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ABSTRACT

A time~independent spherically symmetric solution of
a general relativistic nonlinear field equations is obtained.
It is shown that.the nonlinear negative energy scalar field has
a localized solution with a positive mass. It can be regarded
as a 3-dimensional extension of the usual-kink solution on the
Schwarzschild geometry, connecting the two vacuum states from
one assymptotically flat space to the other through the Rosen-

~Einstein bridge.

1. INTRODUCTION

Recent development of nonlinear field model of elemen
tary particles brought an interesting view point on the origin
of their mass spectrum and structure. A stable and static so-
lTution of nonlinear field equation has been shown to have a
particle character and is called "kink" or ”soliton"]’z.

The simp]est‘version of such theories is the so-called

4 . . . . . .
pY) modei. For the one-dimensional space case, its kink solution

nas several interesting properties. One of them is that it is



topologicaliy separated from the vacuum state §o that it is
considered to represent a fermion in this spacez. Such an

idea to define a fermion as a state topologically distinguish-
able from the vacuum is very interesting and useful to, for
example, explain the conservation of baryon numbers.

However, unfortunately a simple extension of'this model
for a 3-dimensional case encounters a difficulty. The pseudo-
-virial theorem3’4 does not permit a static, nonsingular, sphe
rically symmefric solution if the potential term of scalar field
is defined positive definite.

On. the other hand, the formulation of the problem in
the view of general relativity brings a new feature in the

theory4’5.

The point is that the effect of general relativity
alters the curvature of the space-time as well as its topolo-
gical structure, hence the pseudovirial theorem is also affected.
In th{s paper, we show that the general ré]ati?istic
treatment perm}ts the kink-1ike solution of the simple A¢4
source-free Lagrangean. THis is possible only if we introduce
a Schwarzschild type geometry of the space-time structure.
In § é we briefly review why the non-general relati-
~vistic A¢4 theory does not have a 3-dimensional kink solution.
We then show in §3 how the effect of general relativity alters
the situation. In §4 we show some numerical ekamp?es of solutions

and discuss the consequences.

2. FIELD EQUATIONS

We write the Lagrangean density as

e, e et

iy



<D = (-9)' /" [% R+ els S ¢ ¢®® - V(Sz){] = 8uG/ct L (1)

where g is the determinant of the metric tensor guv’ R the scalar

curvature, S a scalar field, and the hotation S o denctes the

derivative of S with respect to the coordinate x* .V is d poten

tial only depending on Sz, and € is the signature of the field

S, and takes the value +1 (uéua] field) or -1 (ghost field}.
For a static and spherically symmetric case, we may

choose the line element as

2

4l = eZn(ﬁxo)Z _ e2a

(dr)? - ¥?2 d? (2)

. . . : . N
where n and o are functions of radial coordinate r. A

Together with the definition of line element (2) ,

Einstein's equation reduces to the following equations4’5:
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Ny T € r 51 T Ay ' : <3).

Zru.l = g ]"‘2 S.IZ + 1 - (1 - EY‘ZV) eza s (4)
‘ 20, 2 _

Sy7 + (ny-oq + 2/r)Sy - Se™" dV/dS™ =0 (5)

where the subscript 1 means the derivative with respect to r. In
the weak gravitation limit, the equivalence of energy source and

. . . e 4 .
gravitation source gives the pseudo-virial theorem written as

<S 2> + 3 <V> = Q0

: , -~ (6)

where <A> means the total space integration of A:

<h> = dy j r2 dr A
0



Thus it is clear to see that the above pseudo-virial
theorem does not permit a nonsingular stat%c and spherically
symmetric solution, in the weak gfaVitation Timit if V is positive
definite. The situation is found to be the same even in the
nonlinear limit of gravitation provided that the metrics are non

. 4
singular everywhere

In this paper, we investigate the potential

2

v(s?) =& (% (1 - 85?2 (7)

where f and u are constants. Then the classical vacuum state of
the field is given by S = if_]. Eq. (7) is nothing but the

4@
%

usual A¢4 Lagrangean term except the additional constant

% ud/fz, which is necessary to eliminate the gravitational source

at the classical vacuum state of S.

For the sake of convenience we introduce new variables,

/
!

X = ouro, | (8)
yo=ofs o, 3 (9)
u= £y E - e*zﬂ . (10) |
v o (e L an |

From Eqs. (3), (4) and (5) we get

y" + 2y'/x = - [%(]-yz) + y' f_z(u/x2 - exvi}eza , (12)

u' = ex“(y'c e + vy, (13)

where a prime denotes d/dx, and



2,2

e - 1 - f “u/x , v = % (1 - y%) (14)

Note that in the 1imit f » « with finite u, Eq. (12)
tends to the non-general relativistic x¢4 model, and hence
there is no nonsingular solution which satisfies the boundary
condition. To alter thé situatidn, the second term in the paren-
thesis of the right-hand-side of Eq. (12) should be predominanf
some where. However it was‘found4 that -the smallness of f alone
(strong gravity) is not sufficient to have a consistent solution
as long as metrics are nonsingu]ar. In the following section we
show that the introduction of Schwarzschild type geometry in the

spacetime structure permits static nonsingular solutions for y.

3. SCHWARZSCHILD GEOMETRY

As stated before, the set of equations (12), (13) and

- (14) does not have a nonsingular solution which satisfies the
boundary condition i.e. |y| tends to unity for large x, as long

2as the metric potential o is finite everywhere,

20

Now let us drop this condition so that e may have a

singularity at x = Xg By a simple order analysis of singularity,

we find that a consistent solution is possible only if

eza « (x-xd)']. This nothing but the Schwarzschild type singuia-

rity. It is well known that such a singularity in the metric does
not imply any physical singularity of the spacetime structure.

It can also be seen that the behaviour of y and u near x = x
1/2

0

are given as y « (x—xo) and u = const., respectively

Then we write



y = “/5 Z(Q) s (]5)
e %% = p E(p) o (16)

where p = X - Xg» and Z and £ are analytic functions of p near
p = 0. In order to maintain the order of singularity, we should
have E(0) # O.

‘Inserting Eqs. (15) and (16) .into Egs. (12), (13) and

(14), we get

z" = é% % - -%—— (J% - € xv{} Z

X
3
A I (17)
- E=E-‘E/ (18)
—f"z‘x S
u'—_-sxz{—}(2+2p2')2E+v}, (19)

«ith

v =2 (1 - pZ%) (20)

The boundary conditions for Z, E and u at p =0 (x=x0)

are determined by the following equations:

[;1--—-»;-——(—92~exv)_j,. -0, (21)
Bt e X Jp=0 ‘



" A straight forward but tedious algebra gives

u(d) = fzxol > ' (24)

£(0) = - (2 - ¢ x2 78y, (25)
0. . . . %

x,£72 2%(0) = - 2¢ . (26)

From Eq. (26) we conclude that the positive signature case (e=+1)

has no solution. For e = -1, we get
22(0) = & §% (27)
X
%o
‘ - 2 -
E(0) = - (2 + x2 £7%) (28)

0

The first derivative of Z at p =0, 2'(0) is also cal-

culated from Eq. (22) as a function of X6 and f.
' Thus for a given value of f, solutions are completely

On the other hand the boundary

determined specifying only Xo

condition y » 1 for x » o sets an eigenvalue problem for Xo

Note that if this boundary condution is satisfied, the metric

eza automatically presents the Schwarzschild asymptotic behavior

'GZQ > (1 - 2m/x)"} for x » o« , where m is a constant related

to the mass of the system. Thus, our potential Eq. (7) completely



specifies the mass without introducing any constant of integration.

4. SOLUTIONS AND DISCUSSION .

Egs. (17), (18) and (19) together with the boundary con
ditions at x = Xys can be solved numerically. For a given value
of ¥, the value of Xo for which y satisfies the boundary condition
at infinity is uniquely deférmined. In Fig. 1, three solutions
of y for different f values are shown. In Fig. 2 we show the
typical dependence of u and e 2% on x for the case of f = 1.

The asymptotic value of u, u(w) is related the mass

of the system M by

=
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where u(«) is a function of f. In Fig. 3, we plotted the quantity
[%-2 u(m{}1/2--versus f. We note that this quantity tends to

zero linearly so that u behaves as u ~ (f—'fo)2 near f = f, = 0.645.

For f < fo, it seems that there is no solution, although we failed
to confirm this because of the computational dif%icu1tf. In this

figure we also plotted xo/f2 as a function of f. For large f, it
is found thaf Xo behaves as Xy = 1.30 f2.

The metric potential n can be obtained from the equation

n' = % £72 (o2 {3% + X {] - ny'Z} . (30)

In virtue of Eqs. (21) and (27), we verify that n does

not have singularity at x = X Taking the boundary condition

n{~) = 0 we get

o s 4o
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n o= - % g2 J'{ezatniﬁ-+ X {] - xy*z}dx . (31)
N :

Zn

The time-component of the metric, e is shown also in

Fig. 2.
Because of the nonsingular behaviour of the metric e2n

at x = x_, the structure of our spacetime is different from that

0
‘of the Schwarzschild solution. The line element near r = o = xo/u
Ahas the form

ds? = A(dx%)? - [(1 e /e)Tdr? e dQZ:l (32)

rather than

;2

ds® = (1 - ry/r)(dx°) g

2. BT - ro/r)_] dr”

s rl dszﬂ (33)

where A is a constant (0 < A < 1). For r >> r,» the line element

has the assymptotic form:

dS? = (1 - 2m/rj)(d><°)'2 ) [“ - on/r)T!dr® e pf dQZ] (34)

In spite of the above difference, it is easy to see that our

space geometry still exhibits a similar topological structure to-

the Rosen-Einstein bridge6’7’8 on the spacelike hypersurface
x0 = const., i.e, two assymptotica11y flat spaces connected by a
throat7’8 of radius ro- Thus the square-root of the variable p

in Eq. (15) is equivalent to the singularity-free coordinate u of
Rosen and Einstein which was used to describe the topology of
the Schwarzschild geometry. The two assymptotically flat spaces

correspond to régions u >0 and u <‘0, respectively. On the other
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~hand,” we observe that our solution y = Vo Z(p) is a part of

an entire functioﬁ y2 = @ Z?(p). The counﬁerpart y = -V¥p Z(p)

is also a solution of the fje]d equations. Taking  -the branch

y = + vp Z(p) in one space (say, u > 0) and y = - V¥p Z(p) in
the other {(u < 0), we get an ana1ytic_fuh¢tion y defined on

this Schwarzschild—]iké geometry; Now we conclude that the entire
function y2 = p Z7(p) is a natural extension of the usual one-
~-dimensional kink solution in our space geometry, connecting the
two vacuum states from one flat space to‘the other through the
Resen-tinstein bridge.

It should be emphasized that the apparent singu?érity
in’eza at x = X does not imply any siﬁgu1ar behaviour of the
space geometry but it is'due.to the particular topological
nature of our space, which is completely nonsingular everywherea.
This is the reason why the radius of the Rosen-Einstein bridge
is uniquely determinéd without introducing any arbitrary integral

~constant when the two parameters p and f din the driginal
Lagrangean density are specified. The parameter u'] describes
the dimension of tﬁe system and f decides the mass of the

system except for the scale factor pf] in Eq. (29). If u_] is

-1 -53

not extremely small (u > 10 cm), then the value of f to

~give the order of elementary particle masses (= 10'24 g) s
practically fo. In an appropriate limit of u~1 - 0 and f - fo,
our model contains a point particle with an arbitrary mass M.
Cne of objections to our model would arise from the
fact that only the negative value of the field signature e s

permissibie. Such a field carries a negative energy density in

a Tiat space and, when quantized, it behaves as a ghost.
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However in our mode]‘the ghost field S generates a
curvature of the spacetime and the total energy of the system
recovers the positive.va]ue. Furthermofe, the sca]ar field tends
rapidly to its vacuum state, having no physical effect outside
the particle. Thus from the pure classical view point, the ghost
scalar field S does not cause any serious difficulties. It seems‘
that the field S is not observable as a usual partic1é field but
it composes fermions and-gharantees their stability. Such a si-
tuation is quite analogous to that of Weyl's gauge field studied
by Uti_yama9

In spite of the difficulty which arises from the simp}e
quantization of the ghost field in a‘flat~space, we may have to
wait to decide whether such a ghost field is really unacceptable
or not, untill a satisfactory quantum field theory in a curved

space (or quantized general theory of relativity) is established.

An extension of our model to a nonlinear spinor field

‘will be required in order to study the properties of realistic

fermions.
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FIGURE CAPTIONS

Fig. 1 - Solutions of y for f = 0.77, 1 and 1.25 plotted versus x.
Fi 2 - Quantities u/f‘ 1/2 and  x /f2 plotted versus f
g. | | o .
Za and e2n plotted as

Fig. 3 - The function u and metrics e’
‘ functions of x for the case of f = 1. The asymptotic

vaiue of u, wu(w) defines the mass of the system.
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