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ABSTRACT

The one-dimensional diffusion equations of the hadronic
and électromagnetic components of the cosmic radiation in the at-
mosphere are integrated assuming a "one fire-ball model” of the
hadron interactions with the air nuclei.

Some hints are also given for the numerical calculations

necessary for the eventual comparison of the theoretical results

with the experimental data.

CONTENTS

Chapter 1 -

1.1 - The diffusion equations for the nuclear active com

ponents of the cosmic radiation, in the atmosphere.



Chapter 3

Solution of the equation for nucleons.

Solution of the equation for charged pions.

The ratio between the flux of pions and the flux of
nucleons as a function of the incident energy and

the atmospheric depth.

Isotropic emission of particles from a moving cen-
ter.

Integral and differential energy spectra in the la
boratory system of reference.

The fire-ball model.

The differential energy spectrum of pions, in the
laboratory system for an isotropic distribution of

pions in the rest system of the fire-ball.

‘Rates of production of charged pions.

Rates of production of charged pions for a fire-ball
that decays isotropically in its rest system of re
ference and pions obey the distribution law of
Bose for the momenta. |

Explicit determination of the constants S

The eletromagnetic component FYe(X’E)
Explicit form for D(x,Yy).
Two approximations a) and b) for FYe( E,x).

The integral energy spectrum in the (LS), of the



Y-rays emitted by a "fire-ball'" at the level of the

interaction.

References

- Appendix I

- Appendix II

1

1.1. The Diffusion Equation for the Nuclear Active Component of the
Cosmic Radiation

The development of the nuclear and the pion components of
the cosmic radiation in the atmosphere can be described in a first

approximation by the one-dimensional diffusion equations[]’2’3]

aFN(x,E)

= - 1 1 E
X - AN FN(X:E) + )‘Nz]__‘)'KN FN.(X’T—_-KN) (])
3F"(x,E) e ] ]
—*ax = - X; W(X,E) + -X-—(1——5-Tr "K“ Fﬂ(x,«l——_Kﬂ) +

NN N
+ PLU(X,E) + P (x,E) \ (2)
where the functions FN and FTT must sat{sfy the conditions

G(E) (3)

0 - (8)

Fy(0E)

F,(0,E)

» G(E)dE is the primary nucleon differential spectrum in the
top of the atmosphere.Fa(x,E) is the flux per (cmz.s.ster.) of a ge

neric hadron o with energy in the range E, E+dE at the atmospheric



depth x (g/cmz).

We put a = N for nucleons and a = m for charged pions.

Aa is the intéraction length (g/cmz) of the high ehergy
hadron o with an air nucleus; K  is the inelasticity of the hadron
a-interaction with an air nucleus.

PzN(x,E) is the production rate of charged pions produ -
ced by the hadron a-intefaction with energy in the range E, E+dE at
the atmospheric depth x (9/cm2). |

In this approximation the production of Kaons is not ta-
ken into account; ka and Ka are supposed to be constant and inde -
pendent of the hadron incident energy.

The m + u decay is not taken into account because we con
sider only pions of energy equal or greater than 1 TeV and consider

only the diffusion along the vertical direction.

1.2. Solution of the Equation for Nucleons

The solution of the equation (1) that describes the diffu
sion of the nucleon component is given by[za’s:l
-x/AN

L

Fy(x.E) = e I X"/ (AN 1) (1-K,) " G(E/(1-Ky) ™) (5)

with the initial condition:
FN(O,E) = G(E).

If the primary nucleon differential spectrum in the top of the at -

mosphere is approximated by a power function

Fy(0,E) = N g™ (7*1) (6)



The solution (5) reduces to

Fu(xE) = F(0,E) e7X/b2 (7)
where
A
N
L, = (8)
Tk

La is the absorption length of the nuclear component (N) in the at-
mosphere in (g/cmz). The intensity of nucleons diminishes exponen -
tially with the atmosphere dept x and, the exponent y 1is indepen -

dent of the atmosphere depth.

1.3. Solution of the Equation for Charged Pions

For the integration of the equation (2) we must know ex-

plicitly the production rates P;N(X,E).

If we design by %a(EO,E)dE the number of charged pions with
energy range E, E+dE produced by the interaction of an hadron a of
incident energy E0 we have

(Ega) max
aN _ 1 o 7
PN (GE) = 1 [ g (EgLE)F(x.Ep) dE, (9)

@ (Egedmin
The explicit form of the functions Sﬁa depends on the specific model

we adopt to describe the interactions. Frequently the following con-

ditions are verified
. . [3] .
a) ya(EO,E)dE is an homogeneous function of E and EO’ that is

_ E dE
Y (Eg,E)dE = fa(ga) Ey

p) The minimum energy (EOa)MIN is proportional to E, that is:

(10)

(Egodmin = E/B, where B/ is some constant



c) The spectrum Fa(x,E) extends to E = ., If that conditions are sa

tisfied, putting n = E/an we have
B
aN _ 1 @ E, dn
PTr (x,E) = T; é fa(n)Fa(X’ﬁ) 5 , V(]])

The functions fa depends on the specific model adopted to

describe the multiple production of pions in the interaction. e sup
pose, for a moment, that these functions are known. The calculus of

the PmN
T

(x,E) is very simplified, when the primary‘nucleon differen-
tiaT spectrum in the top of atmosphere is approximated by the power
function (6).

In this case FN(x,E) is given by (7)(8) and we have

NN ,oN e, XLy d4q
P (X,E) = L R0, 5 e 3 (12)
c c -x/L
N -
= T\E FN(XQE) = A_: No E (Y+]) e a =
= A(x) E‘(Y+])
where
By v
cy =L fy(n)n' dn
0
The rate of production
B'ﬂ'
N 1 E, dn '
Pn (x,E) = x 6 f“(n)Fw(x,ﬁ = (13)

cannot be determined so straightfully because F"(x,E) is precisely
the unknow function of the integro-differential équation (2). For-

tunately, in this special cases this equation can be exactely inte

grated by the method of separation of variables.



The result is-

F_(x,E) = v(x) £7(r*1) F_(0,E) = 0 (14)
with
i e e-X/La
Y(x) = = N (15)
"N 1 _1
' La Lon
where
Loy = J/ATr (16)
1-(1-k)Y ¢ c
1 ui
AL = —m—— - — = — - — (17)
T }"n )\“ L1r }\ﬂ
and ]
: 8_ Y
Sy = L fpn)n” dn (18)
Lw is the absorption length of the = component in the atmosphere
2
(g/m")
A‘lT
L_ = (19)
T - _ Y .
1-(1 K")
The exact solution (15) depends on two constants Cx and

¢ that are to be determined

del for the interaction.

with the introduction of an specific mo

Taking into account the explicit form of Fﬂ(x,E) (14) and

(15) the rate of production of tharged pions can be easily obtained

with the aid of (13). We

have then



PiN(x,E) = B(x) E-(Y*T) (20)
where
X
- o= -x/L
B(x) = i“i?ino e Tr.e @ (21)
N 7 1.1
La Py
. . . 1 1
The solution Fn(x,E) presents a singularity for f; -55; .

The intensity of charged pions is zero at the top of the atmosphere

and varies with the atmospheric depth according to (14) (15).

1.4. The Ratio FWQE,E)/FN(X,E),

This ratio increases with the atmospheric depth x, but
the rate of increasing depends on the relative value of La and ?bn.

In fact, from (6) (7) (14) and (15) it results

FH(X’E) N e¥¥o

FTET C 3 () (22)
where |
1 1
y = -
L, %

ify>2~o F“/FN increases rapidly with x

ify<o Fn/FN increases as 1 - e“lylx and tends to be saturated.
In the limit éase y = 0, we have 118 F /FN = ;ﬂ-x and the ratio in-
creases linearly with x. What is ¥ga11y the cage to be considered

that is a question to be decided by the experimental determination

of the parameters that figure in (22).
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2.1. Isotropic Emission of Particles from a Moving Center

Up to here, we have delayed the more possibly the introduc

tion of any specific model of multiple meson production, so that the

theory can -be applied to many ones.

The hypotheses we have introduced are of general character
and seems to be consistent with the fact that all the essential cha.
racteristics of the strong interactions changes very slowly with
the energy of the incident partic]e[7’8].

Now to make possible the introduction of some specific mo-

dels we must consider the isotropic emission of particles from a

moving center.

2.2. Integral and Differential Energy Spectra in the Laboratory Sys-
tem of Reference

Let be
* * dQ*
Y(E )dE =
the energy distribution of the particles emitted isotropically from
the moving center. The magnitudes labelled with an asteristic refer
*
to the rest system S of the moving center. To obtain the energy

integral spectrum in the laboratory sistem (L.S.) we use the Lo-

rentz transformations

* * *
r'{E + B8 p c cos 6 )

m
]

23
p cos © (23)

* * *
r(p cos 8 + BE /c)
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where E and p refer to the laboratory system and I' is the Lorentz
factor of the moving center relative to the (L.S.).

Now, to obtain the energy integral spectrum of the secon-
dary particles in the (LS)(*) we observe that in order a secondary
particle may have an energy E > ETT in (LS} it must be emitted in s

with an angle e* and energy E* such that
* * *
r(E +B8pc cose ) > E, (24)

The total number of the particles satisfying this condition, is the

refore
*
* * dg
F(> E,) H p(E¥)ee" §2 (25)
*
T(E +8 p*c cos e*) > B
or *
1 g * * EW/P - E
F(2E) =5 [ w(E)dE (1- g (26)
£, B pc
min
where
* .
Emin =T (En - B pnc) (27)

*

min
*

ve an emitted particle in S , to have exactly the energy ETr in (LS).

E3 . . L - *
This value E is the mintmum value of the energy E that must ha-

This value is obtained solving the equations (23) for E* which gives.

E* =T [% .- B p,C cos {] (28)

(*)

This method was indicated to the author by Prof.Anna M.F.Endler.
See also (8).
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and observing that Enln is verified for cos & = 1. The upper limit

of the integral (26) corresponds to the assumption that the range
of w(E*) extends to «». The differential energy spectrum in the Tlab.
syst. (LS) will be, then

8F(>Eﬂ)

VATLEL) = - —p— =
T

#

(29)

. * * '
] y(E )dE  _ 1 *
2z é* T G(Emin)

min e pc

L]

The term resulting of the differentiation of the integral
*
" (26) respect to its lower limit is zero, because Emin satisfies the

condition

* *
E_ = (E

b min B pmin c) (30)

that is obtained putting E = ETr (fixed) and cos 6* = 1, in the first

equation of (23).

High Energy Interactions. Let m be the mass of the emitted

particles. Since we are specially interested in the study of high

energy interactions we 1limit ourselves to the consideration or par-
2

ticles of energy > 1 TeV. One can easily see that for E“ > mc and
rz >> 1, the minimum energy given by (27) can be approximated by
E 2 4
* - T mc T
Emin " 2Fr * 5 (31)
b
In this case [6]
47 dE E 2C4 r
(I‘,Eﬂ)dE“ = G(.z._ .T___ E_—)
E E_ (32)
= h (=F) d(-F)
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is an homogeneous function of ETr and T.

2.3. The Fire-Ball llodel

In this model, it is admitted that in a nuclear collision
of very high energy (starting of the accelerator region of 10 GeV
up to the cosmic rays region of several hundreds of Tev) one or mo-

re intermediate states of matter (fire balls) are formed and the

multiple production of mesons results from the decay of these inter
mediate states.

In the last years, the emulsion chamber-experiments under
taken by the Brazilian Japanese Emulsion Chamber Groups made possi-
ble to measure the angles, the transverse momenta, and energy of the
secondary particles and +y-rays, and to atribute to these interme -
diate states constant masses and constant temperatures narrowly dis
tributed around some fixed values, independent of the other caracte
ristics of the interaction[g]. A1l the experimental data obtained
not only by the Brazilian-Japanese E.C.G. but also those obtained
by other Experimental Groups[]’2’3] in ba160n~experiments and in ac
celerator work can be consistently explained by assuming the produc
tion of "fire balls". Up to date the existence of two kinds of fire
balls is well established:

a) a "small" fire-ball (mirim) of mass about 2 or 3 times the mass
of the nucleon and

b) a large fire-ball (assu) of mass about 10 times the mass of the

small one.

To develop further our calculations and having these facts



in view we adopt a "simplified model" of fire-ball based on the fol

lowing assumptions:

1 - If the incident hadron energy is sufficiently high, new interme
diate states of matter (fire ball) are created in the collision.

2 - The fire-ball has constant mass and cdnstant temperature, inde
pendent of the hadron incident energy.

3 - The fire-ball evaporates isotropically in its rest system of re
ference (S*).

4 - The particles produced in the decay are only pions (first appro
ximation).

5 - The average number as pions emitted (N) is constant and is inde
pendent of the hadron incidént energy. |

6 - The principle of independence of charge is verified.

7 - The fire-ball produced in the hadron-nucleon collisions are the
same irrespective the incident hadron is a nucleon or a charged
pipn. To these assumption we add also the more restrictive one.

8 - In the rest system S* of the fire-ball the pions emitted obey
the distribution law of Bose for the momenta p*[bl (*).

24p” do”
P T (33)

% *d* k*
¢(p )dp g2 = P
exp(E /poc)-1

Here PoC is related to the temperature of the intermediate state,

measured in units of energy. k is a normalization factor.

(*)

This argument was indicated to the author by Prof.C.M.G. Lattes,
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2.4. The Differential Energetic Spectrum of Pion in the Laboratory

System for an Isotropic Distribution of Pions in the Rest Sys-

*
tem (S ) of the Fire-Ball

If we denote bycﬁg-the mass of the fire-ball and by E0

the incident hadron energy of the collision, we have

! 2
K, Eo = r Jio e (34)
where Ka is the inelasticity of the co]lision. Putting % =53éc2/Kan
in the equation (31) we have .
* Ew E
_ 0
0 L
where
2
Hoc? Ka¥o 2
a, = g b, = — W o =mc 36)
(.1 , Koz o 2 Mse 0 m (
Observing also that
1 _ aa
T COE, (37)
the equation (24) becomes
[a¥4 dE .0 *
i - U E )dE _
A ATLE)dE L = o -
Emin Bpc
(38)
ETr dE1r
=a_ g(r)
oSBT B

Now, assuming the principle of independence of charge +to

be valid we obtain the differential energetic spectrum (in the labo

ratory system) of the charged pions emitted isotropically by the
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. *
fire-ball in it's rest system (S ).

. .2 T T _
YalborBpldEy = 32, 9(p ) (39)
vwhere
°° E¥)dE
g (n) =/ (40)
a a_.n+b /n /E*?-woz
and

2.5, Rates of Production of Charged Pions

In order to fix the relation between E and E1r in the

o,min
lower limit of the integral that gives PiN(x,En) (relation (9) we
observe that the minimum value of E0 (for a fixed value of E") is ve
rified when the major part the available energy of the interaction
is transfereds to a single pion of energy ETr and all the remaining

pions take only a minor part of the energy(*). In the limit case

we can put

Ka Eo,min =E. . (41)

So that Eo,min = E_/K, (Ka # 0). The relations (39) and (31) show

that the conditions a) and b) of 1.3, (b) are satisfied, if we make:

E _ 2
fl£) = § 2 9(F)

and > (42)

(*) For the small fire-ball only.
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2.6. Rates of Production of Charged Pions for a Fire-Ball that Emits

*
Pions Isotropically in it Rest System of Reference S and the

Pions Obey the Distribution Law of Bose for the Momenta

The distribution of moments is given by (33). The differen
*
tial spectrum of the energy in the rest system S of the fire-ball

is therefore.

* ok NK *e*de”
$(E )dE~ = - (43)
B c exp(E /poc)-l
and ga(n) is given explicitly by
Nk EYdE”
ga(n) = 7 f x (44)
c aa‘“+ba/" exp(E /poc)-1
If we put
_ *
t E /poc
we have
Nk 2 dt
g (n) = = b5 S L (45)
Gan+6a/n e -1
where
2
a ‘4 KW
o vir g a0
o, = = § = (46)
@ PoC 2Ry p,C @ Zﬁicz(poc)
Now we introduce the Debye function[10]
“tdt X tdt
(I)(X) = [ T = C(Z) = [ T (47)
x e -1 o e -]
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z(2) is the value of the well known Riemann zeta function. z(x) for
x =2 (z(2) = n2/6).

Taking (47) into account we can write

Nkp2 | |
9,(n) = — ¢(oyn + 6 /n) (48)
and
E“ dE“
YalbgrEp)dE = folp) £ = fy(n)dn (49)
) 0
where
2
2 Nkpo 50
fa(n) =33 = %(oyn + Ga/“) (50)
22 2o N(kp_3)e(o.n + & /n)
3 PoC o o o
= 26 N(kp 3)o(o.n + & /n)
3 Ya Po ol AL
n = En/Eo
and

o = J@cz/ZKa(poc)

_ 2 2
§ = Kwo /2 ¢ (poc)

2.7. Explicit Determination for the Constants €y

Taking into account the explicit values of fa(n) given in

(50), we have
K .
a

= Y =
€q = 1 fy(nn’ dn - (51)
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= 2 o N(k 3) §“¢(o n + & /n)nY dn
3 9" KPy 5 = @ a
1 .
- % Noo(kp03) KY 7 a(oyn + 8, /n)nVdn
0 .
where
e 52
O°=GaKa=m-;€)- ()
2
5 = Su - wo
° K; Zuwtz(poc)
and, finally
. 2 3y kY CanY
¢, =3 No (kp ")K . < ¢n” > | (53)

3.1. The Electromagnetic Component FY eLx,E)

The production rate PY(x,E) of gamma rays produced from
the decay of neutral pi-mesons and the production rate Pﬂo(x,E) of

neutral pi-mesons are related by[j]].

P E mzp g° o 54
Y(xs Y) ‘é‘_ .no(X, .".) p . ( )
T 1
where
= _ . 2.4
E“ = EY + m“c /4EY

If we restrict ourselves to the consideration of high energy gamma
rays (EY > 1 Tev) we have approximately

_ o dE! '
pY(X’EY) = é _E_T' Pﬂ(X,E ) (55)

Y
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where P“(x,E‘) is the rate of production of charged pions.
Now, for the special case of a primary spectrum of the

form (6) that we are considering we have by (12) and (20)

P_(x.E) = P E) + pTH(x,E) = [A(x)-i-B(x)] g (y+1) (56)

C(x) E’(Y+])

Therefore we have

2 C(x) g-(y+1)
P (x.E ) = Sk g (57)

Now we observe that the number of electrons and gamma rays
‘with energy between E, E+dE, at the atmospheric depth x, (measured

in radiation lengths) of an electromagnetic cascade initiated by a

gamma of energy EO at X =0 is given by (approximation A).
, S
' (T+Y) (E E %) = oo [;%rw(s,x)ds (58)
<
where
: A](u)X Az(u)X
H(u,X) = N](u) e + Nz(u) e (59)

If we denote by X0 the radiation length in air measured in (g/cmz)

we have

A /X A /X
Nl(u) e ](u)x 0, Nz(u) e Z(U)x 0 (60)

1

W(u,x)
where Ni(u) (i 1,2) are the well known functions of the cascade

[11,12,13]

i

theory

Thus we can write for the differential spectrum FYe(x,E)dE

of the electromagnetic component



4-20- -

X © '
,E)dE = dE , E ,E,x- : 61
Fye(x ) é’ dt é' dEY Py(t EY)(TT+'Y)( y x=-t) (61)

and taking (57), (58) and (60) into account we have

Fle(xsE) = D(x,y) 70Y*) (62
where
D(x,v) = 'Y—]FT ? C(t)W(y,x-t)dt (63)
0

From (62) the corresponding integral spectrum is readly obtained and

we have:

] E Y .
Fye(>E’x) = D(x,Y) 5 - (64)

3.2. Explicit Form for D(x,vy)

Performing the integral (62) we have

*

*
N_C A X/ A A,x/X
D(x,y) = =2 ! [}a]+b]) e VN (a,+by) e A

Y+ 1
) (65)
- “ho X
- (al+a2) e uly+1)x (b]+b2) e " jJ
where
R Ny (y)
a; = * i=(1,2) (66)
u(‘y-(-l)ANH\_i
S Ni(Y)
by = - (67)
Ay AL Ay
R S (68)
Ag vly+l) -a_
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R=1-2S (69)
u(r+l) = - (70)
a
1 Cor 1 '
A T e ® e I — 71
T L“ A" L (71)
A .
* N . .
)\i(Y) = A-i(Y) ')'(_0' 1= (],2) ' (72)

3.3. Two Approximations a) and b)

There are two special cases in which the expression of
D(x,y) is very simplified and may be useful for a preliminary choi
ce of the parameters at a comparison of the theoretica] results with

the experimental data.

a) - The pion production of the second generation is disregar-

ded P™(x,t) = 0

S =0 R = 1 (73)
Ns () L N:(v)
a; = Xy - Xy = “:a\‘ 1 (74)
Tt Ai(Y)y; T+ a(y) L/X,
by = 0 i=(1,2) | (75)
N ¢, Ay {y)x/X A {y)x/X
D(x,v) = ;%-% [}] e ! 0 4 a, e 2( ) o _
(76)
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A OX/Xg =X/l

o N | '
- : - 77
v+ 1 i=§,2 (e ) ) )
AL (y)x/X -x/L
N C L i o _ a
UL R L MO : (78)
Y i=1,2 N 1

1 + xi(y) La/xo

D(X,Y) = 'Y'}'_'T AN La P(stsl-a) (79)

D]’]4’]5] can be deri-

from which a well known formula of Hayakawa,
ved. For this purpose we introduce the integral production spectrum

of charged 7 mesons

P_(>E.x) I“P“(X,E)dE - 1o ) ge (80)
E E -

Y
c(x) &

From (80) (56) and (12) we have

' ~Y
i 7Y SN, E
= A(0) = = - (81)

E'Y
P‘"(>E,0v) = C(O) ——Y—-

The integral spectrum of Fye (64) will be then

N
Foa(>Esy) = D(x,Y) 5 =

ye
= o PR OE0) L, PlyxiL,) | (82)
. SnlE) (*)

TFT Pv,x,L,)

*
(*) See formula A-8, ref. [14].
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where

G_(E) = L; P_(>E,0) (83)

b) The absorption lengths of pions and nucleons are supposed to

be equal

e have then

1-(1-k)Y 1-(1-k )Y

L. =L_ = = (84)
a T . AN kﬂ

The consideration of this special case is suggested by the
experimental fact that in the region where we can atribute an absorp
tion length to the nuclear active component the observed absorption
length do not change or changes very slowly with the atmospheric
depth (x), although the composition n/N varies considerably with X.

The equality La = L1T give the same absorption length to
both m and N components and so the absorption length of the nuclear
active component will be independent of the fe]ation /N, and will
be equal to the common value of La = L". To obtain the explicit form
of D(x,y) in this case, we suppose that the condition (84) is satis-

fied., If C # 0 we have

1 1 Co Cx
U(Y+]) v;-ATT = -L—- - (-r - T) = T
a m i1 w
S =1 R =20 a; = 0
i A A (Y)A b g
ot e 0E
w 0 0

and
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-x /%
NOCF' J"'T eAT(Y)X/Xo - e X/C"TT ’e
D(X,Y) = T 1o ._X Ny (v) - (85)
st 1A ly)
1
0

We see that D(x,y) is given by the same formula (79) with the subs-

titution
4 <
Ja T Vg
where
LI B A B |
“In Lw X; La Xw

The integral spectrum FYe will be therefore

Fe(>Esx) = 7%T P_(>E,0). %% P(Y,xs o) (86)

3.4, The Integral Energy Spectrum (in the L.S.) of the y-Ravs Emit-

ted by a "Fire-Ball" at the Level of the Interaction

The differential energy spectrum (in the L sistem) of the
secondary pions emitted by the "fire-ball" in a generic hadron-nucle

on interaction is: (50)

’ _ 3
qa(Eo,Eﬂ)dETr = caNkp0 @(can + 8a/n)dn (87)

s

with
n = E"/E0

If we admit the principle of independence of charge, the

production rate of y-rays will be (55)
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®3 (JDOL(EO’E'J)
P(E.) =27 5 A dE (88)
YUY _ /2 " w
E, (E; - mic’)
with
. m§c4
T:'Tr = EY T Ny
Therefore
o ¢ (o y + 6 /y)dy
PE) = § o, Nkpd s oo « ——— (89)
Fn/Eo y2 - (m"czlEo) /
wWith
y - om
Eo

The function PY given by (89) is not an homogeneous func-

tion of EY and E , because the quotient E’ﬂ/E0

E .m c2 2
E /B = 18+ () ]
0 0 Y' "o
depends on E_ too, but if
0
2 4
m_c
™
T o<
Y

Py(Ey) will be a function of Ey/Eo’ that is

-2 3 7 dy 9
PY(Ey) 3 9, Nkp é e @(cay +8, /y) v (20)
v/ So

The integral spectrum of the Y-rays in the (L.S.) will be
then

.2 3,7 dw T dy
Flel>E) = & o tip3 LE J ooy sm & (91)
Y 0
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oo 0

2 3 dy
= 5 o Nkp, J du S e(oyy + 8./Y) =5

3
EY/E° u
This repeated integral can be reduced to a single one (see Appendix

IT)

2 3, e
FrelEy) = § o hkpg J e(o,t + 6,/6)(1 - f)dt (92)

(with a = EylEo) wich is more convenient for numerical computation.
We see that Fye(>Ey) is an homogeneous function of EY and

Eo’ that is

Fre(>Ey) = Fle E,
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APPENDIX I

1. To obtain the values of the normalization constants k and the ave
* : *
rage energy <e > of the pions in the fire-ball rest-system (S )

vwe considered the integrals

0

o *2 % 2
1=k { D *dp - kp3 u-du
o exp(E /poc)-l ° ?31]2-1

0 exp{u2¥a

and
*S . = P*ZE*dp* _ 4 ° uz(u2+a2)1/2du
<e> =k /J % = kpq 72T
o exp(E /pyc)-1 0 exp{u“+a®} -1
m_c *
where o = 7= and u = p /pO and computed numerically the inte
0

grals that figure in the right side of the equations using Laguer

re integration formula

(-]

[ g(x)dx =
0

X .
1

w; e g(xi)

nes-13
—

i

with n = 6, abscissas X and weight factors Wy from table 25.9,

Pg 923 of reference [10].

The same proceeding was used for the computation of <p*>

* 4 ® u3du
<p > = kp
0 o exp{u2+a2}T72-]

so doing we obtained

a) for Py = 80 MeV/c:



*
<p> = 265.8 HeV/c and <e > = 307.9 MeV.

0]

9 for the multiplicity, thé‘resulting mass

f

Assuming the value H

for the fire-ball is

V%é =9 x 0.308 GeV ~ 2.8 GeV

b) for Po = 90 MeV/c:

<p’> = 292.6 MeV/c and <e > = 331.9NeV

The resulting mass of the fire-ball, with the same value

of N = 9, is

w@ ~ 3.0 GeV

To control the degree of approximation obtained we com

puted the value of kpg (for Py = 90 MeV/c) using the formulae of

Dobrotini31
* N 3 %2 x )
f(p )dp = 2B fexp z V(p /m)Z+1 -1} 7!
m_ F(z)
, @ Z(m+1) Com
Flz) =2 1 % 71— Z=71
m=0
z3 1
k = — = —
m_ F(z) T° F(z)
since p = T (Dobrotin) we have kpg = F%77

Computing the first six terms of the series F(z) we

obtained

3 1
°©  1.3503
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The calcuius performed with tne formula of Laguerre gives

pd = 1

° 1.3501
3 _ 1 _ ,
SO we have.kpo = 17355 for Py = 90 MeV/c.
When these calculations are to be repeated many times for
other values of Po it is prefarable to use a computer for obtaining

the indefinite integrals

X 2 m.c
du T
I.(x) = u a = —
1 £ exp{ui+a®} /%9 Po
and
X 2 1/2
I (X) = (U +a l
2 £ exp{u Z}T/Z

This procedure has the advantage of giving at the same time the pi-
on distribution and the pion energy integral distributions in the
*

"fire-ball" system of reference S
In considering values of x sufficiently great for the in-
creasing of I](x) and Iz(x) to be negligible we obtained, I, = 1,35
*
I, = 4,978 <e > =p_1,/1. = 331.9 MeV and M = 2.66 GeV, for the
2 o 2'°1 ()
selected value of Py = 90 MeV/c. Note that the value I] give the sa

me value for kpz as that obtained before with different methods of

computation.

2. Knowing the values of Po* kpg and LM50 we can compute the va -

lues of Cq

= 2 3 .Y Y
Coy = 3 Noo(kpo) Ka <¢n'>
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The integral

1 .
<on¥> = | ¢(o,n + Go/n)nY dn
)
may be easily computed using the well known series representation

for &(x) [vo] .

-kx ,x 1

P
nes~1 8
el

As an example, using a computer IBM-1620-11 we obtained for the small

fire-ball the values of <¢nY> given in the following table

Table I

2.0 2.05 2.1 2.15 2.2 2.3

0.2180 0.2025 | 0.1882 {0.1750} 0.1629 [ 0.1415

-2 -2 2 2 -2

x 10 x 100° 1 x 107¢ |x 10

x 1072 x 10

The values used for J@o and p_ were o%% = 2.66 GeV  and
Py = 90 MeV/c.
For the selected value of ¥y = 2.1 we have c&= 0.110 k§'1

for the "small" fire-ball.

3. The same procedure can be used in computing the integral

«©

o
c{ d(o t + 8 /t)(1 - F)dt a = Ey/Eo

that appears in equation (92).
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APPENDIX II

Consider the repeated integral

I = £ du £ ¢{oy + éa/y)dy - where o = Ey/Eo'

To reduce this integral to a single one we proceed as follows.

First we make the transformation of variables u = 1/r and

which give

<
L
=T

for y =u -+ n = % =

for y = » N n=20

Thus we have

1/a r o
d
7% [e2esm D
0 4 )
Now we can apply the well known Dirichlet's formula for

inverting the order of integrations

a X a a

[ dx [ f(x,y)dy = [ dy [ f(x,y)dx

0 0 0 y

so doing we have
1/a g 1/a
I = _(X_ . g—— -(—j—c.. =

£ P ) Ty £ 5
1/a % 1

i}
O~
©-
—
sl
+
[og3
R
N
|
—~
|
1
Q
N
[«
s
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Now putting t = 1ﬁ1.we have finally

I =f d(o,t + 6 /t)(1-a/t)dt
a B

as was mentioned in (3.4).



