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We shall prove that every irreducible unitary representa-

tion of a compact group is finite dimensional.

Our argument is a variation of known proofs and it hardly

could -be based on an idea different from ﬁhose already current.

It makes no use of compact or Hilbert-Schmidt operators
and seems simpler than the proofs in [1]), [2]s [3], [4].

Its cruecial point is that the prospectively finite dimen-
sion of the representation Hilbert space 1s expressible by a known

integral formula.

Let ¥ # 0 be a Hilbert space and x —U, be a group
homomorphism of a compact group G into the group U (*§$) of all unil

* To appear in the Proceedings of the American Mathematical Society.
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tary operators in ¥ , such that the scalar product <&, Ux"l} is

a continuous function of x € G for all &, "M € % .

Suppose that this representation is irreducible, namely
that there is no closed vector subspace of % invariant under all
U, expect the trivial ones O and ¥ . Then there results that %
is finite dimensional.

In fact, let §, M, ‘«_',' ’ '*1' e ¥. Denoting complex conjuga

tion by a star, since
| /<8 u e <8 o ST ax | sl . sl

there is an operator T on % depending on 7, ”Z' such that

SKEy 0> U > T ax = KTE, ¥ >

T commutes with every Ut since
f ‘ o | *
K0, 85 8> =[Gy UL, e {8y U, 7' > ax =

VALTE K DYR A N =1, Ut*g'>=<utr 5, ¥,

from which TUt = UtT follows. The irreduclbility of the repreéentg_
tion then implies that T is scalar operator, that is T = A(“l,'?') I
and we get _
VAL TR DURCIE I BN "I YO AL DECHE 1
By interchanging the roles of the couples (§, ‘g') and
(7, ') and using the rule ff(x"l)dx = /f(x)dx, we get

AT, 58> = a(s,e) T, U>T.
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A(M, 1) = e (M “'LI>* ’

where ¢ 1s a constant, and

(1) /8 0 8 U’y Tax = e (5, 8., DT

If we let €,M, E', W} all become equal to a unit vector «

we get

c=/|<o:, chm)l2 ax .

Hence ¢ > 0, since the positive continuous function whose
integral is ¢ has strictly positive value at the identity of G.

Now let e, «s« » e, be orthonormal in W . Let 9, 7 be-
come equal to e; and g, E' become equal to a in (1). By adding
the resulting equalities and using Bessel's inequality.

(2)

since Uxel’ eve g Uxen are orthonormal, we get nc 1, that is

n £ 1l/c. This completes the proof that the dimension of ¥ is fi

" nite.

We remark that, if n is supposed to be the finite dimension
of ¥, then (2) holds as an equality and so we get nec = 1, that is
¢ = 1/n. Then (1) becomes a known formula (see [5], Chap. V) which

we took as motivation for the above proof.
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