NOTAS DE FÍSICA VOLUME VI Nº 3

ON THE FINITE DIMENSIONALITY OF EVERY IRREDUCIBLE UNITARY REPRESENTATION OF A COMPACT GROUP

by

Leopoldo Nachbin

CENTRO BRASILEIRO DE PESQUISAS FÍSICAS

Av. Wenceslau Braz, 71

RIO DE JANEIRO

1960

ON THE FINITE DIMENSIONALITY OF EVERY IRREDUCIBLE UNITARY REPRESENTATION OF A COMPACT GROUP*

Leopoldo Nachbin

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

(Received July 21st, 1960)

We shall prove that every irreducible unitary representation of a compact group is finite dimensional.

Our argument is a variation of known proofs and it hardly could be based on an idea different from those already current.

It makes no use of compact or Hilbert-Schmidt operators and seems simpler than the proofs in [1], [2], [3], [4].

Its crucial point is that the prospectively finite dimension of the representation Hilbert space is expressible by a known integral formula.

Let $\mathcal{H} \neq 0$ be a Hilbert space and $x \to U_x$ be a group homomorphism of a compact group G into the group U (%) of all uni

^{*} To appear in the Proceedings of the American Mathematical Society.

tary operators in $\mathcal H$, such that the scalar product $<\xi$, $U_{\mathbf x} \eta>$ is a continuous function of $\mathbf x \in G$ for all ξ , $\eta \in \mathcal H$.

Suppose that this representation is irreducible, namely that there is no closed vector subspace of ${\mathcal H}$ invariant under all ${\bf U}_{\bf x}$ expect the trivial ones 0 and ${\mathcal H}$. Then there results that ${\mathcal H}$ is finite dimensional.

In fact, let ξ , η , ξ' , $\eta' \in \mathcal{U}$. Denoting complex conjugation by a star, since

 $|\int <\xi\;,\; U_{X}\; \gamma>\cdot\; <\xi'\;,\; U_{X}\; \gamma'>\;^*\;\; dx\; |\leqslant \|\xi\|\;.\; \|\gamma\|\;.\; \|\xi'\|\;.\; \|\gamma'\|\;,$ there is an operator T on % depending on γ , γ' such that

$$\int \langle \xi, U_x \gamma \rangle \cdot \langle \xi', U_x \gamma' \rangle^* dx = \langle T \xi, \xi' \rangle$$
.

T commutes with every U_{\pm} since

$$\langle TU_t \xi, \xi' \rangle = \int \langle \xi, U_t - 1_x \gamma \rangle \cdot \langle \xi', U_x \gamma' \rangle^* dx =$$

$$=\int \langle \xi, U_{\mathbf{x}} \eta \rangle \cdot \langle \xi', U_{\mathbf{tx}} \eta' \rangle^* dx = \langle T \xi, U_{\mathbf{t}}^* \xi' \rangle = \langle U_{\mathbf{t}} T \xi, \xi' \rangle,$$

from which $TU_t = U_t T$ follows. The irreducibility of the representation then implies that T is scalar operator, that is $T = \lambda(\eta, \eta')$ I and we get

$$\int \langle \xi, U_{x} \eta \rangle \cdot \langle \xi', U_{x} \eta' \rangle^{*} dx = \lambda(\eta, \eta') \langle \xi, \xi' \rangle.$$

By interchanging the roles of the couples (ξ , ξ) and (η , η) and using the rule $\int f(x^{-1})dx = \int f(x)dx$, we get

$$\lambda(\mathfrak{I},\mathfrak{I}')$$
 $\langle \xi, \xi' \rangle = \lambda(\xi, \xi')^* \langle \mathfrak{I}, \mathfrak{I}' \rangle^*$.

Hence

$$\lambda(\eta, \eta') = c \langle \eta, \eta' \rangle^*,$$

where c is a constant, and

(1)
$$\int \langle \xi, U_{\mathbf{x}} \eta \rangle \cdot \langle \xi', U_{\mathbf{x}} \eta' \rangle^* d\mathbf{x} = c \langle \xi, \xi' \rangle \cdot \langle \eta, \eta' \rangle^*$$
.

If we let ξ , η , ξ' , η' all become equal to a unit vector α we get

$$c = \int |\langle \alpha, U_x \alpha \rangle|^2 dx$$
.

Hence c>0, since the positive continuous function whose integral is c has strictly positive value at the identity of G.

Now let e_1 , ..., e_n be orthonormal in %. Let \P , \P' become equal to α in (1). By adding the resulting equalities and using Bessel's inequality

(2)
$$\sum_{i=1}^{n} \langle \alpha, U_{x} e_{i} \rangle \cdot \langle \alpha, U_{x} e_{i} \rangle^{*} \leq ||\alpha||^{2} = 1$$

since U_xe_1 , ..., U_xe_n are orthonormal, we get $nc \le 1$, that is $n \le 1/c$. This completes the proof that the dimension of % is finite.

We remark that, if n is supposed to be the finite dimension of %, then (2) holds as an equality and so we get nc = 1, that is c = 1/n. Then (1) becomes a known formula (see [5], Chap. V) which we took as motivation for the above proof.

: . : . : . : . : . : . :

REFERENCES

- 1. F. BRUHAT, Algèbres de Lie et groupes de Lie, Textos de Matemática nº 3, Recife (1959).
- 2. P. CARTIER, <u>Structure topologique des groupes de Lie</u> <u>généraux</u>, Séminaire Sophus Lie, le année, Exposé 22, Paris (1955).
- 3. A. HUREVITSCH, <u>Unitary representations in Hilbert space</u> of a compact topological group, Rec. Math. (Mat. Sbornik) n.s. tome 13 (55), pp. 79-86 (1943).
- 4. P. KOOSIS, An irreducible unitary representation of a compact group is finite dimensional, Proc. Amer. Math. Soc. vol. 8, pp. 712-715 (1957).
- 5. A. WEIL, <u>L'intégration dans les groupes topologiques et</u>
 ses applications, Paris (1940).

: . : . : . : . : . : . :