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ABSTRACT

In this paper we show that when one has a static regular
distribution of incoherent matter charged in scalar sense the matter
density must be numerically equal to the charge density. The exterior
field for such a charged dust sphere has also been studied. A solution
which is analogous to Relssner-Nordstrom one is presented for a mass

point charged scalarly.

* To be submitted for publication to Canadian Journal of Physics




I. INTRODUCTION _

During fifties considerable interest has been focussed on a se*
of field equations in which a scalar field is coupled with gravitational
field (SZEKERES 1955, BERGMANN and LEIPNIK 1957, YILMAZ 1958). Later
DAS (1962) studied the coupled gravitational and scalar fields in the
presence of incoherent matter charged in scalar sense. To obtain exact
solutions he introduces beside the static condition two additional
assumptions: 1) a functional relationship between 90 and the scalar
potential, and 2) equality of the densities of charge in scalar sense
and matter. |

In the present paper we show that one obtains the above
mentioned functional relationship from the field equations alone, and
the equality of densities follows directly 1f the distribution 1is
regular., We also study the field due to a mass point charged in scalar
sense; this solution is analogous to Reissner-Nordstrom solution for

charged mass point.

IT. GENERAL SYSTEMS

We start with the static 1ine element

2
ds® = 2 ax° + 94 dx! axd S (2.1)

K

with n and g1j functions of x~ only; we are using coordinates

e x), 1s1,2,3, (2.2)

In Einstein equations




P\)u=-81r(T:--;—G: T) (2.3)

we consider ¢ =G =1 and
Tﬁ=uuu-—1—(5'ﬁ-$-lsu st 5,00 (2.4)
v p Vv 4." '\) 2 v lx’ ®
here p(xi) is mass density,
u! = 63 e (2.5)

is the four-velocity field of p , and S(xi) is the long range scalar
field satisfying

sihe 4ma | (2.6)

where u(xi) is the source density of S. Comma(,) and semicolon (;) denote
partial and covariant derivatives, respectively. The divergence of

equation (2.3) yields with the help of (2.4) and (2.6)
pu?v wW-as't=0, (2.7)
Now for u=v =0 in equation (2.3) we get

(Fin'l)yy + 4mFg p=0 , (2.8)

and from (2.6) and (2.7) we obtain
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'(¢=§-s'i).i - dn/go =0 and (2.9)

PNy + 05,3 =0 . (2.10)

This last equation impiies that S, n and p/d are functionally
related. Writing S = S(n) we have from (2.10)
p=-aS§' , (2.11)

where

S'

ds/dn . | (2.12)

Substitution of this in (2.8) and use of (2.9) gives the divergence

re]ation

[ gnt 1 - 5*2)”2‘]“i =0 . (2.13)
We define the function
E(n) = j (-2 g (2.18)
if the region is singularity-free then from (2.13)
‘ f el /gas, =0, | (2.15)

where the integral is taken over an arbitrary closed surface inside the

region. And again from (2.13) we obtain

[ eer? /g s, [eie, o (2.16)
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We can choose as surface of integration an n = const surface, then left
hand side vanishes due to (2.15); now since g‘i Evs has everywhere

the same sign the right hand side can only vanish when Evg = 0 , that

'y

is,
R (2.17)
We then get from (2.11) and (2.12)
6 =tp " and (2.18)
S=3n (2.19)

in the last equation we choose the integration constant as zero for
convenience,

These results exactly coincide with the non-relativistic
analogous ones, in which n is the Néwtonian potential: the gravitational
attraction is balanced by the "long range" scalar repulsion produced by
the source o of density numerically equal (in our units) to the mass
density

Following Das (1962) we next define a new 3-space metric

Ty = 2N %y (2.20)

and evaluate the corresponding Ricci tensor Rg ; then from the equations

for RC and R} in (2.3) and from 52 = nZ

we get that R} = 0; since
in 3-space this implies that also the Riemann-Christoffel tensor ﬁ}kT =0,
we have a flat 3-space with metric Eﬁj . So the only possible solution

of such systems is
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a=z%p R (2.21)
S=%n > (2.22)
2 ,
ds2 = e2n dx° - e2n gij dx1 dx? . (2.23)
and
e?"En = 4mp (2.24)

where the Laplacian T corresponds to the flat metric E}j

ITI. SPHERICALLY SYMMETRIC EXTERIOR SOLUTIONS
We consider now the case p = o = 0. Our concerning equations

are then only (2.1) to (2.5). We choose the line element

2

ds? = 2" dx® - %% drl - r? %(de? + sin? ade?) (3.1)

with n and 7 functions of radial coordinate r alone. Einstein

equations give now

M * 2ny/r =0 ’ (3.2)
t2(ngy * &qq) *+ 26(ng ) + 21 - ™) =0 and (3.3)
2;11 + 3 n% - C% - Zn-l C-I - 4n'|/r = 455 » (3“4)

where the subscript 1 means d/dr.



=1 at infinity and S = 0 there, we get from
(3.2) (3.3) and (3.4) respectively

n=-a/r s (3.5)
et = (b/2r)zlsinh;zfs/zr)’ea)f” (3.6)
and
S =s/r , ' (3.7)
with a, b and s integration constants satisfying
b2 + 4s? - 4a% =0 . (3.8)

From (3.8) we find that there are only two independent constants; these
two constants may be interpreted as parameters representing gravitational
and scalar charges. Then this solution is analogous to Reissner-Nordstrom
solution. Solution with s =0 corresponds to Schwarzschild solution in
our coordinate system: in this case the parameter a is thé Schwarschild
mass . |

If this external $olution is to represent the field due to a
scalarly charged dust sphere the gvﬁ‘s and S are to satisfy the continuity
conditions at the boundary; so we have from (2.22) (3.5) and (3.7) a2 = sz;
then (3.8) gives b =0 so we have from (3.6) £ = - n. Under these

conditions the exterior metric is

2
ds? = e 28/T g0 | g2a/r 42,2402 4 2sin? ode?) (3.9)
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with the scalar field given by S =+ a/r.
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