NOTAS DE FfsrcA
VOLUM: XIT
e 3

ON THE STABILITY OF THE PLANE-WAVE HARTREE~FOCK STATE

by
A, M. de Graaf and R. Luzzi

CENTRO BRASILEIRO DE PESQUISAS PISICAS
Av. Wenceslau Braz, 71
RIO DE JANEIRO
1965



51

Notas de Fisica - Volume XII - No 3

ON THE STABILITY OF THE PLANE-WAVE HARTREE-FOCK STATE

A. M. de Graaf and R. Luzzi
Centro Brasileiro de Pesquisas F{sicas =~ Rio de Janelro

(Recelved October 14, 1965}

SUMMARY - Considering small deviations from the paramagnetic plane-wave

Bartree-Fock state, the condition for the stability of that state is derived
using landau's theory of the Fermi liquid. It is shown that this condition
is identieal with that derived by other many-bedy techniques. Comparison

is made with Overhauser’s theory of giant static spin-density waves.
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Recently some interest has been shown in the problem as o
whether the plane-wave Hartree-Fock state 1s really the ground

1

state of an interacting fermion system. Thouless™ and Twamotc

and Sawada2

studied the stability of the plane-wave state by
consldering an arbitrary, but small deviation from that state.
They found that at least in the high=-density region the plane-wave
state ls stable, whereas for lower densities a not explicitliy
specified state should develop. Iwamoto and Sawada pursued this
calenlation furthest by taking a screened Coulomb interaction
between the particles. Wolff3 treated the same problem from the
standpoint of the spin susceptibility, using the generalized
random-phase approximation, however only in the case of short-
range interaction. The mentioned  authors use apparently distinet
methods, which involve rather complicated mathematies. It 1is the
purpose of the present note to treat this problem using Landau's
phenomenological theory of fthe Fermi 1iqﬁid4, ané show that one
gets the same results as the previocus authors. This ig not surpris
ing, since it is well known that the great variety of existing
many=body techniques are in fact equivalent with Landau's theory.
The great virtue of Landauis theory is its simplicity and clear-
ness, and it permits one to calculate rather easily many proper-
ties of an interacting fermion system. It has not previously
been applied in full extent to the stability problem. For an
introduction to the theory we refer to Landaurts original arti31634
and to the book by Nozieres®, where a complete justification dis

given.
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In Landaurs theory of the Fermi liquid the role of particles
are played by quasi-particleg,; i.e. particles moving in the self-
consistent field of all the others. These quasi-particles obey
Fermi-Dirac statistics. A small variation of the total free
energy OF of the system at absolute temperature zero due to a
small variation of the distribution function 8n is written as

8F = Spi(e- p) Bn} , (1)
which defines & as the quasi-particle Hamiltonian. The “hermo-
dynamic potential is denoted by p. The spur in eq. (1)} is
evaluated in the plare-wave - representation, which is appropriate

for an extended system. Thus

8F = Spo_: [E(ksq,0) =p]dn*(k,q.0) (2)
ksq

where €(k,q,0) and n(k,q»0) are the matrix elements of the cor=-
responding operators between plane-wave states k¥ and k+ q. These
guantities algo depend on the spin operators. The second funda-
mental equation relates the change in the gquasi=particle Hamil=~

tonian to the change in the distribution function as

Se(k,q,0) = SPg. %,f(kgcg k.00 ) 8nlkiyg,ot ). (3)

Here f(k,;03 kty00) is related to the forward scattering amplitude

of two particles, as has been shown by Landau.

Combining egs. (2) and (3) one can write the variation in

the free energy in the form

§F = SpUZ [8°(k9q903=}1] dn*(k ,q,0) +
ksq

+% Spo_ SpCW : f,(kﬁo-; k"gcﬂj 5n(k‘,q;0") Sn*(k’qgc)g
kskt,q
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where £° is the unperturbed quasi-particle Hamiltonian.

If 8F >0, the state characterized by the distribution funection
n° will be stable, whereas for §F <0 that state will be unstable.
Thus by looking at 8F = 0 we can find the critical condition for a
transition from one state to another. What remains to be done ig

to evaluate eq. (4).

Since &¢ is small compared to eo, we can use Schafroth'sé
expansion for the matrix elements of &n in terms of the matrix

elements of 8t¢. The result is up to second order

n%(k; ) = n%(k,)
Ckq 80|k, = Ckqloelk >+
€70k )= €°(k,)

3 nq(ki)
+ 3 ey 16e 1> (gl Beliey T ) (5)
k, 1=1 TT [e"(ki)» €k )]
j#1

where n°(k) and e%(x) are the diagonal matrix elements, which do

not depend on the spin.

Using this expansion up to first order, eq. (3) can now be

written as o o
n(ks+qlen (k)
8e(kyq40) = P4 > f{k,o3 kty, o) 8e(k14q,0t)

Kk €%kr+ q)- (k1) (6

which is an integral equation for §g(k,q,0). In order to find a
solution of eq. (6) we use the ansatz

8e(kyqy0) = at(k,q) = y(k,q) o.e(q) , (7a)



snlk,q,0) = B(ksqj*'g(kaq)0=e(q)u {(7b)
Here e(q) 1s an arbitrary unit vector and ¢ the vector spin operat
or. Further in the isotropic case f(k, o3 k', o'} can be written

as
f{k, o ki, o1} = 5(1{,}(&)4- Plk,kt) oot (8)

where Et(k, ki) represents the direct interaction and Pk, k') the

exchange interaction between particles,

The terms o angd § lead to changes in the local charge densgity,
whereas the terms 7 and ¢ result in changes of the local spin
density. Changes in the local charge density require large
positive energies and therefore tend to desencourage the transgi-
tion. We therefore do not need to consider the o and & terms and

may only look for changes in the local spin density.

Hence, with egs. (7a) and (8) we can finally write eq. (%)

in the form _
[€%Ck+ ) = 2()| 0tk q¥= 2 5 [noﬂikﬂ+ q)- no(kv):{‘li(k,k?)lﬂ(kt bq)= 0.
| ko (9)
where we have used the definition

Yk, o) = [0+ q) -€00k)] Gy o) - (10)

Gottfried and Goldstone? have established the connection with
Landau's Boltzmann equation by writing eg. (9) in the co-ordinate
representaﬁiona However, we prefer to use the momentum representa
tion because the equations are easier to handle. Further the
stability condition eg. (4) can now be written as
ST [a%k+ @) - 0] otx, q3{[%0r+ o) - €203 [0k, o)+

kg + % S [nc(kw+ q).:no(kv):llp(kgkfjip(kﬁ, qB} >0.  (11)
ke
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We can now establish the connection with the work of Iwamoto

and Sawadaz. Choosing in a plane-wave Hartree-Fock approximation

nek2
g%(k) = > v(k = k) (12a)
2m k' occupied
and
P(ky kK1) = = 2v(k -kt) (12b)

with v(k=kr) the Fourier transform of the interparticle potential,
from eq. (11) 1t follows

N(q) -Dy(q) +D,(g) >0 , (13D
where %
N(q) = |k-q]9k,q)|2 , (14a)
(2m)?

L . a2k adkr
D1(a) = || ¢ (kyq) [v(k=k 1)+ vik+kt 3] ¢(kr,q) ) (14b)

JJ (2r)  (2r)?

[ g a7x% FE
D,(q) = || lp(kyqd|“[v{k-kt) - v(k+kt)] . (1l4c)
I (2n)’ (2r)?

- The integrations are ta be performed for |k=—% qIékFéIk4-% al .
Equation (9) goes over in

[€°k+a) - 200090300 + &7 [nOCkr4q) = 02 )] w(ie= k1 dpCicr 50) =0
ks (15)

Equations (13), (14as b, c¢) and (15) represent actually Iwa-
moto and Sawadats conditions for the stability of an extended
system of electrons in the plane-wave Hartree-Fock state. These
authors solve the integral equation and calcu%ate the integrals
(14a, b, ¢) for small q values. They also giﬁe a variational ex-

pression for the integrals (1l4a, b, c¢c) for large values of q. It
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should be noted that eq. (15) is also the same as the integral
equation found by WOlffB, who uses the generalized random-phase
approximation. He actually has an additional term which comes
from an applied magnetic field. Putting this field zero hisg

equation goes over into eq. (15).

-Iwamoto and Sawada have shown that i1f an electron gas in a
plane-wave Hartree-Fock state is unstable, this instability og=
curs for a value of ¢ different from zero and only in the lower
density region. Since from eq. (7b) we have

dn(ksqy0) = §(kyqlo-e(q) ,
this means that a state with a spin-density wave of small
amplitude becomes more stable. Such a state will have an ehergy
spectrum with a gap, which is just given as the solution of the
integral equation (15). This is so, because the integral equa-
tion is the condition for the stability of the new state.

_ 0verhauser8, on;jthe other hand, proved that a state
characterized by a giant spin-density wave is more stable than
the plane-wave Hartree=Fock state for all densities. His condi
tion for the stability of such a state, i.e. his gap equation,
has a different form, but in the limit of a small gap, it goes
over into eq. (15). Thus considering only small deviations

from the plane-wave Hartree-Fock state shows at least that other
states (in our case small-amplitude spin-density waves) may be
more stable. However, Overhauser's work shows clearly that the
conditions for the instability of the plane-wave Hartree-Fock

state ‘can never be obtained in this way. Also, one can not
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predict which state eventually becomes more stable, although the

method indicates possible states for whilch one has to look.
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