s expansions in
series of Coulomb wave functions, were used to find the time dependence to

massive Kleln-Gordon test flelds in nonflat FRW universes filled with dust
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For conformal coupling, the expansions In series of hypergeometric functions
(e=1) reduced to expansions in sine and cosine series. We alsc found the time
dependence for massless fields as limits of the massive cases and s#ﬁ that for
minimal coupling this dependence is given by hypergeometric functions, not by
exponential ones.

Finally, the following complementary problems deserve further
consideration: (i) solutions to the characteristic equatlons of sectlon II;
(i1} time dependence of massive Dirac test fields in nonflat FRW universes
with radiation. In the latter case, it lg necessary to find solutions to a

GSWE with a complex independent variable, as mentlicned before.
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_22_

APPENDIX : LEAVER’S EXPANSIONS IN SERIES OF COULOMB WAVE FUNCTIONS

In this representation we can write the general solution to eq.(1) as a

linear combination of U(+) and U(_), where
~B /2 n=a ._ S
Py =x 2 L b P -

n=-m0 It n+1?

with

(t)
(n,wx) = Gn+v(“'UX) 3 iF;+v[n,wx]

=(-1)"e™W2, +1u(vw1/2)[r{n+v+1t1n) 1’2 )M Stlux

+v+1+1n

U(n+p+1tin, 2n+2v+2, F21wx). (A2)

Here Fn+v and Gn+v are the regular and Iirregular Coulomb wave functions,
respectively. The coefficlents bn are gliven by

ab + Bnbn + 1nb = 0, (A3)

n n+l n-1

where

[{n+v+1)24921% /2

% = ¢ TTmevel) (2nezpe3) <
[(n+v+1)(n+v+2)x -(n+v+2)(B +B X0 ) B (—Bzx°+xo+3 11, (A1)
- - lg dp . un
Bn - {n+v){n+v+1)+Ba EBa{EBz 1) + (n+p ) (n+v+l)

1 1
[(n+V)(n+v+1)xo_(Bx+Bzxo)+§Bz[§Baxo+xo+Bz)]’ (AS)
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[(ru-v]zi-'nz]""2

(n+v) [Zn+2v-1)

S
n

[(n+v)(n+v-1)xb+{n+v-1}(B1+Bzxo)+%32(%82x°+x0+31]]. . (A6)
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