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1. INTRODUCTION

the phenomencn of electric conductivity consists in
the transformation of electromagnetic field energy (e.g. of the mag
netic energy é%L.Ja of a D.Cs) into mechanical energy of the inter-
nal vibrations of a metallic lattice. It is, therefore impossible
to treat this problem without reference to the clectromagnetic fi=
elde :

In what follows,we shall Tirst derive a simultaneous soly
tion off the fundamental equations of mechanics and electrodynamics
analogous to Lorentz' theory of dispersion. This solution, however,
will not be found in agreement with experimental evidence. Neverthg

less, it permits to study the essential factors which intervene in



the problem and permits to derive the correct solution from the par,
ticular way in which our first attempt fails.
The first step consists in the simultaneous solution of

the equations

. aﬁ 7 LUT = . -+ . l, al—'f
rot H = Y —?r%“ + o d 3 rot E = 3 “§f€ (1)
m.y o+ v = e.B (2)
-E]? = noeo;r’ (3)

In (3) n denotes the number of electrons per unit volume, the vis-
cesity coefficient 7 represents, in (2), schematically the coupl

ing between the electrons and the lattice vibrations.

2., THE SOLUTION OF THE SYSTEM

In order to use ordinary notations, we write (2) by means

of (3) in the form

(AT + T = oF (2
with
2 = (4)
a- T N= e -

In (4) ¢ denotes the coeffiecient of specifie conductivity, A
shall be called, in what follows, the Lérentz'—London inertia cons-~
tént._

Equation (2') contains two well known limiting cases. With

A= 0 (charges without inertiz) it leads to Ohm's law

t=4

i=  a. (2")

with (¢ - ©0 we obtain one of the equations whigh have been pPro -

posed by F. London in order to describe the Meissner effect
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A—g—g—- = E - (2m)

(2') mixes, therefore all necessary elements which inter
vene in the problem of conductivity, but we shall see that it
mixes them in a wrohg way. Nevertheless; we may conclude from (2™
that the Meissner effeect represents a simple, classlesl effect of
inetrtid

It is much more difficult to understand the limit /\ =0,
which leads to Ohm's law (2"). It means that charges move ag  if
they had no mechanical inertiae. We Xnow phenomena which give dir
sct evidence of the specific electron inertia m/e in metals. On
the other hand Ohm's law holds in metals with remarkable acCCcuracy.
There must, therefore, exist very general types of motion which
are, apparently, inertiafree. We shall find below, that classical
mechanicg ignores such types of motion, while quantum theory ac-
counts for them. Contrarily to current views, we. arrive, there-
fore, to the conclusion that supraconductivity is, bagically, . .a
classical phenomenon, while normal conductivity represents an eg=
sential quantum effect. |

In order to see the difficulties to which (1) and (2')
lead, we derive, with div E=0 , the following relations:

- J - 1 828\ 2
rot 3= - q—i'-@-(’ﬁ + [Nscerot T (6)

which become in the limit ( -0 for any periodical phenomenon
of arbitrary freduency

AE 1 32"13 I I e
C2 at2 - _02 E ' (7)
A.ceTot 3 = - B (8)

(7) and (8) are well known relations of London's theorys
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(5) describes a superposition of two effects: the exponepn
tial penetratiocn of a field intc a metal, without absorption, due
‘to the inertia A and the damped oscillating penetration  with
absorption due to conductivity G_; Nelther in the case of supra-
conductivity nor in the normal case (5) leads to correct results.
In the case of supraconductivity London's equations (7) are only
valid for small frequencies, while, according to (5), they should
hold for any frequency. In the case of normel conductivity (5)
leads for sufficiently high frequencies ( e.g. in the infrared) to
a dominating influence of the terms containing A and, therefore
to practically total reflexion of light at the surface of a metal,
‘while experimental evidence shows, that we obtain the correct an-

swer only if we disregard the terms with A

%. THE RESQNANCE CONDITION

In order to avoid the above mentioned contradictions, we
consider a classical drmped oscillator under the influence of an
1o

axternal, perlodical force F = F .e « Denoting by W the

proper frequency of the oscillator, we obtain

2
mo (W5 - Bk e o= E (9)
Acecording to (9) the inertia term -m.LJ g becomes reduced

by the acting elagtic force and vanishes in the case of resonance

W, = W “(10)

This circumstance permits us to replace our above statement, that

electrons move in a nermal metal as if they had no mechanical in-
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ertia, by the more suitable conjecture that +the metal behaves as if
it was in resonance with any of the considered waves.,

Before we proceed %o investigate how such a behaviour can
be explained, we shall formulate our condition axiomatically;

We shall call the behaviour of a substance metallic,if in
a given range of parameters { e.g. of temperature ) there exists a
frequency range in which any electromagnetic wave is in resonance
wifh the substaﬁce.

We ha%e, now, to prove that a substance, under certain con
ditions can satisfy our resonance condition and that our condition
is sufficient in order to remove the contradictions above stated.

‘.

4. REALIZATION OF THE RESONANCE CONDITION

Within the reach of classical mechanics the resonance con
dition cem hardly be sensefully satisfied; In quantum theory our
condition requires first the existence of a continuous energy spe-
ctrum; This necessary, but no{ sufficient condition is satisfied by
most substances at sufficiently high energies or temperatures. In
the case of metals it is satisfied already at energy zero or,ab least,
at very small energies above the ground state.

We have further to require, that there exist radiative re
sonance transitions between any two states of the continuous spectrum
This condition can be satisfied by electrons which move under  the
influence of externsl foroes; It cannot be satisfied by an dideal
electron gas; An ideal electron gas can, therefore, not conduce to

metallic behaviour.
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We consider, now, a plane electromagnetic wave, which con
sists of & large, but not well defined number of photons and which
has a fairly well defined phase. If this wave becomes reflected by
the surface of a metal, every incident photon becomes absorbed by
the metal and almost every photon becomes subsequently reemitted by
coherent scattering in the direction of reflexion. Welwill find,on
the surface of the metal a resonance equilibrium between incident
and reflected photons and certain excited states of the electrons.

The (quasi-)stationary eigenfuction which describes the
resonance equilibrium belonging to a given inltlcl ctate of the’

clacirons, 'XP , cen be written in. the form
0

Sa, . 11
L B Tﬂl '[; (1)
n

Ig refers to to the field configuration 1f no electron is excit

ed, It represents a wave packet of fairly well defined phasge, ’&%
are eigenfunctions of electron states which can be reached frmmfy%
by resonance absorption of n photons, Analogously, Ea describes
the field which results from Iy through absorption of n pho-
tons; Since the Eﬁ are no eigenfunctions, but wave packets, they
will not be orthogonal between themselves, The superposition of the
different terms of (11) localises the reflexion process on the sup
face of the metal and destroys the field in the interior of the meg
tal. The coefficients dn satisfy a system of linear equations

and depend on the particular radiative transition matrix elements

agl? =1,

of our sysitem. They sztisfy the condition ;EJ
n
Practically only a finite number of terms, of the order

of the average number of photons present in the field, will contri
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bute to the sum (11). (11) represents only an approximate, not a
rigorous soluticn of our problem, because 1t neglects virtusl dis-
persion transitions and, in particular incoherent scattering pro-
cegsses, which, even in the case of absence of excitations of lattice
vibrations reduce slightly the intensity of the reflected light.
The inclusion of incoherent emission of photons by interaction with
the lattice vibrations accounits, in our picture, for the efifect of
conductivity,

Since, in (11), the f; are not orthogonal ( known pha

se ), observable, time dependent transition densities of the type

3
Tpn ??n+l
result from (11). These are the charge and current densities which
are required by Mazxwell's theory in order to account for the refle
xion process. Those are interference terms between two eigenfun -
ctions, terms which are ignored by classical theeory. We can, now,
also answer the guestion concerning the origin of the elastié force
which we had postulated ad hoc in (9); Those forces are due,accord,
ing to (11) to the Schrgdinger or Dirac tensions, which are chara-
cteristic for quantum mechanics; It Fg the transition terms of
those tensions which compensate the inertia of the electron motion

and assure the validity of Ohm's law in metals.

5. THE T - V¥ - DIAGRAM OF SUPRACONDUCTIVITY

A supraconductor, in which we have scen inertia efffects to

be present, cannot satisfy our resonance condition and, according

’

to our definition, dees not represent a metallic state.
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Though we Ignore up 1o now, how supraconductivity can be
interpreted by a detailed model, we know that the supraconducting
state is restricted to small energies of the order. |

kB,
( T, = transition temperature ).

If a wave of small frequency

hey < kO (12)
is reflected by a supraconductor, egquations of the type of (5) must
hold, since the resonance condition is not satisfied; We know from
experience, that, indeed, supraconductivity is found at low frequen
cies, If, however, the frequency is high

hed > kT (13)
resonance absorption will, in general become possible and the suprg
conductor will behave like a metal., This is again in agreement with

.

experience., M, v, Laue has described these conditiPns by supposing,
ad hoc, two independent mechanisms of conductivdiyl» In our repreg
sentation the failure of London's equations at high frequencies be-
comes a natural consequence of our bagic assumptions, In the T- ¥ -

diagram, supraconductivity does not occupy the whole band of low

temperatures but only the narrow corner determined by (12).

(1) Mex Von Laue, Theoric der Supraleitung, Berlin und Gc':'vttingen, 1947,



