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ABSTRACT

We study in detail within the adiabatic approximation for
the structural degrees of freedom and on exact grounds for the mag
netic ones, the d=1 magnetostrictive spin % XY model in the presen
ce of an external magnetic field along the Z-axis. We calculate the
specific heat, magnetization, isothermal susceptibility and the
structural order parameter and spectrum (including the sound veloci
ty). The system presents, in the temperature- field space, three
structurally different phases, namely the uniform (U), the dimeri-
zed (D) and the modulated (M) ones (the latter can be either com-
mensurate or incommensurate with the other two). The critical fron
tiers U-D and U-M are of the second-order type while the D-M onre
is of the first-order type; all three join on a Lifshitz point.The
U-M frontier presents a new type of multicritical point on which
the frozen structural wave vector vanishes. The phase diagram is
quite anomalous for high values of the elastic constant. Several oth
er effects are predicted. The present theory is expected to be
applicable to substances 1like TTF-BDT, ‘MEM (TCNQ)2 and eventually
alkali-TCNQ.



I- INTRODUCTION

In the last decade a considerable amount of work has been dedicated
to the study of the so 'called spin-Peierls instability (SPI) (for an excellent re-
cent review see Bray et a]E]]) whfch‘inducés‘structural phase transitions in systems
which, in what concerns magnetic interactions, are quasi-one-dimensional
although three-dimensional in what concerns crystalline interactions.

Typically the systems present an uniform (U) phase (referred to as

the disordered one from Landau's standpoint; it corresponds to e-

quidistant atoms along the chain) at high temperatures and a more
complex phase (referred to as the ordered one) at low temperatures;
this phase can be structurally dimerized (D phase) or can present
complex structural modulations (M phase) according to external pa

d[2'5]. The structure of the M
[6-9]

rameters such as the magnetic fiel

phase might be either commensurate or incommensurate with that

of the U phase; in any case the praoblem is quite analogous with that

[7,10-12]

of systems presenting Peierls instability . The spin-Peierls

type of structural phase transition has been exhibited on several

substances, particularly on the TTF-BDT[4’]3'”](TTF+ - MX4 C4

(CF3)£ with (M,X) = (Cu,S), (Au,S) and (Cu,Se); TTF = tetrathiaful
valenium) and A-TCNQ (A-tetracyanoquimnodimethane with A = Na, K, Rb,

Cs and NH4[]8'24]; within certain restrictions we <could include

[25-28] NMP[ZQ]

herein A =MEM; , , o 71Tr0301, MEM*™ - N - methyl - N-

ethyl - morpholinium; NMP = N - methyl - phenazinium) families

through magnetic susceptibi]ity[]3’]8’2]’25’27’29]

ductivity[]8'20’22’25’29], specific hea

[14,17]

,» electrical con

t[]5’27’29’303, magnetiza -

[20,22] [14]

, latent heat[]8], optic properties
[14,17]

tion , X-ray

neutron scattering and EPR[]3’18] experiments. The theoreti



cal approaches to this phenomenon have been performed through use

[2,3,5,31-371

of the magnetostrictive quantum XY and Heisenberg

£3,7,34,38-45] models; the former, although less frequently realis
cic, presents the advantage of being exactly solvable in what con
cerns the magnetic degrees of freedom. For both models, and more
particularly for the Heisenberg one, preliminary or detailed dis-
cussions have been performed concerning various quantities such as

entrOpy[38], specific heat[3’38’45], magnetization[34’38]

[3,32,38,42,44,45]

magnetic

[3

susceptibility , Structural order parameter-”,

11.32,35,36,39-41] as well as the influence, on some of them, of an ex

ternal magnetic fie1d[2’3’1()’34’38’40’43’44] and of an external stress[2’51],

Let us now concentrate on the magnetostrictive spin %
XY model where the magnetic coupling constants are assumed to de
pend only on the mean distances between spins (adiabatic approxi-

mation[46]),

i.e. the structural fluctuations are neglected; this
assumption is expected to be acceptable if we take into account
that the system is three-dimensional in what concerns the crystal
line degrees of freedom. Pincus[3]] showed that an XY antiferromag
netic chain is, at vanishing temperature, unstable with respect to
dimerization. Beni and pincus{3%lexhibited next that this instabi

1ity induces a second order phase transition between the U and D

phases, under the assumption that no other phases have to be con-

sidered. Dubois and Carton[33] proved next that, at the critical
temperature TC and coming from high temperatures, appears a struc

tural order which indeed is a dimerization. Finally in a recent pa

per[36] we have exhibited that below TC down to T = 0, no -



other contributions to the structuka] order appear than the pure
[37]

dimerization one; the same statement seems to be true in the

[33,35].

presence of an XY coupling anisotropy
If a magnetic field H (perpendicular to the XY plane)
is applied to the system, important modifications appear in the
equilibrium configuration, as the wave vector q. characterizing
the "frozen" structure might no longer be that which corresponds
to a dimerization, and consequently phase transitions towards a
new phase, namely the M one, might occur. The H - dependence of

[2,3,5]

9. has already been detected both theoretically and expe-

rimenta]]y[4], however the available discussions can be conside-
red as preliminary ones. Within this respect we have recent]y[5]
presented the complet phase diagram in the T - H space (all three
U, D and M) where two special points clearly appear, one of them

being a Lifshitz one, the other one, réferred to as starting point,

has a nature which we attempt to elucidate herein (Section IV).

Furthermore in Section II we present all the details concerning
this phase diagram; the influences of T, H, the harmonic and an-
harmonic elastic constants on the dimerization order parameter
(Section III) and on the specific heat, magnetization, isothermal
magnetic susceptibility, sound velocity and relevant optic fre-

quency (Section V) are discussed as well.



IT- UNIFORM CHAIN

Let us consider a cyclic linear chain (with wunitary
1

fixed crystalline parameter) of spins 7 whose magnetic contribu-
tion to the Hamiltonian is given by
N
Z s¥s¥,; + sYsY,p) - uHi 52 (1)
J=1 j=1

where p is the elementary magneton, H > 0 by convention {Jj} are
Tocal exchange integrals and where, for future convenience, we ha
ve considered an even number of spins. Through the Jordan-Wigner

transformation[47]

a.=(,r-10 2s%)st (2)

we may introduce pseudo-fermion (spinless magnetic excitations)
creation (ag) and annihilation (aj) operators, and rewrite the

Hamiltonian as follows:

: 2N 2N
= - L at a. .+at +
2 }: a; aj+]+aj+]aj) +uH§z a;a;-NH (3)
Jj=1

where the additive term comes from the transformation

1
7 %0 (4)



By introducing next the Fourier transformed quantities

2N i3
1
by = Voo g: (-m<kgm) (5)
and
IR AL ( ) (6)
J = — e J . -m<q<T™
a9 2N §=1 J

the Hamiltonian becomes

K, K, o+ (7)

where

¥K<>z laol{g e by - Nh> (8)

(this contribution is the only one in the uniform phase) and

= b

NN q;o %Akq kPk-q (9)
with
e, = h - cosk (10)
h = uH/[J, ] (11)
1 Y9 [Lik i(q-k)
Ak = - 2 e + e (12)
q 2 ||

The present treatment holds for both JO > 0 and Jo < 0, however

strictly speaking the Eq. (8) is correct as it stands only for Jg > o3 1in
the case JO < 0 one can introduce a description in terms of holes

(instead of,partic]es)[48] and verify that the Hamiltonian remains



equivalent to that of Eq. (8) excepting for the sign of the magnet
ic field.

Let us now calculate the magnetic contribution Fm to
the free energy of the system by treating V as a pertubation to yKo within
the temperature dependent Green functions framework [49]; we obtain

(1)
Fm= Fo + F(21)+ F(4])+ (13)

where Fé])is the magnetic freeenergy associated with)&o, (the superscript (1)
has been introduced for future convenience, and refers to the fact that the uni-
tary crystalline cell under consideration contains only gﬂg_atomL symmetry exclu-

des odd-order terms and

(T /o j /kgT fi/kgT
EAr 75_> [ dr [ eyt (o) Ve ()20
) 0] 0O

(j = 2,4,...) (14)

where TT is the chronological operator, the subscript of the thermal
mean value <ees>lon denotes that only connected diagrams are to be

considered and

#H T/h jﬁwjﬁ
e

V. . = e ¢ Ve o (15)

int
In the expansion (13) we shall retain only the first two terms (Fg)
corresponds to a simple two-vertex ring diagram) as we are presently
interested only in the detection of the structural mode (character
ized by its wave vector q) responsible for an eventual instability

of the system; later on we shall come back onto this point.



We obtain (through use of tho quasi-continuum Timit z:+
k

1 g

f0 =

m
= = -25[ dk n(2 chek/zt
i

N3, 0

and
- Fz 1 2
£, = - }:fdklAkql G (k,q)
g#0 °
where
= kg T/[3,|
and

t
G (k@) = 5 Z
2 (1w > )(1w - )
we k n "k-q

where w, = tn(2n+1) with n = 0, %1, #2,...

Through standard complex plane integration and use of Egqg.

finally obtain

thSk+(a/2) _ ¢p Sk=(q/2)
2t 2t

J
= - > qul dkcoszk
0 0 €y e
qz;éo k+(q/2) k- (q/2)

==

T

f dk)

=T

(16)

(17)

(18)

(19)

(12) we

(20)



Let us now take into account the elastic contribution Fe
to the free energy of the system. Contrarily to the magnetic con
tribution, this one is going to be treated only approximately (a-
diabatic approximation; see Refn[463)1n the sense that we neglect
structural fluctuations; this approach should be strongly crude if
applied to a fully one-dimensional system, but is hopefully quite
acceptable to describe substances which are three-dimensional from
the crystalline point of view although fairly one-dimensionl in
what concerns magnetic interactions. By neglecting anharmonic elas
tic contributions (they play a minor role as it will becomes clear

Further on) we have that

x> Hep]

2N
_ A 2

Fe =) (Xj,q - X5)
j=1

- 2NCz(1-coSQ)|Xq|2 (21)
q

where C is the first-neighbour harmonic elastic constant, Xj is
the mean position of the j-th spin (with respect to its position in

the uniform phase) and
2N

L -iJjq
xq _2Nze X (22)

j=1

We can now go back to the magnetic contribution. If we as
sume that the interaction between first-neighbouring spins is cha-
racterized by an exchange integral J(u) where u denotes the incre-
mental distance (with respect to that of the uniform chain) - bet-

ween two spins, and expand up to the Tinear term (higher- order
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terms play a minor role as it will become clear 1ater on), i.e.

J(u) = J(0) + J'(0)u (23)

we obtain the parameter Jj which appears in Eq. (1)

Jj = J(0) + J'(O)(Xj+l-Xj) (24)

hence

- 1 -ig_ 25
Jq = J(O)quo + J'(0) (e l)Xq (25)

where we have used Eqs. (6) and (22); remark that JO = J(0). By
substituting - Eq. (25) into Eg. (20) and by taking into account Egs.

(16) and (21) we obtain the total free energy F of the system:

= F (1y . 1 ‘
a=0
where
2 = _ -
wy = (1-cosq) (K Lq) (27)
[J°(0) |
v
L = 1 dk Sos’k iy h-cos(k+q/2) _ ¢y h=cos(k=q/2) ] (5q)
q 4nsin?0 Sink 2t 2t
and
Ny = zl_i_-_qd' 0)X (30)

3(0)
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The critical surface in the (t, h, K) - space whichsep-
arates the disordered phase (uniform chain) from ordered phases

(dimerized or modulated chain) is determined by a soft mode crite

rium, namely op (t, hy Ky =0 (i.e. K Lq (t,h)) where q. is
c c

the wave vector of the first (coming from the U phase) structura]

mode with respect to which the system becomes unstable, i.e. 9.

maximizes Lq for fixed t and h. To be more precise wqc = 0 deter-
mines the meta-stability Timit of the U phase; this Timit coincides
with the critical one if and only if we are facing a second order
phase transition; this seems to be indeed the case all over the
critical surface as strong1y suggested by the analysis of the par
ticular cases treated in Section III (if it is so, neglecting Fq
and higher order contribution in Eq. (13) is fully Justified as
long we do not enter into the ordered phases). We have illustrated

in Fig. 1 the influence of t and h on the spectrum w In Figs.

q°
2.a and 2.b we present t-h phase diagrams associated to different
values of K; several iso-qC Tines are presented as well. We remark
that: (a) at fixed value of h and increasing t we obtain the se-
quence (non U phase) - (U phase) if h < 1, and the sequence (U phase) - (non
U phase) - (U phase) if h>1; the critical frontier is universal (the same for
all values of K) at the first-order asymptotic contribution in the Timit
t > 0, and is given by h v 1 - t an(2K/AE) & 1 - -;iznt; (b) at Fixed value of
't and increasing h we obtain, at intermediate temperatures, the unusual
possibility of a sequence (non U phase) - UJphase)-—(nonlJphase) -
(U phase) if K > K* = 0.2; this possibility disappears forK< K*; it
is remarkable the fact that the same value K*-0.2 separates[37j

two different regimes in the y - t phase diagrams where y denotes

a spin XY coupling anisotropy which can be introduced[33] in the
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fl

model (in our present model vy 0); (c) the iso-qC lines cut the

0w

- q
cos —< ; this fact can be easily
2

understood if, following along Peierls lines[soj, we remark that

h-axis at points satisfying h -

9 = 2kF where kF is the Fermi wave vector of the prob]em (through
Eq. (10) ng = 0 implies h = cos kF); (d) for a given value of K,
the Ge = ™ and Gc = 0 points are special ones: the former 1is an
inflexion one and corresponds (as we shall illustrate further on)
to a Lifshitz point where two second-order (U-D and U-M) and one
first-order (D-M) critical lines converge; the latter is apeculiar
one (obtained, as far as we know, for the first time and referred
hereafter as starting point) whose daracteristics will be discussed
Tater on (it is systematically located slightly above, in what
concerns h, another inflexion point); (e) the critical temperature

at vanishing magnetic field (see Fig. 3) satisfies[2’33’36’37]

m/2
1 sin?k cosk
K“%[dkmth‘z‘r (31)
(1 1 , .
.
L ift o (31°1)
8t

Along the t - h critical line associated to a given value of K, q,
varies continuously: see Figs. 4.a and 4.b. It _is interesting
also to analyze the main properties of the function L_as it does

q
not depend on K: in Fig. 5 we present the locus, in the 9. - Lq
‘ o
space, of the maxima of Lq with respect to q (while t and h vary)s
The therma] dependence of Lw(t,O) provides the vanishing field

critical line in the t - K space (see the basal plane of Fig. 6).
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I11- DIMERIZED CHAIN: ORDER PARAMETER

ITI.1 - Equation of states:

Let us now consider the dimerized phase of our system,
i.e. each unitary cell of the cristal contains now two spins (hence
the crystalline parameter is twice its value in the uniform phase).
The magnetic contribution to the Hamiltonian can be written as fol

lows:

é@ Z{J 2n( -1 2J+S%’\] 1 23) + Jd(-2n) (SZJ 2j+1
il (32)

Yy ¥ ) z z
+ S S J+])} uH}g](Szj_]+Szj)

where n is the dimerization or order parameter (the distances
between neighbouring spins are now alternatively (1 + 2n) and

(1 - 2n)). By using as before the transformation (2) we obtain:

X, - -3

M=

{ J(ZH)(aZj_1a2j+a;ja2j_1)
1

(]

J
+ J(-Zn)(a;ja2j+1+azj+1azﬁ}

"'“HZ(ZJ]ZJ] 2323)
j=i

fi

% { Zn)( ct c Kte kEEck)
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+ JGZU(EikEEck+eikcEEk)}

(33)
+ qu:ckc +ckck)
where - % <k g % and
_ 1 ZN:e1(2j-1)ka
‘K TR 23-1
" (34)
4
= _ 1 N i2jk
o _er azJ
i=1

In order to diagonalize the Halmitonian let us finally introduce

new fermionic operators through the transformations

1

Ck = —/—2. (Ol,k+8k)
. 1 16, 35
¢k = 77 (o -Byle (3%)
where
8, = arctg(ntgk) (36)
whith
n ;

= l‘](zn) - ‘J I . (37)
J(2n) + J(- 2n l

whenever Eq. (23) holds we have

J'(0)n
J(0)

n=2 =n,” (37|)
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where we have used Eq. (30). The Hamiltonian becomes

K- lJ(O)i{

o+ B+ _
(ekakak+ek8k6k) Nh } (38)
k

where

x —
“zh - Véoszk+n sin?k

-2 .
h + VQoszk+n sin?k

The free energy &(2) (the superindex (2) denotes di-merization) as

sociated to this Hamiltonian is given by

(2) /2 o
F
(2) _ 0 .. 2t dk[ﬁLanh%% + znZCh%E ] (40)

It is straightforward to see that n = 0 provides expression (16).

The total free energy is given by

feF =52 4y, 8) (41)
|J(0) [N ’
where U(n;a,d) is an elastic potential more general than Kn? in

the sense that it may include even anharmonic contributions (char
acterized by the parameters o > 0 and 0 < ¢ <1); these contributions

(which modify absolutely nothing in the results obtained in the

previous Section) play, for small values of K, an important role
as we shall see in the present Section (the role played by odd

anharmonic contributions is a relatively secondary one and is ne-
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glected herein). In order to perform numerical applications we

shall adopt

U(N3a,8) = K[ﬁ2 + —0—‘—’_“-{] (42)
1 -

82

which provides Kﬁ2 if o = 0, diverges if n grows up to & and whose
asymptotic expansion in the limit n +~ 0 is given by K(ﬁz+aﬁk).
To be precise let us point out that the inclusion of anharmonic

terms in the variable n (instead of n) simultaneously covers possible

departures of Fe/N from C(2n)% and of J(u) from J(0) + J'(0)u (see
Eq. (23)): this fact becomes clear if we remember the definition (37).
According to our choice of an unitary crystalline parameter, In| can
by no means exceed 1/2 (a physically acceptable Fe should diverge
at this point); in the (highly probable) case that J(u) (or J(-u))
vanishes before reaching up to this point, necessarily § = 1 be-
cause [n| can grow up to unity (see Eq. (37)); in the (speculative)
case that J(u) could remain finite up to |n| = 1/2 then

S = [J(1) = J(=1)[/]3(1)+3(-1)]< 1.

The equation of equilibrium states 8f/8n = 0 eventually

¥

admits, besides the trivial solution n 0 (U phase), the following

one:

(
o+ 2 - (43)
3(7°)  a(n)

therefore (through use of Eqs. (40) and (42))
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2 w/2 )
K = A<n ;0L,6) / dksin?k <jth X _ tn (431)
21T () _

[ !
Jcos2k+ T sin2k

N m
‘—’-

~No m
o |x Qe
N’

where

A(R 50,6) = §1 + — §2¢ (44)

This equation (discussed in subsections III. 2 and ITII. 3) provides,
for given values of K, o and &, the order parameter n(t,h) in the

dimerized phase (by definition n > 0): see Figs. 7.a and 7.b.

IIT.2 - Vanishing temperature

The discussion of the case t = 0 is rather complex and
it s useful to separately describe 6 cases respectively associated with 6 dif
ferent possibilities for the pseudo-fermion spectrum (see Fig. 8).
Let us first point out that in the cases (c) and (f) no solution
n # 0 exists. The solution in the other four cases ((a), (b), (d),

(e); see Fig 9) satisfies

Ky ,
Kk = A dksin®k (0

-2 . !
Ycos2k+nZsinZk

(45)

IN
~
EN
=
N
ECEE
o —

m

Let us first of all discuss the case o = 0 (V$): Eq. (45)

becomes
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[ rah) - eeahei) | TR (46)
m( 1-n") )
. m
ﬁ 5
‘-ZE k'\/ﬁ_ZT - F( k ﬁz_] : "
m ( ) A ) ( ! 7 ) L -
k ifn> 1 (46")
mm (n-1) 7 - ku

where F(x,y) and E(x,y) respective]y denote the elliptic integrals

of the first and second kind, and where

km = 0 and kM = /2 in the cases (a) and (d),
km = 0 and kM = kC in the case (b),

km = kC and kM _ 7n/2 in the case (e),

with

k. = arcsin ] Tz (47)
1-7

We remark that if h < 1 and h < n (cases (a) and (d))
Eqs. (46) and (46') imply n(0,h) = n(0,0) where 7(0,0) satisfies

,
V1-(7(0,0))2) - 61— 0,0))?) it

1 w1 - (7(0,0))?] | s Y -

[ﬁ(o,O)]ZEC/(ﬁ(O’O)LZ'})_ K< (ﬁ(o,o_))2-1-> if
1 (0,0) [(5(0,0))z_d

(48")
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where K(x) and E(x) respectively denote the complete elliptic integrals of the

first and second kind; K = K = 1/4 implies n(0,0) = 15 Eq. (48)
leads, in the limit K - =, to 7(0,0) ~ = ™™ Eq. (48') Teads, in
the Timit K ~ 0, to n(0,0) ~ 1/7K; n(0,h) presents two branches
(see Fig. 9) which join at h = hM and we verify that hM < n(0,0)
(the equality holds if and only if K Z(EL

In the case (b), the lower branch of n(0,h) cuts the h-

axis at h = hm (see Fig. 9) which satisfies

hence

1L Bn) if K~ 0
2 (49')

hm 4

£ gk if K > o

Let us summarize by saying that the harmonic approximation

is physically acceptable for K > K = 1/4 and leads to interesting

.features like the evidence of first order phase transitions at
vanishing temperature and h = h¥* (hm < h* < hM). On the other hand
severe defects are present if K < K: we shall exhibit now that all
the anomalies disappear when anharmonicity is allowed to «come 1in
(a > 0).

The t = 0 discussion of the order parameter goes, for the
anharmonic case, simi]ar]y to that of the harmonic one. The results

are illustrated in Figs. 10.a, 10.b, 10.c. We remark that: a) in-
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creasing a and (1-8) lead to decreasing n(Q,h) (in particular a =~ «
and/or & -~ Q imply n(0,h) > 0);b) K = 0 leads to n(0,h) = 6 ¢ 1 for
any value of a; c) anharmonicity leads to no (to big) qualitative
modifications for K > R = 1/4 (K<k); see for example the case
K = 0.4(K=0.116) in Fig. 10.a (Figs. 9 and 10.a); d) ho, independs
from o and § (as expected if we take into accout that it concerns
the 1imit n » 0) and is still given by Eq. (49); e) hy = n(0,0)
strongly depends on o and & (in particu]ar for 6§ = 1 joins hm in the
limit K > 0 for any positive value of a); f) within the (speculative)
hypothesis § < 1, unusual sequences of two first order tran
sitions may occur (see the case (K = 0.1163 o = 0.5; & = 0.65) in
Fig. 10.a).

To close this subsection let us emphasize thatanhanmnﬁcity
is able to provide n< 1 for all values of K as physically desir

able.

IIT.3 - Finite temperatures

We shall now go back to the complete equation of states
(Eq.(43')) and discuss the dimerization order parameter at finite
temperatures; in order to simplify the numerical analysis we re-
strict to K > k = 1/4, a fact which authorizes us to neglect an-
harmonic contributions i.e. we adopt a = 0 hence A = 1 (see Eq.
(44)); the results for K > K are qualitatively the same as long as
a >0 (and § = 1 in order to concentrate onto the physically rel-
evant models). The results obtained for h = 0 are illustrated in
Fig. 6; those obtained for general values of h are illustrated in

Fig. 7. We remark that for a given value of K and sufficiently high



- 21 -

values of h, the transition (U < D) becomes of the first order: the
special point (characterized by (tL,hL)) which separates the second
from the first order regimes appears, within the present context
where no other structural order than dimerization is under consid-

eration, Tike a tricritical one (in fact it will become clear later

on that it is a Lifshitz point and therefore its nature is much

more closer to that of a bicritical one in the sense thattwo sec-

ond and one first order critical lines converge on it). From this
point start two metastability lines, namely that of the U phase in
to the D phase (noted UD-line and cutting the h-axis at h = hm)
and that of the D phase into the U phase (noted DU-line and
cutting the h-axis at h = hM): see Fig. 7.c. The DU-line s of

course the projection of the surface m(t,h) on the plane (t,h) and,

if prolonged with the second order critical line, exhibits an in-

flexion point (which is precisely the Lifshitz one).
The first-order critical line runs between the UD - and
DU-Tines- (see Fig. 7.c), cuts the h-axis at h = h*, and is deter

mined by the condition
f(t,hyn(t,h)) = f(t,h;0) (50)
therefore

f(osh*Qﬁ*) = f“(O,h*;O) (50')

where n* = n(0,h*) = n(0,0). This equality leads, through vuse of
Eq. (41) (with o = 0), to

JT-(h*)2+h* arc sin h* + %ﬁ (7*)2= E(S1-(n*)2) (51)
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which together with Eq. (48) determines n* and h*; we can verify a

remarkable property namely

h (52)

where we have used the property hM = n(0, 0) and Eq. (49); in the

2V 2 e-'rrK

Timit K .» o we obtain h* -~ A

IV - MODULATED CHAIN AND STARTING POINT

Up to now we have seen that, for a given K (assumed from
now on high enough to neglect anharmonicity), a critical frontier
in the t-h space separates the U phase from the polymerized ones,
namely the D phase (which occupies the low h zone of the ordered
region, and has been the specific subject of Section III) and the
M phase (which occupies the high h zone of the same region). In the
present Section we intend to provide an analysis of the M phase,
and more specifically concerning the two following points:

a) what is the structural order in the M phase?; b) what is the or
der of the transition across the U-M line? (across the U-D 1line
the transition is a second order one; see Section III). This dis
cussion will also enlighten the peculiar nature of the "starting
point".

The full performance of this analysis demands the know-
ledge of. the free energy as a function of an arbitrary structural
order characterized by an order parameter nq where the wave vector
q might be commensurate or not with the first Brillouin zone asso-
ciated with the uniform chain. In what concerns the M phase we shall
restrict ourselves to two particular cases (both commensurate), na-

mely the tri- and tetra-merized chains (respectively associated with
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"frozen" modes with wavevectors q = 2n/3 and q = n/2; remark that
an "acoustic" mode with q = 2n/3 corresponds to an "optic" mode with
g = 7/3); by following along the lines of Section III we obtain the

s-merized total free energy given by[2]

(s) (s) ;. £(s)
£AST Fms + fes (53)

where fés) and fés) are respectively the magnetic free energy and

the harmonic elastic potencial given by

m/s (r)

(s) s -
féS) = T_YE%T_. - - 25 [ dkan(lve k7t (54)
J(O)|N p=1 0

(if s=2, r=1 and r=2 respectively correspond to the previous families o and B)

(s) Fe™) c N
d £L8) = € - -n )2
- © [9C0) [N [a(0) s rL] T 7 )

The tri-merized (s=3) and tetra-merized (s=4) cases that we have

considered have the energy spectra given by

L (33h2 12
oo (B

(3)y21172
r ] (cos $§'t /3 sin %%J (s=3)

Wi Ca
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and

4 .
(152:3,0) { 2(3(4) 2 [ <Z .(4) 2) + z(n 3 cosa

=1 r=1

1/2 11/2
(3§52 - (j§4)324))2] (s = 4)

3
(56')

(3,4) are the reduced exchange integrals. The analysis of

where J
this two cases were performed by taking in the Egs. (56,56"') the

expansion

(38 ) (57)

and assuming in the Egs. (55,57) a sinusoidal structural order pa-
rameter - thisis reasonable for not too Tow temperatures - given

by

n, = ncos( EE ro+ ) with r = 1,2,...,5s (57")
We have used the phases ¢y = %g for s = 3 and ¢y = T fors = 4, ob-
tained through minimization of the total free energy.
o)

3(n?)
57') we obtain the respective equations of states for the tri- and

From the equilibrium condition = 0 and Eqs. (53-

tetra-merized configurations:

(r)
k
3 3 - (r)
K=- J0% fﬂ/ dk —= ’ %K (s = 3) (58)
T o] 0 ]+e_€§r)/t B(n3)

and
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€(r‘)
k
Y7 S S
K = - §.z: j. dk & L_K (s = 4) (59)
T =10 —e(r)/t 3(n3)
T+ "k 4

The results are presented in Figs. 11.a and 11.b. The tran
sitions are of the second order on the U-M 1line (and only there).
Let us now conjecture what happens in the M phase. We ha

[361 in the case h = 0 that through the U-D critical point

ve seen
down to vanishing temperature there is no other structural order

than pure dimerization. The same is true for h > 0 in the whole

D phase, as no other instability than that associated with
q =0 {reduced Brillouin zone) ¢ 1is exhibited by the
spectra wq(t,h,ﬁ(t,h)) and ma(t,h,ﬁ(t,h)). At this point let us
interrupt our analysis in order to indicate how the calculation of
these spectra is performed. The quantities Wy and wé were obtained
through a quite long but straightforward calculation of the free energy
associated with Hamiltonian (1), conveniently written in the form
(7), where M& , corresponds now to a pure dimerization (associated with
the "optic" q = 0 mode in the reduced Brillouin zone) and where V co
rresponds to the rest of the modes. We treat V as a perturbation to

3(0 within the temperature dependent Green function framework, and

obtain

<qg<Ty (60)

where



m/2

mo= K+ dk mﬁx,gvﬂoowNAx-mx.nv + cos?(k+dy o) -

-2¢05q oOmAx-@x,nvnOmﬁx+®x, vw + m_AxupvmmﬁzwAx|ow.nv+mimﬁx+®x.nv

q

+.2c0sq mﬁzﬁxlmx ) Mmsﬁx+®x nvg , (61)

q

=
HI
~
O
(o]
(V2]
O
+
'
|_|
(=N
~
[ep]
~
=~
-
L
S
—
D
1
-
£
[}
(=]
(7]
n
Lo
=
1
D
~
N

+ ménnomNAx+®x,nv -2 nOmAxumx,gvnOmﬁw+ ax,nvy

+ m_ﬁx,gvﬁmwdnmﬂsmﬁx-o ) + e'9sinz (k+o

)

k,q k,q
+ 2 misﬁx-mx,avmﬂzAx+®xanv_ (61")
®k+(q/2)
-1 1 k+(q/2
G(k,q) = 7 < th T

B 8 7
€ £
X |th I_A..mmlm‘.mvu th |£.Rv|l (62)
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and
a.
Gl(k’q) = . l{ o 1 [thM
Y1 Sks(q/2)%k-(q/2)
N
_th ——LQLkét 2):[4, ; L
€k+(q/2) %k-(q/2)
EB EOL
[th (r(a/2) k-(q/z>” (52"
2t 2t
o B

where ¢ and ¢ are given by Eq. (39).

Let us now take up again the conjectural discussion con-
cerning the M phase. If we neglect solitons effects as well as e-
ventual three-dimensional magnetic ordering ones, it is plausible that
in the M phase things happen similarly to the D phase in the sense
that at a given point (t,h) an unique wave vector dy is "frozen";
1'so-qM lines are expected to exist and they should cut the Uu-M
line at the point associated to gq. = qy (see Fig. 11.c). Within an
assumption of continuity the iso-qM lTines should run along the su-
perior (with respect to h) branch of the phase diagram associated
to the fictitious uniform-polymerized transitions (see Fig. 11.b),
and possibly coincide with their "first-order critical 1ine" (see
Fig. 11.c). The whole image enlightens the nature of the "starting
point" and is consistent with the h-dependence (at fixed t) of the
spectrum w_(t,h,n(t,h)) and wé(t,h,ﬁ(t,h))as illustrated in Fig. 12.

q

Let us stress that negative values of Wy and wé denote that the or

der parameter which has been taken into account (the dimerization
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parameter W(t,h) in the present case) is not the appropriate one

(other wave vectors are "freezing"). To say it in other words, it

seems plausible that n_(t,h) is essentially a Dirac &§-function who

q
se evolution at let us say t = 0 is as follows: for h ¢ h* it s
located at q = 7 (extended first Brillouin zone), and while h ap-
proaches unity its location monotonically runs down to g = 0 (the
amplitude should vanish as well in order to provide a second order

phase transition).
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V - DIMERIZED CHAIN: OTHER PROPERTIES

Let us now turn back to the D phase in order to discuss
the T and H influence on the isochore specific heat, magnetization,
isothermal magnetic susceptibility, sound velocity and the q =0
"optic" frequency. We shall consider an harmdnic elastic constant
K high enough to neglect effects from anhamonicity.

The reduced isochore specific heat CV is given by

3%f
2
at?

C, = -t

(63)

where f is given by Eq. (41) (we recall that o = 0). We obtain for
n =0 (U phase):

m/2
c o= 1 J[ dk |{h-cosk)?  (h+cosk)?® (64)
v Amt?
2h-cosk 2h+cosk
o | g
,
2
h+1/2 ift>w, Vh
4t
Y t if t > 0 and h < 1
N _h2
T V1i-n (64"
Yz/f if t 0 and h =1
=(h-T)/t
Y& T r(h.13% _ 2
SEEYE [Ch-T)%+ vy (h-T)t + €]

(y],yz,...,ys are pure positive numbers)
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and for n # 0 (D phase):

/2 2 B
C = .l jﬂ/dk (€z> + (ek)
! drt® g échzfi— cthE
2t 2t

r o B 2

jﬂc/iz €k €k > sinzk :I

|70 chzegﬁgt chZEE/2t Jcos2k+2sinzk
/2

ael /1 . 1 _2t(thel/2tthey/2t  sin'k
Chzeoly.Zt ChZEE/Zt /cos2k+m 2 sinzk  |cos2k+R 2 sinzk

0

(65)

where e& and eE are given by Eqs. (39). Remark that Cv is univeral
(the same for all K) in the U-phase. The results are presented in
Figs. 13(a) and 13(b): their Tow temperature region compare quali
tatively well with the results presented in Ref. [3]:; let us stress
however that the specific heat jump may occur at a temperature hi-
gher than the maximum of the corresponding universal U-phase curve
(see the case K = 0.3 of Fig. 13(b)).

The reduced magnetization m is given by

(66)

We obtain, for n = 0 (U phase),

. m/2 h ‘
_— L Jf dk(}h - cos k + th h + cosk) (67)
m

0
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"
h if t>o, ¥h
4t
-h? 1-h2
1 ) - —lth arcsin h - T arccosh
7 ¢arcsin h + Ye e -e
§ 1-h2
. ift- 0and h <1
_ - (67"')
%_y7/te if t> 0and h > 1
(y6 and v, are pure positive numbers)
and, for n # 0 (D phase),
1 n/e h - Ycoszk+m2sin2k h + Jcoszk+n2sinzk
m= dk { th N + th n
27 2t 2t
0
(68)

The results are presented in Figs. 14(a) and 14(b): they
provide as particular casessituations which are compatible with
those appearing in Fig. 2 of Ref. [34].

The reduced isothermal magnetic susceptibility x is gi-

ven by

a2 f

L.
oh t ~h2

t

We obtain, for N

Hi

0 (U phase),

=

m/2
1 1 1
= — dk +
4th[ chzh-cosk chzh+cosk
0 2t 2t (70)



.
1 h2 .
1 if t> 0and h < 1 (70")
N ﬁﬂ/]-hz
h-1
e- T ¢
s if - 0 and h > 1
Yg 7 Z

(yg 1is a pure positive number)

and, for 7 = 0 (D phase),
m/2

1 j' 1 1 >
X = 57¢ () dk +
2t 14 (ch2e%/2t cheef/2t

sinzk

m/2 e? 2 eﬁ 2
dk { th2 — - th? —~ ) > ——~
2 et /C0s24n2sin?k

0

1
2 2 o
™/ 1 . 1 €k QE sintk
I hreayae © areergar) MM - )
ch el /2t chzel /2t v/coszk+mn2sinzk

0
(71)
The results are presented in Figs. 1b5a, 15b and 15 c: they

provide as particular casessituations which are compatible with
those appearing in Fig. 5 of Tannous and Caille Ref.[3]; let us also
remark that the curves are universal (the same for all K) in the U -

phase.
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Finally the reduced sound velocity VvV is defined through

dw!
y = -4 (72)
aq q:O
where wé given by Eq.(60). The results, as well as those obtained

for w, (soft mode) are presented in Figs. 16a and 16b.

VI - CONCLUSION

The spin-Peierls instability which occurs in magnetica-
11y quasi-dimensional and structurally three-dimensional systems
(TTF-BDT, MEM(TCNQ)Z, alkali-TCNQ, etc) is at the origin of a great richness of
thermodynamical and dynamical properties. It seems p]ausib]e[4OMMat
the influence of the magnetic coupling being of the Heisenberg-ty-
pe or rather of the XY-type is a secondary one (the same is not

true[35’37]

if the model approaches the Ising one). On the other
hand the eventual presence of an external magnetic field (perpendi
cular to the XY - plane in the case of an XY - model) substantially
modifies the physical characteristics of the problem. In the pre-
sent paper we have, for the magnetostrictive spin - % XY model, e-
xactly taken into account the magnetic degrees of freedom (in the
uniform and dimerized phases) but only approximatively taken into
account the structural degrees of freedom (more precisely we have
neglected structural fluctuations, a fact which should not be two
crue if we consider that the system is a three-dimensional crystal;
we have furthermore neglected eventual soliton effects).

We have extended (in what concerns the domains of varia-
tion of the temperature, magnetic field and harmonic elastic cons-

tant) the available resultsl 35734 for the specific heat, magnetiza

tion and magnetic susceptibility (see Figs. 13-15). Furthermore a
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certain amount of interesting phenomena have been exhibited (for

the first time as far as we know); let us recall tho-

se which seem to be the most relevant among them:

a)

b)

The system presents, in the T-H space, three structurally diffe
rent phases, namely the uniform(U), the dimerized (D) and the
modulated (M) ones. In the whole region of existence of the D-
phase an unique wave vector qM(namely dy = m/a where a 1is the
crystalline parameter of the uniform chain) characterizes the
"frozen" structure; this is probably still true in the M-phase
in spite of the fact that Ay continuously varies (between 0 and
m/a) therein, by taking values which can be commensurate or in-

commensurate with the Brillouin zone associated to the U-phase.

The first order critical frontier which separates the D- and M-
phases is such that the critical magnetic field increases (de-
creases) with temperature if the harmonic elastic constant issu

fficiently small (large).

The frontier which separates the U-phase from the other two s
a second order one, and presents two special points; one of them
is a Lifshitz point and corresponds to the point where the rele
vant wave vector 9e begins to différ from n/a (it is an infle-
xion point of the frontier; furthermore the first order D-M-fron-
tier joins precisely there the second ommr'ﬂvnﬁerxtheothm"one,
referred to as “starting point", presents a quite peculiar nature (see Fig.11
(c)) and corresponds to the point where 9. vanishes (fhis fact
occurs at finite temperature). The Lifshitz and starting points

monotonously approximate to each other for decreasing harmonic

elastic constant.
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d) For sufficiently high elastic constants, fixed temperature and
increasing magnetic field it is;possible to observe (see Fig.2.a) the
unusual phase sequence non uniform - uniform - non uniform - u-
niform; for all values of the elastic constant, intermediate va
lues of the magnetic field and increasing temperature, the se-

quence which occurs is U-M-U.

e) The thermal dependence of the sound velocity presents a gap at
the U-D critical points (possibly at the U-M crifica] points
as well) which considerably grows in the presence of an external
magnetic field. Less spectacular effects (softening)are predicted for
the q=0 "optic" “frequency (some experimental indications for this

softening are already avai]ab1e[]4]).

Experimental evidences of the above effects would be very

wellcome.

As a final conclusion let us present a few numerical compari
sons of the present theory with other available theoretical and expe
rimental results:

i) The location of the Lifshitz point is characterized by TL/TCGEO);
experimental values (obtained for TTF-Au BDT, TTF- Cu BDT and MEM
(TCNQ)Z) range between about 0.65 and 0.8 (see Ref.[1] and par-

[7]

ticularly its Fig. 24); theories from Bray and Bulaevskii et
alt34] provide 0.54, and that from Crosst’] provides 0.77; the
present treatment yields values which range from 0.59 to 0.68
while the reduced (harmonic) elastic constant K decreases from

0.6 to 0.06.

ii) The location of the vanishing temperature critical magnetic field

HC (separating the D- and the M-phases) is characterized by HC/TéH=0);
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this quantity is experimentally determined (for the same three subs-

tances in {i)) to be 10.5 tf0.6[]] ([H] = KOe and [T] = °K);Bray[7]
and Bulaevskii et a1[34] theories provide 11.2 and Cross[7]thmnw
provides 10.3. In terms of the present reduced variables we have
HC/TC(H=0) ='(kB/§uB)(h¢/tc(h=0)) = 7.47 hc/tc(h=0) where we have
used the gyromagnetic ratio g = 2 (EPR resu1ts[]3] for TTF-Cu BDT
yield g ranging between 2.0016 and 2.0151) and Bohr magnetonug;
HC/TC(H=0) varies from 9.2 to 9.6 while K increases from 0.3 to
0.6.

iii) It is both experimentally and theoretically found that, in the

limit H - 0,

T (H=0) - T (W) [___Eﬁﬂ___}z (A > 0).
T (H=0) kT (H=0)

A is theoretically determined to be 0.44 (Refs. [7] (Bray) and

[347) or 0.36 (Ref. [7] (Cross)); our treatment provides x» = 0.9.

A first ana]ysis[]] of the experimental data (relative to the sa-

me three substances in (i)) was compatible with our value, while

[1]

further analysis was more compatible with the other two values.
iv) The vanishing field isothermal magnetic susceptibility enables al

so severe comparisons, for example in the region ofthe"knee" at Tc’

namely the quantity d[x(T)/X(TC)]/d[Tﬂé] $—T
=1¢

(Fig. 10 of Ref. [1]) for TTF-Cu BDT provide the value 2.7; in our

; experimental results

treatment this quantity presents, in the neighborhood of K<0.4, a

maximum value of about 2.5 (its value is about 2 for both K=0.3 and

K=0.6).
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v) The vanishing field derivative dx/dTrU could in principle be

=T
C
negative, however typicallv is positive; in this case by further

increasing the temperature (T » T.), x achieves a maximum x_ atT=T s
the experimental evidence (Fig. 10 of Ref. [1]) on TTF-CuBDT pro

| vides a ratio Tmax/Tc 2 4 in our treatment this ratio is, for
K=0.6, 2.5 and achieves the value 4 for K>0.6.

vi) In what concerns the ordinates of graphs x vs.T (vanishing magnetic
field), it is possible to extrapolate, in the 1limit T » 0, the
thermal dependence of ¥ in the uniform phase, thus obtaining x(T=0;
extrap); the already mentioned experiment (Fig. 10 of Ref.[1]) on
TTF-CuBDT provides a ratio XmaX/X(T=O; extrap) = 1.4; this ratio

achieves, within the present treatment, its maximum value (about

1.3) in the neighborhood of K=0.5.

Similarly to the other theoretical proposals available in the

1iterature; the present one is not strictly capable of numerically

reproducing, with 2 single set of parameters, a large variety of ex-

perimental results; this is not surprising if we take into accountits
intrinsic simplicity. However we have exhibited that, with values of
K (quantity related to a subtle one, namely the space variation of the
exchange integral) ranging from let us say 0.4 to 0.6, an overall des
cription is possible which numerically is acceptable and which quali-
tatively is no doubt quite satisfactory. This fact raises (at least in
our minds!) the hope that most of the predictions provided by the pre-

sent theory (particularly points (a) - (e) in this Section) can be ve-

rified in nature.
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CAPTION FOR FIGURES

Fig.

Fig.

Fig.

Fig.

1 - Uniform chain relevant phonon spectra associated with sets

of reduced temperature t; magnetic field h and elastic cons
tant K. The cases I and III exhibit the trigger of incommen

surate (or high-order commensurate) structural instabilities.

Critical lines (continuous) 1in the reduced temperature-mag-
netic field space; they separate, for different values of
the reduced elastic constant K, the uniform (U) from the
dimerized and modulated phases. Various iso-qC Tines
(dashed) are indicated as well; those associated with q_ =
and c= 0 respectively correspond to Lifshitz (full dots)
and "starting" (empty dots) points. Note that the (a) and

(b)scales are different.

Reduced temperature - inverse elastic constant phase dia-
gram associated with vanishing magnetic field; (U) and (D)

respectively denote the uniform and dimerized phases

Variation of the wave vector q. (associated with the struc
tural instability) along the critical line (qC against the
reduced temperature (a) or magnetic field (b)) associated
with given values of the reduced elastic constant K ; LP
and SP respectively denote Lifshitz and "starting" points;
C=0 and Q=T respectively denote the uniform and dimerized
phases. (b) the K = o curve (dashed) satisfies h=cosk%/2);

the q_=0 variation of the K=0.2 line has been designed



slightly below the abcissa only for visual purposes.

Fig. 5- Locus of the maxima of ch with respect to q.: several iso
field (continuous) and isothermal (dashed) lines are indi-
cated. Isofield Tines: (a) the vertical asymptotes (dot-das
hed lines)are located at q_.=2 arccos h; (b) h=0 (h » =) is
associated with the axis g =T (axis ch=0x Isothermal lines:
(a) all of them start, for h=0, on the axis q.=T and are
partially contained therein; (b) all of them are partially
contained in the axis qC=0 and finish, for h - =, at the
corner qC=LqC=0; (c) the t - 0 (t » «) line corresponds to

L oo
9. (ch

Lifshitz ("startina") points. The numbers between parentheses

+~ 0). The full (empty) dots correspond to
are the associated values of t.

Fig. 6- Vanishing magnetic field dimerization order parameter T as
a function of the reduced temperature t and elastic constant
K; o = 0, ¥ §. The lower K is, more important become the an
harmonic effects (o > 0) in order to avoidan unphysical

growth of W in the low temperature region.

Fig.7 - Dimerization order parameter n as function of the reduced
temperature and magnetic field; a=0, ¥ §. (a) the projec-
tion of the surface on the =0 plane is indicated as well
(dot-dashed). (b) isothermal lines; the dot-dashed 1ines in
dicate  the nz0 < n=0 first-order phase transitions (t=0,
0.05, 0.1 imply h*=0,325, 0.312, 0.285); (c) magnetic field-temperatu

re phase diagram; the full and the dot-dashed lines are respectively .



a second and a first order critical ones; the UD- and DU-

lines are metastability 1imits. LP denotes the Lifshitz point.

Fig. 8 - The six typical possibilities for pseudo-fermions spectrum
At t=0 only the regions with g <0 are populated. In (b)

and (e) we have indicated the wave vector 9c-

Fig. 9 - The vanishing temperature dimerization order parameter as
sociated, for different values of K, with the six cases
(separated by dot-dashed lines) for pseudo-fermion spectrum
(see Fig. 8); a=0, ¥ 8. The lines within regions where the
harmonic approximation is physically unacceptable are das-

hed. The small figure shows the K dependence of hm and hM'

Fig.10 - The effect of anarmonicity on the vanishing temperature di
merization order parameter n(0,h); (a) the order parameter
as function of h for selected values of K, a and &; (b)
hM = n(0,0) as a function of o for K=0.4 and different va
Tues of &3 (c) hy as a function of K for a=0.5 and diffe-

rent values of 6.

Fig. 11 - (a) Critical lines (continuous) in the t-h space for dif-
ferent values of K; the iso—qC line (dotted) associated
with the wave vector q.=m/2 (tetra-merized modulation) is
indicated as well; the dashed lines indicate the n=0 me-
tastability 1imit associated with the fictitious uniform-

tetramerized transition. (b) Critical Tine for K:=0.4; the



uniform—dimerized and the (fictitious) uniform-tetramerized
transitions are indicated as well (the dashed and dot-dashed
lines respectively denote metastability 1imits and the first
order critical line). (c) Phase diagram indicating the uni-

2m s

form (U);‘dimevi;ed (D) and modulated (M) regions;theq=§~ NﬂQ=2

first-order critical Tines (which possibly correspond to iso-
qy lines; see the text) are indicated (dashed) as well; the
9 = 0 line is qualitative and has been included in order to
characterize the nature of the starting point (SP); LP deno

tes the Lifshitz point.

Fig.12- Example (K=0.4) of the relevant phonon spectrum along an iso
thermal Tine (t=0.1) as a function of the magnetic field h.
The cases I-VI correspond to those indicated in Fig. 7.b
(cases VII-IX are not indicated therein). In case I we are
in the D-phase, below the UD-line (this is the type of spec
trum we observe in the entire D-phase, below the first-or-
order DM-1ine); in case II we are in the M-phase, between
the DM- and DU- Tines; the DU- line (w, = w, = 0) is achie-
ved between the II and III cases; the (unphysical) case III
corresponds to the Tocation of the DM- line (w!) presents its
most negative value);the case IV corresponds to the UD - line
(ws = 0); in case V we are in the M-phase, above the DU-line;
in case VI we are in the U- phase; in cases VII and VIII we
are oncemore in the M- phase; in case IX we are crossing the
UM-Tine (which, above the starting point, is simultaneously

an iso-q. line as well as an is0-qy one with q.=qy=0).



Fig. 13 - Reduced specific heat (per coupie of spins and in units
of kg) as a function of temperature. (a) universal (K-in
dependent) U-phase curves for selected values of the mag
netic field; (b) vanishing magnetic field curves for selec
ted values of the elastic constant (the dot-dashed 1line
indicates the locus of the maxima of C, which occur at

the respective critical points).

Fig. 14 - Influence of the temperature t and magnetic field h on the
reduced magnetization m (for K=0.4). Iso-field lines ((a)
for h < h < = 0.258; (b) for h > h/): the dot-dashed iine
indicates the locus of the "knees" occurs at the respecti
ve critical points and the dotted-line corresponds to the
first-order DM-1ine; although graphically not visible, the
h = 1.04 line cuts twice the dot-dashed line (see Fig. 2.a).
Isothermal Tines (c): both t < t, = 0.151 ant t > t, are re
presented; the dashed part of the t = 0.1 line is qualita
tive as it corresponds to the M-phase where the equations

of state are unknown; the t 0.3 Tine lies within the

uniform region;in the small figure we illustrate the mag-
netization saturation which occurs in the high field limit

for all temperatures.

Fig. 15 - Thermal behaviour of the reduced isothermal magnetic sus-
ceptibility; (a) the universal (K-independent) U- phase
curves for selected values of the magnetic field; (b) i1-
1ustration; for selected values of the elastic constant K

and vanishing magnetic field (appearance of a discontinuity);




Fig.16-

the dot-dashed line

gests a divergence

Thermal dependence

quence (a) and the

represents the locus of the peaks (it sug

as the Lifshitz point is approached).

of the q = 0 optical square reduced fre-

reduced sound velocity (b) for K = 0.4

and different values of h < h, = 0.258; in-the t -+ = limit

1

L =

@0 and v respectiveily saturate at /2K and /K/2 .
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