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ABSTRACT

The analytic properties of partisal wave amplitudes in meson-
nucleon scattering are investigated on the basis of the Mandelstam's
representation and an integral representation is set up for them which

explicitly exhibits those prqpertiese
INTRODUCTION

A method for the separation of partial waves from non-forwe
ard relativistic dispersion relations has been put forward by Capps and
Takedal. The scattering amplitudes in the integrals are expanded in
terms of Legendre polynomials which are analytieally‘continue&‘intothe
unphysical region, BEach partial ampliitude is then related to two in.
tegrals involving infinite series of partial amplitudes, which are cony
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ergent at small energies,

We have devised a different approach to this problem which
consists in deducing the analytic properties of the partial amplitudes
and establishing a representation for them based on those properties.
In order to investigate the analytic properties of the partial amplity
des 1t 1s necessary to know the analytic structure of the secattering
amplitudes as functions of two variables, the energy and momentum trang
fer., A fulil representation of these amplitudes has been proposed by
Mandelstam2 and-is used here. The main result is that the partial am-
plitudes are analytic functions of energy throughout the complex plane
except . for cués along the real axis and a cut along a circle with its

centre on the real axis,.

Integral representations are obtained by applying Cauchy's
theorem to suitable combinations of pairs of partial amplitudes, The
integrals along the real axis depend on the imaginary part of the fung
tion considered and one can apply the unitarity condition in the physi
cal region., The meaning of the unphysical region as well as the intg

gral along the eircle 1s discussed,
I. The covariant amplitudes, Mandelstam's representation.

The matrix element of the S-matrix for meson-nucleon scatte

-ering-may be written in the forms,
.<b' s, q'| 8] p r9d> = <§' s, a'| p 7, q) +

+Tz%56 U-l- %%Pogﬁ F‘81‘ (P." Qf ;pﬂ Q)

(1)

=«20=



- 3.

where p, q are the initial momenta of the nucleon and the meson respeg
tively p', q' the final momenta and r, s the spin states of the inc-
oming and outgoing nucleon, The isotipic spin coordinates of the nu-

¢leons and the mesons have been omitted,

Bue to conservation of total momentum be out of the four mg
menta there will only three independent vectors which determine the ki
nematics of the process, We choose the combinations:

P=%(p+p"), W=%(a+a"), K=pa-p'=q' =q (2)
With these vectors orne can form the invariantsh:

ekl PR @ et
' _ (3)
P.q-.'a P, K=Q.Kk =0

so that there are only two independent invariants,

We introduce an invariant matrix min space related to the
Feynman amplitude Fs r (p', q'; p, q) by:

Fsr(p'yq'sp,a) = (pYMU (p) (4)
where Ul_(p} and U, (p') are Dirac spinors.

Assuming parity conservation and making use of the Dirac e-

quation one can reduce YV to the form”:

= U+gV (5)

where U and V are functions of the invariants 3 and AZ,

To fix our ideas consider the processes:
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N+E ——> §' + K! I
N+Kt———> § +K II
N+Nt— g+ I1I.

The Feynman amplitudes for these processes are obtained from
the same Green's functlon taken in different and non-overlapplng do-
mains of the variables 3 and AZ which of course have different physiw
cal meanings for each of them. The physical region for the respective

processes are:
(1 3% AF>0
m 33 AZyo

IIry 3¢ 3 AZS - w2

?1‘ = \/(_EZ + 2O +/8)

Mandelstam assumes that the Green's function is amalytic in

e

LY

where

both varlables except for poles on the real éxis and cuts along certain
hyperplanes. | |

The poles arise from the bound states of the system and the
location of the cuts is determined by the threshold energies for the
allowed virtual transitions., It is then convenient to introduce the
new variables ﬁa, Wa, K- which are the square of the energy in the

¢.m.s. for the three processes respectively, They are related te-}and

[&2 by:
W= -2 o uf) = 3+ P (6)

N N

@ -¥% o n®) =-3+A2 mn
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K? = . j R (8)
Thence

W + WP + K = 206 + n?) (9)
The momentum transfer between the mesons or nucléons in the
first two processes is -K°j in process III it is -W® between the mu~
cleon N and the meson K'!' and =Wa befween the nucleon N dnd the meson

K. '
On the basis of Mandelstam assumptions one obtalns for each

of the covarlant amplitudes a representation of the forms

A= ‘ + = : d Wt a W 2 v
. Q.& - Ma ﬁg 2 J‘ 2 (w!a. - WZ)(‘?'z - ﬁz) +
¥ (M4m) (My+ ) |
lCD
;-’S_%E a Wiz a4 K2 3%3 (w12 | x1%)
(m)®  F (2pfF W - Wy x'? L)

In this case the conservation laws and in particular the cop
servation of strangeness and parity allew for bound states enly in pro-
-cess I]f, corresponding to theAand 2. particles., The energy thresholds
for the three processes correspord to transitions into the virtual in-
termediate states. (K + H), (X +Tr) (Tr+17) re_sﬁectivenlyo The bound
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state contributions exactly coincide with first Born approximation in
the conventional perturbation theory.

From the reality of the absorptive parts of the amplitudes
for the physical processes (I-III) it follows that ‘ij are all real in
the respective domains of integration,

At least ome subtraction is necessary,in this case, for fixed
WS It has been performed in a sultable way giving rise to the last term
in (10). In perturbation theory, this term, together with the first one

corresponds to graphs of the form shown in Fig, l-a.
K
\\R\' ///

~

_ |
Fig. l-a
(")
N' N

Representation (10) as it stands does not allow fixr direct meson-meson ipn

teractions, If such interactions do exist one meson subtraction is neceg
sary, now for fixed KZ. In fact in perturbation theory graphs of the form
shown in ?ig. dwbe

N’I R’l’

———

~
S

~ - //,Q Fig, l-b
— - _“-.'-"--.

depend only on the variable x.a and contribute to the invariant amplitude U,
Therefore one must add to the right of (10) a terms

2ly-
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de* J&ﬂLifﬂ (11)
(2w

U (K%, o) =

2

Il - The scattering matrix in the c.m.s.

The covariant transition matrix is related in the ec.m.s. to

the scattaring matrix by:

G DM U (k) =45 W (o) £ U, (o) (12)

where lLr(-o) are orthonormal elgenstates of ¥, (Y, U, (o) = U»r(o)) and

U, ) = ‘/—i—ﬁ_ﬂLyca) (13)

Here k(E,k) and k'(E, k') are the four momenta of the incoming and ouf
going nucleons in the ¢.m.S.

The matrix f may be written in the forms

L
=1 + (0.8 (g.6) £, (1h)
where €' and § are unit vectors in the direction k' and k respectively,
and

+ - - +
£, = Z (£, Plag -T2 P;.-l) j £, = Z(f{ - %) Pll (15)

+ _
The £ are amplitudes for transitions in given states of total angular
momentum J= Q:_ % and parity (--l}£ « For K-nucleon scattering below
the threshold for pion production the amplitudes f!i_ have the form;

+ * +
£= = et 8!,. sin at‘f/k
+ -
where the phases 8;', are real functions of k. For E-nucleon scattering

as well as for K-nuycleon scattering above that threshold the phases are

—25-



complex, |
Frem (5), (12) end (13) ove obtains the following 3elatium$6
between the covariant ampiitudss U, ¥V and the scattering amplitudes flg

£5

: hoy £y =RgH [@ + (4 =) 9] (16)
bt g, = Bl oo aqw e m) v am

end hence |
s B o s (18)
Vs EEEL ‘Eeut: (19)

Ope can see bhats
£) (W) = = £5(W) (20)

which is a consequence of invariance wmder Schwinger?s space-fime ro-
flexion, The partisl wave amplitndes may de px@j@etéd out of zi_anﬁ.%?
One obtains recurrence relations which on the asssumption that limoif;%Q

T {»en

+ .
5 =% S (23 B * %z Frey) (21)
4
From the symmetry (20) it follows thats

+ N '
£y (H) = - £, () (22)
I¥, The snalytic properties of ﬁhe‘partiai amplitudes,

We investigate now the &ﬁalytic properties of the partial ag
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plitudes as defined by (21) as functions of the varlable
=3 W2 .M -n®) =7 +A° (23)

They are derived from the representation(10) for U and V, setting

pAZ=% ¥ a-m (2l
and varying Z from -1 to +1,
+

Let us first consider the Born approximation f{',a}. In the
K-nucleon scattering the poles of U and V give rise to branch lines of
i“"{l) in the intervals of the real axis along which

Yy+ V -»ka(l -2) =0

that is (~ oo, = l(Ma + n2)) and (-vy g =Vy) where:

NII-'

Nll-'

30§ -
[wgu— - -]

By contrast in K-.nucleon scattering the Born approximation
vanishes for all amplitudes except the S and Pl /2 states in which there
remain poles at V=) .
v $2) & ()
Let us now consider the singularities of f : ﬁ' - 5'1 .

They lie on the lines of the complex «plane defined by:

We W =0 | (25)
W'2.% =0 (26)
2 _k% =0 (27)

where W' 2, W'Z and X'? are parameters assuming values within the inter.

-27-
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vals of integration in {10),

For K-nucleoﬁ scattering # and K are expressed in terms of
Vand Z By means of (7), (8), (23), and (27),

Bquation (25) defines & cut on the real axis in the interval
(m B, c0). For a rixéd value of ﬁ'z'equation(26) defines cuts in the
intervals (-oco0, = % (“+ n%) and (- D', - V) where:

v 3'% (ﬁJZ - HZ - mz)

2 2.2
_ - 2 2
'-%(L‘éi%')" - M _m]

<l

As #'? varies from (Hy-t-(u)z to co the last cut covers the interval(. co,
- Vo} where -
)_)o :% [(Hy + ) Gl msz (28)
Bquation (27) is equivalent to

¥ =-x2 /20 -8

where the right hand side varies from - eo to -(*La. &As kz varies from -oo
to -HZ, V describes two branch lines on the real axis along (- o, -82)
and (-% M= + mz), - HZ); as k“ varies from - N> to -dz,\’g,o‘es from-__MZ
to. -n’ along two branches (above and below the real axis)of a circlein
the complex plane, with centre at V= Jz‘ (Ha + inz). and radius % (Hzém_Z);
as k> varies from - m> to =%,V describes two branch lines on i real
axls aleng (-t » =% ), (-ma, V,)} where «)} and V,.are the roots of
k% + L2 = 0 (See fig. 2).

One can use these analytic properties %o abtaini a representw

=28-
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ation for the partial amplitudes in the form of dispersion relations,

Tt is convenient to introduce the combinations:

+1
i’ g% (g + fya1d = '2%‘1 S () + )R +§ y)ds
wl
No=g -, =2 S (£, - £,) (B = B ,g)dz

=l
which are symetric functions of W,

L .
Recalling that “P:; (V) behaves like K> ~ (va.. n MZ)Q as 12» 0,

+
and applying Cauchy's theorem to ‘fc (—v')/Cv'-v)(lJlZ'— nZ HZ)! for the
contour shown in B‘ig'0 2 one obtainss

Ve
2 y2 ,
¢ o) =YD o)+ 3 J:(m, o on ({lﬁ—ﬁg) = y o
o}
=00
V2 - Z 2 "e v
wvhere tl} is the Born approximation, corresponding to the first term

in (10) and qga) = ;- U}El)o

S

Dﬂ"
\J
v

Fig. 2 = Complex u-»p}.f.u?.e.a}9 showing the singularities of the partial ap
e I
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plitudes. in the K-nucleon scattering.

From the representation (10) one obtaing, for in the interval (='o,VJ:

1
JIm. J A(V; ) P, () 4 % =Re (g (0 + Iegv) ¥< -2 (% + x)
1 i
=Ty, (V) - é M2+ ..3)(»(-»1
=X, N+ Tz ) =YKV =T,
(71)
=TItz (V) = Vo vy,
where 1 ‘
I, M =-2 | & @B, ) () a3z (32)
%o
12,6
Ly =24 L, ez (33)
e 8

The lower limit of integration in (32) is X, = =1 when -%(sz- nz)

where --T)';' 183 the solution of

and
' Vo +V
zo =1- *"QF
for V outside that interval,

The + sign in (33) is taken in the region ontside the eircle
where g—,ﬁ> 0, and the - sign 1s taken inside 1t, where g_k_ {o. a1l
these 11-11:; and intervals cen be visualized better by am inspection of

..30_
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Figo 30

The functions A,(W", K°) and Az(K%, WZ) aye the absorptive
amplitudes for processes I1 and III as defined in reference. The folloy
ing discussion is based on the properties of these functions as descri

bed by Mandelstam,

The functions &2*(%?29 Ka) and AB(KZ, W_Z) are real in the reg
pective intervals - % (@ + ¥V Y, and =Y < V<Y, where they colp
cide with the imaginary part of the amplitudes for processes II and III
For ,v(-'% (M% + m%) the branch lines arising from (26)and (27) overkp
and ﬁhes‘e functions may become complex. | The overlapping along the in-
verval {=V,, ~Y;) 1s actually fictitious since it would arise from
processes like those shown in Fig,/ U, '

~NOKY I

N ~ K,

0
| |

m| |m ™ m

, A

N N

Fig. L.

which are forbidden on account of conservation eof strangeness, and isg
topic spin. The branch lines of graphs with K-mesons in the intermed-

iate states; already start outside that interval,

+(2)
When Y is in the interval (= w, V), Im Yy  (V)}s givenby

the right hand side of (31), provided the following modifications are
introduced in (32) and (33):

w3l
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(1) Replace P, Dby sz' (B, fng +1)

(11) . Replace Ai bys

+ .
AL = oy -wy)

i (3
A = E @y, - Mwyy)

with B +W= Wy UZ 3 and VZ,S are the absorptive covariant amplitudes
?
for processes (II,III). At this point we assume charge independence

and introduce the column matrices 1n isospin space:

() ()

whose elements correspond to transitions 1n states of iscotopic spinT=0

and .T = ) respectively., Isotopic spin has been taken into account in

(34}, where
_ L1 3

= &
H=.3
1 1
is a matrix in isospin spacgeo

+
The function ¢ (V) in the last integrai of (30)is also giy
+ + , '
en by IEB(”-) where m3 haes beén replaced by &'3. If the integration a-
round the circle 8 follows the external lines in Fig, 2 the + signmust

be'ta.ljten above and the - sign below the resl axis,

 The method described in this sectlon applies egqually to prg
cess II and pion-nucleon scattering. But then the functions f (S and
Py /2 waves) have a pole at Waso and an arbitrary parameter, the S-wave
scattering lepgth, is convenlently introduced by means of a sub‘traction

-?-



at V = mM, where the P, /2 scattering amplitude vanishes. The fortultous
absence of this pole in K-nucleon scattering is due to conservation of

strangeness.

V. Final remarks

The objective of setting up dispersion relations for partial
amplitudes was to establish an integral representation of functions of
& single ma.r::i.a.ble-ft + (V), for which the unitarity condition takes on
in the physical region, the simple forms

Ju. 2, =3 P

S Gl 2 (»)| (35)
where the index n refers to all allowed channels,compatible with conserv.
ation of energy and Pn is a phase space factorjin the elastic chapnel
€ =x.

In our integral representation there exist however regions
of frequenclies where the unitarity conditionhss no simple form, If we
attempt to apply the unitarity condition for all M in drder to obtain
an integral equation we find that the equations for partial amplitudes
of different angular momentum apd parity and corresponding to processes
I, II, I1I,in different states of isotopic spin are all coupled, More-
over in the region Y- % (Mzﬂﬂ- ma) and along the circle S the unitar -
ity cendition can only be obtained by means of analytical continuation.

In the interval =‘% (M%+ g2y {¥{- m M the variables W~ and
X% in (32) are in the physical r@gion for process II, Ope can re-8x-
press U, and V- in terms of the imaginary parts of the scattering am-

=33 -
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plltudes and expand in partial waves., Thils expansion is also valid in
the unphysical region -m M(V<{- ¥, that is (g, +@)Z T2 (e m?,
Only the virtual states (Y +TT) and (A+ 2%) contribute to the ampiitu-
des in this region and if X + K'——> A + 277 is neglected one can show’
that the unitarity condition takes the form (35) except for a factor
(-1t

We remark that if all graphs in perturbation theory involve
ing closed baryon loops and four-meson primary interactions are negleg
ted, then the branch line around the circle S disappears as well as the

contribution of ’&3 along the interval (-vl, ))2}.

Another possible approach is to use the method of Haber Schaim
and replace the integrals in the unphysical regions by an effective ran
ge approximation, One might then try to obtain a solution for the in-

verse of the amplitudes.

The author expresses his gratitude to Professor R, E.Pejierls
for his interest and continual support in this work. He is also very
much indebted to L. Castillejo for enlightening discussions and crie
ticism,
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A*=-M?

miTHIm

Fig. 3. Diasgram of the (2 ’ N ) plane., The hyperbolis represemts the
curve 3 = 3 or equivalently x* = A%,
The physical reglons for processes 1, I1I, III are shaded.

We have marked values of V on the 3 -axis recalling that V = ? for

N=0.
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