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ABSTRACT: A calculus of vectors in two-dimensional sympletic spaces is
developed from the concept of existence of local basis systems. The
similarities, as well as the differences, of this calculus with the tetrad
formilation of four-dimensicnal curved spaces are discussed. The affinity
and curvature of the sympletic space are derived and its relationship with
the affinity and curvature of the usual spinor formalism are given. A
system of hybrid geometrical objects displaying a tena?r and a spinor index

take over the role of the usual Hermitian matrices aﬂm(x).

# This paper as supported by the Funtes, Rio de Janeiro, Brasil.
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INTRODUCTION

The use of basis systems in the spinor calculus was suggested
in connection with its applications %o the theory of special
relativity 1. Presently we extend the applicability of this
concept for spaces with curvature. In this way it 1is possible
to construct in the two-dimensional complex spaces with skew
symmetric metrics a formalism of local basis systems which display
several similarities with the tetrad formulation on curved
manifolds. The term complex two-legs is used for characterizing

the geometrical objects which correspond to the tetrad in four-

dimensional spaces.

However, the geometrical object which corresponds formally to
the tetrad in the usual formalism is not thé complex two-leg but
instead a linear combination of these components, such comblna-
tion involves a spinor and a tensor index. From the point of
view of the four-dimensional space such object behaves as a set

of four null complex vectors.

The notation which is used in this paper follows the usual
conventions of the tetrad calculus, by denoting local degrees of
freedom by means of the same letter as the "coordinate" index
but inside a bracket. Presently both tyf:e’s of indices are spinor
indices so that the above term "coordinate index" is purelly
formal. All types of spinor indices are denoted by capital letin
letters. Indices corresponding to the four-dimensional space are

denoted by greek letters.
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1. RECIPROCAL BASIS SYSTEM IN 5,

Let SZ be a two dimenglonal sympletic space, that is, &
linear vector space over the field of the complex numbers in
which there exists a non-degenerate skew symmetric bilineay inner
product. Expiicitly, given u, V’ESZ and o« a complex

MV = = Vol

(tu)ov = an.vy ulxv) = ot(u.v)

(u"‘V)o' = U * VW

o(VHN) = Yov + UV

w.v = 0 for all veSZ implies u=0.
We introduce into S, a system of basis vectors h(,, and b,
such that

be1)Bz) = 3 | )

In this'paper we shall use explicitly the index notation 'since
this will be important for our purposes, as will be clear duilns
the treatment. The realization of the above relstions in this
notation 1s obtained by introducing a skew symmetric €AR? play-
ing the same role as the symmetric metric tensor ip the four-
dimensional space. |

uovgeABuAvB:quBo (2)
The quantity h( 1) and h( 2) have contravariant :.ixaices,
B
Beay = (Bey))

but they may also be presented with covariant indices according
to



38

- A -
hg(gr) = B(r) €aB *
The relation (1) reads as
_ A B _ B _
heyye Bepy = pp N1y Nep) = bp(p) B2y =1 -

A reciprocal basis system may be introduced as the set of two
vectors of S2 which satisfy

(4) _ (a) _ (4)
h**ehegy = = Bgyeh "7 =6(g) (3)
we have
(1) _
hy™" = =hypy - (4-1)
(2) _

It is possible to construct an unimodular maﬁrix with the compo-

nents of the vectors h(l) and h(z),

1 1
ht1) bz
M= : (5)

2 2
hryy Be2)
since
| M| = heyyehepy =1
note that
h = .,hz h —’—b,l (6)
1(4) (A)? “2(4) T 7(A)
as consequence of (1), (4) and (6) we get
A (1) A (2) _ A
h(yybg™" *+ b(p) By~ =8y (7)

the inverse matrix of (5) is
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2 1 (1) (1)
h -
2 2)\ by h; _
M-1 = ( ) . h( - . . (8)

2 1l (2) (2)
“h1y By by )
It should be noted that
nl ‘ (1) 2 -
A h(1) B2(1) (1. “Py2) i(2)
h(l) = N . ’ hA A (1) = =y .
2
B(1) “hy(1) e (2) ~h2)
1 (2) | 2
o [ M@\ [ a2 | 8- b DA TEP AN A ¢
2"\ 2 _ n(2) A
b2) 1(2) 2(1) hi1)
Since the h(A) and h(A)'are basis vactors we have for any vector of
S,y
- ..(4) = (4)
u=u h(A) -u(A)h (9)
where
al8) = p(a) o

u(A) = ﬂ.oh(A) °

In index notation, these relations read, for u a contravariant

vector,
u(A) = héA) u® (11)
B
Ua) = b(a) Up (12)

as it is clear from what was seen up to now, all indiees of
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vectors are raised and lowered by the skew symmetric matrices eAB,
EAB given by
AB

€ = £ =

AB -1 0
and all indices between brackets, denoting the different elements

of the basis, are raised and lowered by means of the skew symmetric’

matrices G(A)(B) and €(A)(B)’ with matrix elements
0 -1
(AXB) _ -
€ (AB) “\ ;o

(A)(B)

We may interpret the matrices ¢ and e(A)(B) as the operators

which transform the baslis h(B) into the reciprocal basls h(B) and
vice=-versa.

. (M)
hegye = “(m)(B) Bc (14)

These equations may be written in the free-index notation as
B - M
n(B) = (BYM) o

hp) = <) B

multiplying the first on the left by h(N) and the second on the

left by h(N)’ we obtain

e(BXN) _ p(N) ,(B) (1s)

€(B)(N)

i

from which it follows the matrix elements of the equation written

previously. Similarly, we obtain

BM _ M _,B(A) _ _ M(A) B !
BT E - BT B

- (A)
€py = by )b = p(d)
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which give the matrix elements written before. It should be noted
that the equation (7) which was used in the proof of (17), may be
written in two forms which differ by a sign,

A (K). LAK), A
h(g) by = -hT T higyp = Op

The equations (15) and (16), and similarly (17) and (18), can be

presented in the form, using once more the fact that the EAB’ QAB
lower and ralse vector indices,
B (M) ,(B) AR (19-1)
- WA R - -
_BM _ M B (A)(R) -
€ = h(A) h(R)€ (19 3)
- (4) (R) -
“pM = By " By T €(a)R) (19-4)

As it is clear, the equations (10), (11), (12) and (19) present
the same behaviour as the equations which define a set of tetrad
vectors in the fqur~dimensiona1 space. The only difference is that
here we deal with an anti-symmetric ¢ playing the role of a "metric

H(8)

tensor®, and the h(A) and are complex vectors with two

components. We may call them by complex two=-legs instead of tetrads.

2., AFFINITIES AND CURVATURE IN‘S2 |
Following the usual method of tetrad calculus we may inter-

pret the equations (10) and (11) as defining two vector spaces
spanned respectivelly by the basis vectors h(A) and hA with

components
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Bia) (h(l)’ B(2))

h(2)
B(y) = h(z> 2
| h(1) h(2)

hA = (hl’ ha
h§1> p(1)
h, = h., =
1 (2) 2 (2)
By B2

The elements of these vector spaces are the vectors u = (uA) and

(4)y,

= (u In order to distinguish one from the other we used

the symbol 2 for the later one. We have, in free-index notation,

- ., (4)
u=u h(A)

* A
u=u hA
Therefore, we may define the covariant derivatives 2 of both
u and u(A) according the usual method,
A A B
= %
Uy um r' (20)
(a) _ (A) (4) (B) ‘
From the equation (3) we obtain
(4) _ _ (C),D (a)
hB;y by h(c);}.\ hp~ (22)

thus, the vanishing of h?B); implies in the vanishing of bé‘?}i .
We have

ALk A B (R) A
hBysp = By, * LR BB - A By By 0 (D)
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imposing the condition h?B) = 0, we can solve (23) for the AF°

ip
We find

A}f’?g) = gy bR LAy + 0y wlgy RN Y
The formula (24) closely resembles the relations which exist
between the affinity [ﬁ and the Christoffel symbols 3. Indeed,
the condition which conducts to those relationships, namely,?k)p-o
are formally similar to ours conditlons h(B) i = 0. In passage,
we note that the condition that the h(B) are constant under
covariant differentiation implies through (22) that the internal
metric components may be set constant under the operation of

covariant differentiation.

AB _ -
(A)(B) _ -
€; -e(A)(B);lJ- 0. (25=2)

This in turn implies that the two matrices G ap ad /\,l( A)(B) &Te
symmetric. A direct inspection on (24) shows that this symmetry
property is satisfied for AF’ if f}l 1s symmetric. The symmetry
of f} can be obtained from its explicit representation in terms

£

of the matrices Oy

Still from (23) we may write,

h(AB),)L =- }AA R h(p) ”\}(43) (B) B(r) + (26)
Since the left hand side of this equation is a gradient, the
four-dimensional rotational of the right\hand side vanishes. This
furnishes us with an integrability condition for the existence of
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solutions of (26). A direet calculation gives

(K) _ .(K) .R
Sy - h R B(p) 5ﬁ, o (27)
where ~T A A
ol AN
p R v R A s A S
- . - + - (28)
Pff”R ax’  oxM rys];nr}-‘sr"a
(4) (a) ' _
S(A) =a/\ (R)az/\y (R)+4_(’A) /\(S) -AA) A(S)
v (R) oz Y B o(s)y 1 (R)T R Y (R)
(29)

But these geometrical objects are just the internal curvatures

defined by
A _ A _ pf B (a) _ . (A) _ 4(4) (B)
B T P}ﬁ/B L 1 5V Spv (B) u ?

and we have the result that S,ﬁf}) (B) is the projection of P)‘A’ B
over the space of the vectors u(A), according to the usual rela-
tions of the tetrad caleulus (by tetrad calculus we mean the

calculus of point dependent basis systems in four-dimensions). As
it is also clear, we can obtain the equation (27) by using (24),
(28) and (29), but the way that was followed for &he obtention of

(27) looks more elegant to us.

(4) (4)
We finish this section by recalling that /\H (B) and S}“, (B)
may be written in terms of the four-dimensional objects { fd.} and

A
RF vpo by using the formulas which connect l-)‘l g and P}fy g With
R . '
JoS 9 B



We may use the two vectors on 82 defined by

= B(y)s Li=hiy) (30)
according to the condition (1) they satisfy
JL=7, h=1 (31)
with the vectors J and L we form the mixed quantities
K, = /fB Iy = chAB Tg (32)
Mﬁ )JAB =9, BT (33)

where a bar over JB and LB means the conjugate complex of those
quantities. The two separate relations (32) and (33) may be

written as a column as

(1)
¢(R)F \> Q > By(R)
(z);x

from (32) and (33) we get,
Kp K = 90 Puy Taler M5 =" %)) Ll
| (34)
‘K%}‘R%) = az}fa 0‘% Iz Lg (35)
Using the equations ‘
0P ra B o zg B )
We get for the above expressions (34) and (35),
Kye Ky ==K,. Ky
Myo My =M. My

Kye My + K0 My = 2g,,
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These equations show that (Kﬁ) = K'l and (Mﬁi) = Hﬂ are a set of
eight vectors of Szg- The symmetrized scalar product of the
vector Kp by the vector HQ gives Zgﬁyas result. Multiplying
(34) and (35) by g} we obtaln

L xi= n/A* H?* =0 | (37)
Ky Yy o= 2 6 (38)

The equations (37) show that the Mi and the Ki are a set of
four~vectors of the four-dimensional space with a null norm.
Bach one of those vectors is a complex vector, so that we have

in all four complex null vectors.

Finally, we may write

K"“ = gl & A8 7, (39)
nﬁ = ;" éwAé I, (40)

where the %; are the Pauli matrices for o equal to 1, 2, 3 and

the two-by-two ldentity matrix for o. equal to 4.

The Hﬁr) are the tetrad components in the four-dimensional

Space, satisfying

() () o

H,A, By Bua™ 8y (41)
where g, , 1s the metric of specfal relativity.

From the definition (32), or similarly from (35), we may re-
obtain directly the relationship between the curvature tensor

A
RYvy and the P/fyB as the integrability condition for the
existence of solutions of

A

piv

0 ’ (42)
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(this condition follows from o-ﬁfff
h?B);y = 0). Indeed, from (42) we get

A _ A'} . ra Kﬁ
KF’V §FV Kg F; R ”zs
and the condition that %ﬁ’”ﬁ = KﬁaPV gives as result
A : -
vang*'P(fVBKI; =0 .
Using again (32), we find after some calculations

A _1A AS _M
p‘gyB-%BW,%\ ol (43)

= 0 together with our conditions

which is the well known relationship between these two curva-

tures 40

4. THE RELATIONS WITH THE TETRAD FO TION IN THE FOUR-DIMEN-
SIONAL SPACE

So faf we have stablished a calculus of local basis systems
in SZ’ with the same general properties of the tetrad calculus
in four-dimensional space. However, such similarities are only
possible up to some extent. In the usual tetrad calculus the
réle of the metric is substituted by the tetrad.* In our present
formulation, what substitutes the meﬁric is not the tetrad
(or more properly the complex-two legs) but a combination of
these quantities as is shown in the equations (32), (33) and (3}
That is, the role of the metric is taken over by a set of hybrid
quantities displaying a vector and a spinor index. Such quanti=-
ties are complex four-vectors with a null norm, and are

simultaneously vectors on the sympletic space. If we write,
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fovten
e |

we obtain from (37)
V};VﬁwJK‘Jlﬁt:O
vﬁ;ﬁ+;§v‘;=o
TR
wﬁw?+wﬁw§=o

which are relations limiting the total number of independent

components in the Kﬁ and Mﬁ o

It is also interesting to note that we may construet a new
set of null four-vectors by taking the scalar product of the ;ﬂ
and the M}lwith the two-legs,

a=JoK}(=OﬁBJ é,

R A
= =  AB .
b'u - LOKP“ O.H LA JB ?
= =  AB .
C}‘( = LoM/“\"' O'/A L B ?

all those four-=vectors are null four-vectors since the matrices
multiplying O}fB in the above equations are singular Hermitian

matrices.

We now stablish the relation existing between the present
formalism and the usual tetrad formalism. This relationship
will be stablished by means of formulas relating the curvatures

on both formalisms.

Starting from the relation (43), and using the formula from
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the tetrad calculus which relate the Riemann tensor to the curva

ture in terms of the tetrads, the quantity T & )(P) defined by

)
£, - goyc})J ) M)o

Which has the form

B B BR) T}(:‘;)(P) . (44)
We get,
l;fyR NLFEILNY & n }fﬁ)u) ) (45)
from (27) we have
‘;ﬁ r = Boy bR 8IS0 gy - (46)

These last two equations allow us to express the curvature

Fy)(M) in terms of ﬁ%)<ﬁ)9 which is the relation we want to

obtain.
(c) 1 (c) B o)
Sy 7R Han “PAS % SB )f; ([3) (47)
As it can be shown (see the appendix),
h(B) S—AS = aM(B) '.-"-"s +K(B) is (48)
A A (A) A

so that

(c) 1 | |
-1 [gexp) (e ()
Swon T2 <K P Moyiey - ¥ PK(H)(%)) Tw(m

with :
MC) (B) . é(ac- 14(;)

?

M
(M)(x) () S

similar formulas holds for the K(C)(ﬁ) and K(u)(«) o
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APPENDIX
From the equation (32) we obtain, by taking the projection on
the two legs,

g(B) - p(B) gA o h(ﬁ) AR I

A A TR
which gives
(B) _ ,(B) g AR (=) ¢
K;.n =h"," o H( h1-'((1)
thus, £(B) (B) _ (B) (4-1)
Ky = H@) K, =h ;\ hau)

Similar calculations starting up with (33) give

WB) = (B &
Mia) =B M B2y (4-2)

multiplying (A1) by E5(1? on the right hand side, and (A-2) by
55(2) 2150 on the right, and adding up both relations, we obtain

(B) =S(1) . 4(B) =S(2)_ ,(B) ¢ AR S(M)
K(a) b * MGy R Ry o7 bpeyy B

since
S(M) S
hp(my b7 77 = = By
we get
(B) o AR _- (B) =R(1 (B) ¢R(2)
By Oy = (K(A)h( ’ e u3) B > (4-3)
but

R(1) _ (1XK) B . _,B . _ 1R
IR Big) = = Bgy ==L

R(2) _ .(2)K) ,R _ .,R _
h =€ bigy = By = T

therefore (A-3) takes the form of the equation (48) of the text.

® % %



51

REFERENCES:
1. C. P. Luehr, M. Rosenbaum - Journal Math. Phys., 9, N.12, 2225 (1968).
2. In this paper we will consider the structure of internal spaces from the
point of view of general relativity, that is, for spaces with curvature.
3. H. S. Ruse -~ Proc. Roy- Soc. Edinburgh, 51, 97 (1937)0
P. Bergmann - Phys. Rev. 107, 624 (1957).
4e Cs Go Oliveira, C. Marcio do Amaral - Nuovo Cimento 47, 9 (1967).



