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ABSTRACT

We present a model of geometrization of electrodyna-
mics of doubly charged particles in the continuation of the

Einstein programme of unification.



1. INTRODUCTION

More than fifty years ago Einstein proposed to treat
the gravitational phenomena as a manifestation of the dynamical
structure of space-time. The success of Einstein's General
Theory of Relativity brought the hope that one could interpret
all known long range interactions (e.g., gravitation and electro-
!dynamics) as some special geometric properties.

Unfortunately all tentatives of realization of such
complete classical geometrization have fajilled. In order to
understand the reasons of such failure in the case of electro-
dynamics we should look for the reasons by which the geometri-
zation of gravity has succeeded.

It is not difficult to convince one self that the main
support of Einstein's geometrical theory of gravity rests on the
equivalence principle, as it appears in E8tvos ’experiment.

This shows that there is an universal constant relating all
existing particles which consists in the fact that the ratio of

the inertial mass to the gravitational mass for any substance

turns to be completely independent of the substance. This simple,
precise and direct experimental fact is on the basis of the

success of the geometrical scheme of the gravitational interaction.

It seems to me that the difficulty in a corresponding
geometric treatment for the electromagnetic field is related to
the fact that an explicit universal relation for charged
particles has not yet been pointed.

Recently( 6)

I gave some arguments which could change
such situation. The main point rests in the simple observation

made by some authors( 3) which tell us that electrodynamics is
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not incompatible with the existence of doubly charged particles.
These particles which have both electric (e) and magnetic (b)
charges were called dyons by Schwinger( 2). We go one step
further and assume that all existing particles are true dyons.
In order to conciliate such property with experimental
(3)

observations there must be an universal constant, call it vy,

which is given by the ratio of the magnetic charge to the electric
charge of any real particle(*).

If we give, in our theory, to the constant y the same
status that the inertial to gravitational mass ratio have in
Einstein's theory, then it seems that necessary conditions to
undertake the geometrization of electrodynamics are created.

Let me stress out here that our present geometric
scheme is strongly dependent on the fundamental constant vy.

Of course, the existence of a universal y is not a
matter of convention but it is a subject which should be decided
only by experiment.

In Section II we make a short review on Electrodynamics
of doubly charged particles.

In Section III we present the Cabibbo-Ferrari descrip-
tion of magnetic and electric charge particles which uses two
four-vector potentials to describe the electromagnetic field.

Section IV introduces the GCR manifold which is a
special restriction on all possible geometries of Cartan type
which admits a torsion tensor in the affine connection.

Section V presents a model for a dynamic of the

(* . o

)We remark that the universality is required for real accesible particles.
It makes no restriction on the analogous ratio for hidden particles, like
quarks for instance.



Restricted Cartan Geometry which is equivalent to Maxwell’'s

electrodynamics of dyons.

We end with Section VI in which some comments on the
present work is made and its possible relations with others

models is envisaged.



2. ON ELECTRODYNAMICS

Some years ago Dirac (1931)contemplated the possibility
of extending the dual symmetry of electric and magnetic
field in the presence of charges by postulating the existence
of a new particle carrying only magnetic charge. The main
consequences of this hypothesis was the creation of a simple
and precise explanation of the quantization of the electric charge.
Such spectacular result has inhibited the appearance
of alternative models of extending the symmetry of Maxwell's
electrodynamics.
It was only at the sixties that new forms of looking
at the invariance properties of electrodynamics has appeared.
In Dirac's approach the electromagnetic field Fuv
obeys the modified set of equations
FHY

v = e JH (2.1a)

*

F“V]v = b k¥ (2.1b)

in which the introduction of a particle which carries pure mag-
netic charge b is postulated in order to preserve dual symmetry

in the presence of charge. The dual map makes Fu to go 1into

v

Fuv given by

v

4"

Fuv = cos® Fuv + siné Fug (2.2)
. . . . ) -1 po
in which the dual Fﬁv is defined as usually: Pﬁv 5 euvaF
in which € v is the completelly anti-symmetric

Levi-Civita symbol. Invariance of equations (2.1) under the dual

map is obtained if the charges suffer a corresponding rotation



cos® e + siné b

(2.3)
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Neverthless, instead of postulating a new particle,
one could interpret the above symmetry in the context of doubly
charged particles (dyons). Indeed, it is not difficult(S) to
show that the observed charge in the case of a dyon of magnetic

1/2. Thus,

charge b and electric charge e is given by q = (ez+b2)
for a dyon which obeys the symmetric equations (2.1) with

k¥ = J¥ it becomes a matter of convention to say that a given
particle has only electric charge or only magnetic charge. This
is related to an arbitrary choice of the dual angle 6. In this
vein we can interpret the electron as a particle with double
charge (e,b) and by fixing the angle 6 = arc tg b/e we regain
the usual pure electrica11§ charged particle.

This is the case for a single particle. Now, let us
turn to a collection of interacting doubly charged particles
(ei,bi). It is not difficult(s) to show that in order to recon-
ciliate the idea that all existing particles are true dyons
with observation, we must require that the ratio (b/e)i for any

particle i must be the same. We will call this universal cons-

tant as Y:

Harrison et al., in the early sixties, argued that a
limit on the examination on the earth's magnetic field gives

for the ratio b/e for the electrons and protons the result that
24

) -
®Jelectron © proton
a rather good point in favor of the existence of a constant Y

< 10°

(in Gaussian units), which is
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Recently, Strazhevcg)

presented an analysis of the
quantum effects of an electrodynamics with doubly charged
particles. He shows that Lorentz invariance imposes that equi-
valence of the theory of usual one-charged particles and the
theory of dyons is obtained only if there is an universal ratio
among the charges, that is, only if Yy is a true constant for
all existing particles. This corroborates the classical analysis
made previously by Harrison et al.

In the present paper we will show that it is possible
to geometrize the theory of doubly charged particles in the

realm of a Cartan geometry. Before to elaborate this point let

us discuss the question of electromagnetic potentials.

3. THE POTENTIALS

In the traditional way electrodynamics is described
by means of a four-vector potential which is related to the

field Puv through the expression

F =W

v Wl (3.1)

- WVIU

Either in Dirac's model or in the electrodynamics of

dyons, it 1s no more possible to maintain equation (3.1). The
*

reason is simple that the dual F*Y is no more divergence free.

Dirac and others have solved this problem by conside-
ring the existence of strings, that is, a line of singularities
for the potential.

However there is an alternative way to define poten-

tials without introducing such unusual features envolving
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strings. The idea can be better explained if we uses the
language of differential forms.
Let F be a 2-form which in a natural basis is written

as F = F dx* A dx¥ . We identify Fﬁv with the electromagne-

uv
d. Let us limit our analysis, at this stage, to the

S

tic fie
case in which the support of F is compact. Then, there is a
theorem due to Hodge and de Rham which states that it is possi-
ble to find a one-form W and a three-form Z such that, up to

an harmonic two-form, we can write

F = dW + ¢6Z (3.2)

in which d is the exterior derivative and § is defined by
8Z = *d*Z. The * operation maps the three-form Z into its
corresponding one-form dual *Z (7.8)

This fact is on the basis of a suggestion by Cabibbo

and Ferrari to describe the electromagnetic field in terms of

two potentials Wu and ZU' They set

- po
v ulv Wvl + € Z (3.3)

u w o “plo

This expression admits an extended gauge given by the map:

u
(3.4)
Z -~ 1 + B
H u M
in which A" and BY satisfy the null field condition:
- PO -
Au[v Av]u + euv Bplc 0 (3.5)

From equation (2.3) we conclude that in order to annihilate the
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magnetic charge we have to do a dual rotation of an angle
6 = arc tg (b/e). The gauge corresponding to this choice for
the dual angle will be called the Maxwell gauge (M-gauge, for
short) .

In the framework of the two potential theory dual

rotation is achieved by setting

ny
W - W = cos® W + sinb Z
H M M H
(3.6)
o
Z > Z = -s5in® W + cosb6 Z
u u u U

In the M-gauge, it must be possible to reduce the two potentials
to one single four-vector, that is we can make %p, for instance,
to vanish. Such reduction must be independent of any special
charged particle and thus it is possible only in the case the

ratio b/e = y is an universal constant. In this case we obtain

7 =y W (3.7)

We conclude that the one-potential theory is the limit of the
two-potentials theory if these vectors are parallel, and if we
can choose a gauge, independently of any charged particle , such
that the factor of proportionality of the two potentials measures
the universal constant b/e = y. This fact will be the main

point of contact between the electrodynamics of dyons and the

Cartan geometry, as we will see later on.

4. RESTRICTED CARTAN GEOMETRY

There has been an increasing interest on Cartan geome

try in the last years. The main reason for this seems to be re-
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lated to the possible role of torsion in avoidance of singula-
rities of the geometry. It has been argued that in the frame-
work of standard Cartan-Kibble-Sciama theory, in which torsion
is algebraically related to the spin density of matter, cosmolo
gical models of Friedmann type with a minimum value for the
radius of the Universe can be elaborated. Some explicit simple
configurations for the spin density of the global matter has
been presented which exhibits such property.

In this theory torsion does not propagate: in the
absence of matter with spin, it vanishes.

Others models, using Cartan geometry, have been pro-
posed either as a modification in the coupling of matter with
‘gravitation or as some new theory of gravity.

In a very different context in the present work, we
advocate a model in which torsion is the key property to geo-
metrize electrodynamics of dyons.

Let us review some basic useful properties of Cartan
geometry.

A covariant derivative (noted by double bar | ) is
defined by means of an affine connection Tﬁv. We write, for an
arbitrary co-variant vector Bu:

9B

- U _ € o _ _ vE€ o
Bl — N B ., - Kj, B (4.1)

The affine connection is split into the Christoffel symbol
€ €
{va} plus a tensor K'

€
Vo

€
Vo

T ={\fa} + K (4.2)

The derivative in the Riemannian associated space is denoted by
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Defining the torsion as the anti-symmetric tensor

€ _ n€ _ nE
Tva © Fvu Tav (4.3)
we obtain
p _ LPu € pu € P
Kav T8 780" i 8 8™ v T Ty (4.4

Remark that due to the conservation of lengths in a
parallel transport we must have the identity

prv * Kvxp =0

. . - u
in which prv = gpuK Ay

The torsion tensor Tauv has 24 degrees of freedom. It is possible
to decompose it in the irreducible parts and write

A

1 o a 1 o
" LV + 3 GUTV GvTu} -3 € uvkz (4.5)

in which Lauv is a trace-free tensor (with 16 independent compo-

nents), the trace T and the pseudo-trace Zu are defined by

o

T =T
av AY)
o

T * = X
av Vv

We remark that if we do not want to introduce new
fields besides electromagnetic and gravity, we have to freeze
some of the 24 degrees of freedom of the torsion tensor. As we
saw 1in the previous section we should permit at most two

four-vectors (besides the metric tensor gﬁv) and thus it 1is na-

tural to set
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o -

L nv o 0 (4.6)
When this condition is satisfied the geometry will be called a
Cartan Restricted Geometry (GCR). In this case the contortion

tensor reduces to the form
0 _ 2 [ep _ P _1 o a
K AV 3‘_§kTv T gké] 3 % Ava Lo (4.7)

Let us make some comments on this geometry.

H

If we are going to identify the trace 1" and the pseudo-

-trace " with the two four-vector potentials w" and z" then we
should be able to demonstrate that coupling the electron, for ins-
tance, with the electromagnetic field reduces to an extension of the
equation of the electron in a flat Minkowskii space-time to the ge-
neralized corresponding equation in a curved geometry of the type
GCR. Let us show that this is precisely that happens to occur.

We remark here that we will follow the approach of the modern gauge
theory and start with a massless electron. Its mass will appears

as a consequence of a Higgs mechanism. Thus we consider here only
the electrodynamics of massless particles.

The extension of Dirac's equation to a curved geometry

assumes the form

a —
Y*D ¥ = 0 (4.8)

DV =L -1y (4.9)

or displaying the complete set of indices

A v

p vyt = - A
ol

B
o} o Bly (x)

9X

The internal connection r, can be obtained by a slight modifica-

tion of the Fock-Ivanenko coefficients.
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We define a local tetrad system eA)J and extend as
usual the elements of Clifford algebra of the matrices ya to
space-time dependent functions v*(x). Then we obtain the metric

tensor guv(x) by the anti-commutating relation

{YU(X) , Yv(X)} = 2g,,(x) 1

in which 1 is the identity of the Clifford algebra.

The conservation of length's condition guvHA = 0 can be obtai-
ned by setting(lo)
5 _ oy, (x) c
LYy () = P FvYe () + v, (T () - T (x)v, (x) =
(4.10)
= 0

From this condition, and following Fock-Ivanenko we obtain the

internal connection FvAB:
3y Y
-1 VSN S VIR € M, _ U
', = 3 (;x“ Y Y Y + Tvu(Y Ye T YY) (4.11)

or, using the decomposition (4.2) and the Fock-Ivanenko symbol

F(grav.)

N we can re-write eq. (4.11) under the form

rav 1 e
T, = rgg ) 3 K W(Y“Y8 - v v (4.11")

The equation of motion for the ¥-field of the electron

is obtained from the Lagrangian
L = /g ?YUDUW (4.12)

The coupling of the ¥-field with the Cartan geometrical
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objets T and Zu is contained in the new term of the Lagrangian

given by

€

N
L. 3 ¥ yv© K o

(v = vy Y (4.13)

Using (4.7) into expression (4.13) a straightforward calculation

reduces L. into the form
int

L. . =1i9% yMy ¢+ % ¥ Yoy ¥ 5% (4.13")

u

in which we have defined Ys by the expression:

o o
Y YBYpY

oo i .
Ysg 41 “oBpo

We remark that the interaction (4.13') does not violate parity

once the pseudo-vector =% couples only to the pseudo current.
P P y p

Equation (4.13') induces us to identify * and M

with the potentials w" and zV¥ of the electromagnetic field. From

dimensional considerations we conclude that we must introduce a

constant B8 with the dimension /2 -1z (mass)—l/z(length)_l/z.
We set
3
=28 W
w3 B u
(4.14)
3
I == A
u 2 B u

If the constant B is not a new independent one but should be
constructed from others constants, then a good candidate is

given by

g = velocity of light

=4 &
charge of the electron @2 &

in which a is an adimensional constant.,

With this choice, the Lagrangian (4.13') reduces to
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the usual theory of a doubly charged electron. Let us turn now

to the dynamics for the torsion tensor.

5. DYNAMICS

In the previous section we were conducted to identify
the trace ahd the pseudo-trace of the torsion with the potentials
of the electromagnetic field. The next step into the geometriza-
tion scheme should be the description of dynamics.

In the search of a Lagrangian which describes electro-
dynamics and gravidynamics two remarks are very important. The
first one is related to the fact that although the curvature

tensor R contains terms which are quadratic in the affine

Buv
connection sz, its contraction Ruv does not contain mixed terms
of the trace and the pseudo-trace. Indeed, a straightforward

calculation gives:

R =R+ o

NEN
-
+

o

uv UV TRV Toa 8y 79 Tty T
(5.1)
8§ 2 22 2 1 o
9T 8,773 z gv o Zuzv T3 E v ZalB

in which Ruv is the Riemann curvature tensor constructed only
with Y and its derivatives, the symbol; as before represents
co-variant derivative in the associated Riemann space. The anti-
-symmetric part of (5.1) gives:

R - R = % (t - T + % e PO

TRV ViH uv plc) (5.2)

If we compare this form (5.2) with the previous decom-

position of the electromagnetic tensor Puv given by (3.3), then
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we conclude that the previous identification of the two traces

(TU,ZM) with the two potentials (Wp’zp) induces to the relation

F = (constant)(Ruv—R ) (5.3)

bV VH
From (5.3) we note that the general form of the Lagrangian to
describe the dynamics of the electromagnetic field should con-

tain, at least, quadratic terms on the curvature tensor. Subs-

tituting (4.14) into (5.1) we write

i 1o 1 12,
Ruv - Ruv * B [@u;v v ‘o Suv 2 Wuwv g W &y
(5.4)
1 .2 1 1 oaX
R I AT A u\)zocl)\:[
and contracting to obtain the scalar R:
. 3 .2 3 .2

R =R+ 8 [%w“;a e W -5z ] (5.5)

In the search for the Lagrangian for the geometrical
objects of the GCR one should use an analogy with the corres-
ponding terms in the Riemannian case. There are three possible

terms, in a Riemann space, which are quadratic in the curvature

tensor:
- p2
La = R
_ O]J\)o
Iy = RR (5.6)
L, - RNVO%R
c uvpo

However, under a variational principle these three
terms are not independent. They satisfy an identity which redu-

ces the most general form to a combination of two of these La-
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(5.7)

grangian. We must have the identity:

s [Fg e - o [Fa ooy - 1]

Thus the most general Lagrangian has the form

L = mLa + an

in which m and n are constants.
We write, for the total quadratic Lagrangian with source:
- /=5 (mR2 R HVA
L = V-g (mR” + nR"'R__ ) + V-g [
v m
With the stress-energy tensor Tu defined by Tuv = 6L/6g“v, it
is straightforward to obtain that the trace of the stress tensor

satisfies the relation
T =(m+ 3n) [ |R (5.8)
Thus, if the source of the field contains massless particles
(radiation) then either [j R=0 orm¢+ 3n = 0.
SHV2 _ 1 52 S
Ruv 3 R constitu
space, associa-

We see that the combination R
tes a very special combination, in the Riemann
Such result suggests the investigation of an analogous

ted to radiation.
combination of the quadratic Lagrangian in the Cartan space.

From (5.4) and (5.5) we obtain
uv _ 1 52 ¢ Suvg _1 22 2 uiv ~
RuvR 3 R = R Ruv 3 R™ + B _y Wu;v
2 _1 - 2 - 'n\) ' "u\)
(Za;B ZB;a) R Wuwv + R Z 7 +
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1 ..u 2 o B 1,22 1 U2 ]
+ > W - 77 + WQ;B Z27Z% + 5 Z°W 5 (ZpW ) _J (5.9)

in which the symbol % means that these terms are equal up to
a total divergence term.

At this point one should proceed and evaluate the
equations of motion from (5.9). However, in order to simplify
our exposition, let us work in the Maxwell gauge and assume
that the two vectors are parallel (reducing the two potentials

to the usual one potential theory) by setting as in (3.7)

Zu =Y Wu. In this case (5.9) reduces to
wv _ 1 52 = Suvl _ 1 32
R R s R® 2 R™R - 3 RT+
1 YZ sV Vi 2 2uv
+ (7 - —4-) (W - W )(WU;\) - W\),u) + Y R WUW\)
Set fuv = Wu;v - W\);u to obtain
uv 21 52 = suvg _ 132
R Ruv 3 R = R " 3 R™ +
(5.10)
1 YZ uv 2 2uv
+ (7 - T) f fu\) + vy R WUW\)~
If we define
Fuv 5'¢(fuv - qu%)
in which ¢ and Y are constants, we have
FF*Y 2 6201-vY) £ £V + total divergen
" = v gence
and thus
1,2 s tuvs 1:2 1 (2-v%)
RMYR- - 2R = RMR - 2R + 2 L7V ) g gHv
v 3 . 1V 3 4 2 2
H o° (1-y7) WV
2 . (5.11)
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Finally, the dynamics of the electromagnetic and the gravita-

tional field is given by:

1 2 . ouv 1 2 u "
L =g /-g {R + 0 (RuVR = R )} + eJ Wu + bJ Zu * Iy

3
(5.12)
in which o is a constant with dimension of a length.
In the case Ruv = 0 we obtain for the fuv-fleld:
A u
f Ly eOJ
* (5.13)
2V =0
3V
in which we have defined the renormalized charge e, = 2 {2§+Yb}
Y& -2

Equivalently, using the variable Fuv instead of fuv we have:

/AN U
F 3 0 €y J
(5.14)

*
HV H
F . Y ¢eo J

Thus, we conclude that the geometrization scheme is possible

magnetic charge _
electric charge

if all dyons have the constant ratio

Note that the choice of variable fuv or Fuv is arbi-
trary because they are related by a dual rotation and the system
is invariant under such transformation.

Remark furthermore that the meaning of the constant Y
which measures the proportionality of the trace and the pseudo-
-trace of the torsion in GCR is nothing but the universal cons-
tant ratio of the magnetic charge with respect to the electric
charge. The existence of such constant and the assumption (to

be proved by experiment) that Y 1is independent of any dyon

supports the geometrization scheme presented in this paper.
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Let us come back to the Lagrangian (5.12). We have
introduced the constant ¢ for dimensional considerations. In or-
der to obtain the correct Maxwell 1limit (in the case the asso-

ciated Riemann curvature Rﬁv vanishes) we impose

in which B8 is the constant introduced in (4.14). Using the

tentative value B = a % (a is an adimensional constant) we obtain

2

o~ = 4% k e2
a

We see then that the linear Lagrangian is coupled to the gravi-
tational constant k and the quadratic Lagrangian is coupled to

the electromagnetic constant (the unit of charge) e.

6. CONCLUSION

The description of Electromagnetic field by means of
two four-vector potentials is an almost direct consequence of
the dual symmetry of the theory.

The usual one potential model can be re-gained by a
choice of the dual angle (which we have called Maxwell-gauge)
which annihilate the magnetic charge and leaves a pure electric
charge for any dyon.

Such description could well be accomodated in a
Restricted Cartan Geometry, which contains only two independent
vectors: the trace and the pseudo-trace of the torsion. In order

of this identification to be independent of any particular dyon,
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the ratio of the magnetic charge to the electric charge of any
dyon must be an universal constant. Such universality, that

is the main support of the geometrization scheme, makes the
difference between electric and magnetic charge a pure matter
of convention. This indistinguishibility has the same formal
content as that which occurs between the inertial and the
gravitational mass and which is on the basis of the geometriza-
tion of the gravitational field.

Let us make now a remark on the equation of the elec-
tron (4.8). We have shown that the coupling of the electron with
the electromagnetic field is obtained as the equation of a free
particle in a curved Cartan restricted geometry. One should
pehaps ask what happen if the particle described by equation (4.8)
does not acquires a mass, like the neutrino, which does not have
a direct electromagnetic interaction. This implies that the total
observed charge of the neutrino vanishes. It does not imply that
both the electric and the magnetic charge of the neutrino vanishes

but only that q, = (e2 + b\z))l/2 = 0. In order to conciliate this

v
observed fact (qv = 0) with our model we have to require that the
neutrino ratio of the magnetic to the electric charge is a pure

imaginary number. Thus we are conducted to state that there are

two classes of dyons, which are characterized by the ratio

(a) magnetic charge 2 - 1
electric charge
. 2
) magnetic charge = -1
electric charge

in which we have normalized the universal constant vy.

The fact that the magnetic charge of the neutrino
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(for instance) is an imaginary number is not in contradiction
with observation once only the total charge q is a direct obser-
vable. One may pehaps be unsatisfied with the introduction of

an apparently unobservable. The unique defense in favour of
this,. that I can say is that: it works.

Using this value for the neutrino total charge into
the equation (4.13') it is possible to annihilate the interacting
term and thus eliminate the influence of the torsion into the
neutrino equation.

Let us make another remark with respecto to the Lagran-
gian (5.12). The linear term on the scalar of curvature is in-
troduced in order to reproduce Einstein's theory as a first
approximation. If the torsion is a constant then this term
reduces to R + A in which the constant factor A equals
% 6(1—4Y2)W2, for W2 = constant. Thus a constant torsion would
renormalized the cosmological constant.

It seems worthwhile to remark that the model we present
here induces a correction on the wusual Maxwell theory by the
presence of the non-minimal interacting term é”kuwv on the
Lagrangian (5.12). A similar term (RWHW“) has been analysed

(6)

recently and it has been shown that in a conformal flat
universe of Friedmann type, this factor induces a non-singular
behaviour of the Cosmos by allowing the radius of the Universe
to attain a non-zero minimal value.

Finally let us emphasize that we have learned from
the last fifty years that the structure of space-time depends

on the universality of the basic characteristics of the existing

interactions. This has been noted the first time by Einstein
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with respect to the universal equivalence of inertial and
gravitational mass and sketched out here in the case of the
constancy of the ratio of the magnetic and the electric charge,
for Electrodynamics.

These two universals do not exhaust the reality, but
they contain a firm and clear basis on the observation which
can be rejected or confirmed by experiments.

Any further tentative of modification of the structure
of space time should exhibit ab <nit<o, a new corresponding

universal. This is the continuation of the Einstein programme.
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