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‡ CBPF, Rua Dr. Xavier Sigaud 150, Urca,
cep 22290-180, Rio de Janeiro (RJ), Brazil.

Abstract

In two papers, JPA: Math. Theor. 46, 405204 (2013) and JMP 56, 031701 (2015),
second-order invariant PDEs of the d = 1 ` = 1

2 + N0 centrally extended Conformal Galilei
Algebras, were constructed (for continuous and, respectively, discrete spectrum). We in-
vestigate here the general class of second-order invariant PDEs, pointing out that they are
deformations of decoupled systems. For ` = 3

2 the unique deformation parameter γ belongs
to the fundamental domain γ ∈]0,+∞[. The invariant PDE with discrete spectrum induces
a cryptohermitian operator possessing the same spectrum as two decoupled oscillators of
given energy ω1, ω2. The normalization ω1 = 1 implies, for ω2, the admissible critical values
ω2 = ± 1

3 ,±3 (the negative energy solutions correspond to a special case of Pais-Uhlenbeck
oscillator).

Unitarily inequivalent operators, acting on the L2(R2) Hilbert space, are obtained for
the deformation parameter γ belonging to the fundamental domain. The undeformed γ = 0
case corresponds to a decoupled cryptohermitian operator with enhanced symmetry at the
critical values ω2 = ± 1

3 ,±1,±3. Two inequivalent 12-generator symmetry algebras are found
at ω2 = ± 1

3 ,±3 and ω2 = ±1, respectively. The ` = 3
2 Conformal Galilei Algebra is not

a subalgebra of the decoupled symmetry algebra. Its γ → 0 contraction corresponds to a
8-generator subalgebra of the decoupled ω2 = ± 1

3 ,±3 symmetry algebra.
The features of the ` ≥ 5

2 invariant PDEs are briefly discussed.

CBPF-NF-003/15

∗E-mail: aizawa@mi.s.osakafu-u.ac.jp
†E-mail: zhanna.kuznetsova@ufabc.edu.br
‡E-mail: toppan@cbpf.br



CBPF-NF-003/15 2

1 Introduction

In [1] and [2] second-order PDEs, invariant under the ĉga` (` = 1
2 + N0) centrally extended

Conformal Galilei Algebra [3], were constructed. They were shown to possess a spectrum which
is either continuous [1] or discrete (positive and bounded) [2]. In [1] the invariant PDEs were
obtained via Verma module representation, while in [2] the so called on-shell condition was used
(for the cases at hand the two approaches are proven to be equivalent).

In this paper we address several important issues that were not touched in these two previous
works. We name a few: the identification of the general class of invariant PDEs (which turns out
to depend on real parameters belonging to a fundamental domain), the existence of a contraction
algebra, the reason for the cryptohermiticity (we use here the word adopted in [4]) of the discrete
spectrum, the construction of the associated Hilbert spaces, the connection with Pais-Uhlenbeck
oscillators with unbounded spectrum, etc.

Specifically, the following list of results is derived in the present paper (we limit here in
the Introduction to discuss the first non-trivial case obtained for ` = 3

2 , the ` > 3
2 cases are

commented in Section 9): two special differential realizations of ĉga` produce, as invariant PDEs,
Schrödinger-type equations with continuous (respectively, discrete) spectrum and no explicit
dependence on the time coordinate. Both realizations depend on a parameter γ 6= 0. Unitarily
inequivalent theories are recovered for γ belonging to the fundamental domain γ ∈]0,+∞[.

The γ = 0 PDEs are decoupled equations. The continuum spectrum case corresponds to
the free Schrödinger equation in 1 + 1 dimensions, while the discrete spectrum case corresponds
to a system of two decoupled cryptohermitian oscillators (namely, despite being non hermitian,
possessing the same spectrum as two decoupled oscillators with the given frequencies). The
parameter γ can therefore be regarded as a deformation parameter and as a coupling constant.

Without loss of generality we can fix ω1 = 1 to be the energy mode of the first oscillator
in the coupled cryptohermitian PDE. Then, the ĉga3

2
invariance of the PDE is recovered if the

energy mode of the second (crypto-oscillator) possesses the critical values ω2 = ±1
3 ,±3 (ω2 = 3

is the solution given in [2]). The negative values correspond to an unbound spectrum and, as
explained later, are connected with special cases of the Pais-Uhlenbeck oscillators. At fixed ω1,2,
the spectrum of the cryptohermitian operators does not depend on the value of γ.

The γ → 0 limit of the ĉga3
2

algebra produces a contraction algebra which is a symmetry

subalgebra of the decoupled systems. For the decoupled cryptohermitian oscillators (without
loss of generality the analysis can be limited to the ω1 = 1, ω2 ≥ 1 domain), the PDE possesses a
9-generator symmetry algebra at generic values, with enhanced symmetry at the critical values
ω2 = 1 and ω2 = 3 (two different 12-generator symmetry algebras are obtained at these special
points). The γ → 0 contraction algebra is a 8-generator subalgebra of the ω2 = 3, 12-generator
decoupled symmetry.

For all critical values ω2 = ±1
3 ,±3 and for all values of γ (including γ = 0), the cryptoher-

mitian operators associated with the discrete spectrum act on the Hilbert space L2(R2). The
existence of similarity transformations prove that the spectrum is independent of γ. Unitary
transformations change the phase of γ. Therefore, inequivalent cryptohermitian operators with
the same spectrum are labeled by γ ∈ [0,+∞[.

It is easily shown that the eigenvectors are not normalized in L2(R2). A different Hilbert
space, L2(R̃2), can be introduced. It is defined by preserving the canonical commutation relations
while changing the conjugation properties of the creation/annihilation operators. Since the
canonical commutation relations are unchanged, the spectrum of the operators acting on L2(R̃2)
coincides with the spectrum of the operators acting on L2(R2). In L2(R̃2) the γ = 0 operator
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is hermitian and given by the sum of two decoupled harmonic oscillators. The γ 6= 0 operators
are cryptohermitian and their eigenstates, which belong to L2(R̃2), are not orthogonal.

Within this framework we are now in position to discuss the subtle connection with Pais-
Uhlenbeck oscillators. The Pais-Uhlenbeck model is a higher derivative system [5, 4, 6] which
admits, via the Ostrogradskĭı construction [7], a Hamiltonian formulation. The Ostrogradskĭı
Hamiltonian is canonically equivalent to a set of decoupled harmonic oscillators with alternating
(positive and negative) energy modes. In a series of papers [8, 9, 10, 11, 12] the Pais-Uhlenbeck
oscillators with energy modes given (up to a normalization factor) by the arithmetic progression
ωi = 2i − 1 were linked to the Conformal Galilei Algebras ĉga` (with ` = n − 1

2). The present
analysis proves that the connection is rather subtle. The PDE, invariant under the Conformal
Galilei Algebra, is obtained for the coupled cryptohermitian operator with γ 6= 0 and unbounded
spectrum. The derivation of the Pais-Uhlenbeck oscillator requires two non-trivial passages
which (both) spoil the Conformal Galilei invariance: i) taking the γ → 0 decoupling limit and
ii) change the conjugation properties, by replacing the decoupled cryptohermitian operator with
the hermitian decoupled harmonic oscillator.

Another result presented in the paper is the realization of a commutative diagram relating,
via similarity transformations and a change of the time coordinate, the differential realizations
for coupled and decoupled Schrödinger equations with continuous and discrete spectrum.

The scheme of the paper is as follows: in Section 2 we present the (γ 6= 0-dependent)
differential realization for the deformation of the free Schrödinger equation at ` = 3

2 . The
differential realization for the coupled cryptohermitian oscillator is presented in Section 3. The
connection of the two differential realizations obtained by similarity transformations and change
of the time coordinate is shown in Section 4. In Section 5 the most general solution of the ĉga 3

2
-

invariant cryptohermitian oscillator is given. The symmetry of the decoupled cryptohermitian
oscillator (with enhanced critical points at ω2 = 1 and ω2 = 3) is presented in Section 6. The
` = 3

2 contraction algebra in the γ → 0 limit is given in Section 7. The Hilbert spaces for
the cryptohermitian oscillators are discussed in Section 8. In Section 9 the extension to the
` > 3

2 cases and the relation to Pais-Uhlenbeck oscillators are commented. Generalizations of
the present construction are discussed in the Conclusions.

2 Differential realization for the free system deformation

The d = 1 ` = 3
2 centrally extended Conformal Galilei algebra ĉga 3

2
admits, for an arbitrary

parameter γ 6= 0, the following differential realization in terms of first-order differential operators
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acting on functions of τ, x, y:

z+ = ∂τ ,

z0 = −2iτ∂τ − ix∂x − 3iy∂y − 2i,

z− = −4τ2 − 4(τx− 3

γ
y)∂x − 12τy∂y − 8(τ − ix2),

w+3 = ∂y,

w+1 = −2iτ∂y +
2i

γ
∂x,

w−1 = −4τ2∂y +
8

γ
τ∂x −

8i

γ
x,

w−3 = 8iτ3∂y −
24i

γ
τ2∂x − 48(

1

γ
τx+

1

γ2
y),

c = 1. (1)

The non-vanishing ĉga 3
2

commutators are

[z0, z±] = ±2iz±,

[z+, z−] = −4iz0,

[z±, wk] = (k ∓ 3)iwk±2,

[w|k|, w−|k|] = (3− 2k)
16

γ2
c. (2)

Three second-order on-shell invariant differential operators Ω±1,0 are encountered at degree ±1, 0
(measured by the degree operator − i

2z0), respectively:

Ω+1 = i∂τ − iγx∂y +
1

2
∂2x = iz+ −H+ = iz+ +

γ2

16
({w+3, w−1} − {w+1, w+1}) ,

Ω0 = −2iτΩ+1 = iz0 −H0 = iz0 +
γ2

32
({w+3, w−3} − {w+1, w−1}) ,

Ω−1 = −4τ2Ω+1 = iz− −H− = iz− +
γ2

16
({w+1, w−3} − {w−1, w−1}) . (3)

The ĉga 3
2

on-shell invariant condition for Ω±1,0 (see [13, 2] for a definition) is guaranteed by the

fact that their only non-vanishing commutators with the ĉga 3
2

generators are expressed as

[z0,Ω+1] = 2iΩ+1,

[z−,Ω+1] = 4iΩ0 = 8τΩ+1,

[z+,Ω0] = −2iΩ+1 = τ−1Ω0,

[z−,Ω0] = 2iΩ−1 = 4τΩ0,

[z+,Ω−1] = −4iΩ0 = 2τ−1Ω−1,

[z0,Ω−1] = −2iΩ−1. (4)

The three operators Ω±1,0 close the sl(2) algebra, with Ω0 the Cartan element:

[Ω0,Ω±1] = ∓2Ω±1,

[Ω+1,Ω−1] = 4Ω0. (5)
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The degree 1 invariant equation

Ω1Ψ(τ, x, y) = 0 ≡ i∂τΨ = −1

2
∂2xΨ + iγx∂yΨ (6)

is a Schrödinger equation with no explicit time dependence (τ is the time coordinate). The
parameter γ is a coupling constant. This equation can be regarded as a γ-deformation of the
free Schrödinger equation in 1 + 1 dimensions.

3 Differential realization for the crypto-oscillator deformation

The following differential realization of the ĉga 3
2

algebra (2) (in terms of first-order differential

operators acting on functions of t, x, y)

z0 = ∂t,

z+ = e2it(∂t + ix∂x + 3iy∂y + ix2 + 2i),

z− = e−2it(∂t − ix∂x − 3iy∂y +
12

γ
y∂x + 7ix2 +

12

γ
xy − 2i),

w+3 = e3it∂y,

w+1 = eit(∂y +
2i

γ
∂x +

2i

γ
x),

w−1 = e−it(∂y +
4i

γ
∂x −

4i

γ
x),

w−3 = e−3it(∂y +
6i

γ
∂x −

18i

γ
x− 48

γ2
y),

c = 1 (7)

produces the second-order on-shell invariant operators Ω±1,0, given by

Ω+1 = e2itΩ0 = iz+ −H+ = iz+ +
γ2

16
({w+3, w−1} − {w+1, w+1}) ,

Ω0 = i∂t +
1

2
∂x

2 − 1

2
x2 − 3y∂y − iγx∂y −

3

2
= iz0 −H0 = iz0 +

γ2

32
({w+3, w−3} − {w+1, w−1}) ,

Ω−1 = e−2itΩ0 = iz− −H− = iz− +
γ2

16
({w+1, w−3} − {w−1, w−1}) . (8)

The on-shell invariant condition is guaranteed by the fact that their only non-vanishing com-
mutators with the ĉga 3

2
generators are expressed as

[z0,Ω+1] = 2iΩ+1,

[z−,Ω+1] = 4iΩ0 = 4ie−2itΩ+1,

[z+,Ω0] = −2iΩ+1 = −2ie2itΩ0,

[z−,Ω0] = 2iΩ−1 = 2ie−2itΩ0,

[z+,Ω−1] = −4iΩ0 = −4ie2itΩ−1,

[z0,Ω−1] = −2iΩ−1. (9)

The Ω±1,0 operators close the sl(2) algebra

[Ω0,Ω±1] = ∓2Ω±1,

[Ω+1,Ω−1] = 4Ω0. (10)
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The degree 0 invariant equation

Ω0Ψ(t, x, y) = 0 ≡ i∂tΨ =

(
−1

2
∂x

2 +
1

2
x2 + 3y∂y + iγx∂y +

3

2

)
Ψ (11)

is a Schrödinger-type equation with no explicit dependence on the time coordinate t and with
a non-hermitian operator (which is proven to be cryptohermitian) in the right hand side. The
parameter γ is a coupling constant. The equation (11) can be regarded as a γ-deformation of a
decoupled “cryptohermitian oscillator” discussed in the following.

4 Connection of the two differential realizations

The two differential realizations of the ĉga 3
2

algebra introduced in Section 2 and 3 are charac-

terized by inducing a Schrödinger equation with no explicit dependence on the time coordinate
from, respectively, degree 1 and degree 0 invariant operators.

The two differential realizations are connected via a similarity transformation coupled with
a redefinition of the time coordinate.

Let us denote as g an operator entering (7) or (8) and as g its corresponding operator entering
(1) or (3). For convenience we introduce the operator X+ by setting, for z+ in (7),

z± = e±2it(∂t +X±), X+ = ix∂x + 3iy∂y + ix2 + 2i. (12)

The connection is explicitly realized by the similarity transformation

g 7→ g = eSge−S , (eS = eS2eS1),

S1 = tX+,

S2 =
1

2
x2, (13)

supplemented by the redefinition of the time coordinate

t 7→ τ =
i

2
e−2it. (14)

The first similarity transformation (induced by S1) allows to map

z+ 7→ ẑ+ = eS1z+e
−S1 = e2it∂t = ∂τ , (15)

so that

Ω+1 7→ Ω̂+1 = eS1Ω+1e
−S1 = ie2it∂t − Ĥ+1, (16)

with

Ĥ+1 = e2it
(
iX+ + etX+H0e

−tX+
)
. (17)

Due to the commutators

[X+, H0] = 2iK+, [X+,K+] = −2iK+, (18)

where

K+ =
1

2
(∂x + x)2 − iγx∂y, (19)
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we obtain

Ĥ+1 = e2it (iX+ +H0 +K+)−K+. (20)

The remarkable identity

iX+ +H0 +K+ = 0 (21)

implies that Ĥ+1 does not depend on the time coordinate (either t or τ).
The second similarity transformation (induced by S2) allows to express

Ω̂+1 7→ Ω+1 = eS2Ω̂+1e
−S2 = i∂τ +

1

2
∂2x − iγx∂y (22)

in the form which reduces, in the γ → 0 limit, to the standard free Schrödinger equation in 1+1
dimensions.

One should observe that the similarity transformation preserves the symmetry properties of
the equations, mapping first-order invariant operators into first-order invariant operators.

The following commutative diagram is obtained:

coupled (γ 6= 0) : Free0,±1γ (τ)
S←→ Osc0,±1γ (t)

r ↓ ↓r

decoupled (γ = 0) : Free0,±1 (τ)
S←→ Osc0,±1(t)

(23)

The left (right) part of the diagram denotes the equations obtained from the differential real-
izations of Section 2 (3). The horizontal arrows indicate the similarity transformation together
with the change of the time coordinate, τ and t respectively.

The three invariant PDEs (at degree 0,±1) are mapped into each other.
In the left part, the Schrödinger-type invariant PDE corresponds to deg 1 and possesses a

continuous spectrum.
In the right part the Schrödinger-type invariant PDE corresponds to deg 0 and possesses a

real, discrete spectrum which coincides with the spectrum of two decoupled harmonic oscillators.
The vertical arrows denote the mapping to the decoupled systems. This mapping can be

reached in two ways:
i) the singular similarity transformation

g 7→ R1gR
−1
1 , with R1 = eαy∂y (24)

(such that γ → e−αγ) in the α → ∞ limit. Despite the singularity of the limit, the invariant
equations of the upper part of the diagram admits as non-singular limit the decoupled equations
of the lower part of the diagram. This similarity transformation preserves the symmetry of the
equations, mapping first-order invariant operators into first-order invariant operators;

ii) the non-singular similarity transformation

g 7→ R2gR
−1
2 , R2 = e(

3i
8 γx+ i

8γ∂x −
1
96γ

2∂y)∂y . (25)

This non-singular transformation does not preserve the symmetry of the equation because some
of the transformed generators are no longer first-order differential operators. Nevertheless, it
proves that the deformed cryptohermitian operators possess the same spectrum of eigenvalues
as the γ = 0 decoupled cryptohermitian operators of the same frequency.
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The four Schrödinger-type equations associated with the commutative diagram, starting
from the upper right corner and proceeding clockwise, are: (I) the deformed cryptohermitian
oscillator (11), (II) the decoupled cryptohermitian oscillator, (III) the free Schrödinger equation
in 1 + 1 dimensions and, finally, (IV) the deformed free Schrödinger equation (6).
The three inequivalent (with constant, linear and quadratic potential, see [13, 14, 15, 16]) time-
independent Schrödinger equations in 1 + 1 dimensions invariant under the Schrödinger algebra
are recovered as restrictions of the ` = 3

2 invariant PDEs. Indeed, if we introduce the x, y sepa-
ration of variables, the equation of the harmonic oscillator and the free Schrödinger equation are
recovered by setting ∂y ≡ 0 from, respectively, equations (I) and (IV). The linear Schrödinger
equation is recovered from equation (IV) after setting Ψ(τ, x, y) = ψ(τ, x)φ(y), with the restric-
tion ∂yφ(y) = kφ(y).

5 The general ` = 3
2 cryptohermitian oscillator

The ĉga 3
2

conformal Galilei invariance requires the coupling parameter γ 6= 0. Since a unitary

transformation changes its phase, we can assume without loss of generality that γ belongs to
the fundamental domain γ ∈]0,+∞[.

For γ real, the invariant PDEs in the left part of the commutative diagram (23) are hermitian.
This is not the case for the invariant PDEs in the right part of the diagram. Under hermitian
conjugation, the deformed cryptohermitian oscillator equation is transformed into its conjugate

Ω†0(γ)Ψ(t, x, y) = 0 ≡ (i∂t +
1

2
∂2x −

1

2
x2 + 3y∂y − iγx∂y +

3

2
)Ψ(t, x, y). (26)

All operators

K = −1

2
∂2x +

1

2
x2 + ωy∂y − iγx∂y + C, (27)

for any arbitrary constant C and any γ 6= 0, induce a Schrödinger-type invariant equation with
` = 3

2 Conformal Galilei Symmetry, if ω is restricted to the values

ω = ±1

3
,±3. (28)

The ω ↔ −ω change of sign is explained by the hermitian conjugation. Understanding the
ω ↔ 1

ω transformation is subtler. One should note at first that in the γ = 0 decoupled case the
role of the space coordinates x, y can be exchanged by performing the canonical transformation

y ↔ 1√
2

(x− ∂x), ∂y ↔
1√
2

(x+ ∂x).

Next, the coupling term is introduced in terms of the non-singular similarity transformation. As
it turns out, this procedure guarantees the conformal Galilei invariance of the resulting PDE.

An explicit check of the symmetries of this class of PDEs proves that, in order to have the
on-shell invariant equations [z±,Ω0] = f± · Ω0, with f± arbitrary functions of the coordinates
and symmetry generators of the form z± = e±iλt(∂t+X̌±), (X̌± time-independent operators and
λ 6= 0), the following necessary and sufficient condition has to be satisfied: the two equations

λ(ω2 + 1− 5

2
λ2) = 0,

−3λ2 + 3λ4 + 2λω + 4λ3ω − λ2ω2 − 2λω3 = 0, (29)

must be simultaneously satisfied. The only non-vanishing solutions for λ are encountered at
ω = ±3 and ω = ±1

3 . Therefore, the ω = ±1
3 ,±3 critical values are special points of enhanced

symmetry.
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6 Symmetry of the decoupled cryptohermitian oscillator

By applying the same considerations as in Section 5, it is sufficient to analyze the symmetry of
the decoupled (γ = 0) cryptohermitian operator

Ω = i∂t +
1

2
∂2x −

1

2
x2 + ωy∂y (30)

in the range ω ∈ [1,∞[.
For a generic ω the following invariant operators can be encountered at degree 0,±1

2 ,±
ω
2 ,±1:

z± = e±2it(∂t ± ix∂x + iωy∂y + ix2 ± i
2),

z0 = ∂t + iωy∂y,

d = − i
2
∂t,

c = 1,

wω = eiωt∂y,

w1 = eit(∂x + x),

w−1 = e−it(∂x − x),

w−ω = e−iωty. (31)

d is the degree operator. Explicitly, the degree is

±1 : z±; 0 : z0, d, c;
±ω
2 : w±ω; ±1

2 : w±1. (32)

This 9-generator symmetry algebra closes the u(1)⊃+(sch(1)⊕ h(1)) algebra, with non-vanishing
commutation relations given by

[d, z±] = ±z±,

[d,wk] =
k

2
wk,

[z0, z±] = ±2iz±,

[z+, z−] = −4iz0,

[z0, w±1] = ±iw±1,
[z±, w∓1] = ∓2iw±1,

[w1, w−1] = −2c,

[wω, w−ω] = c. (33)

d̄ is the generator of the u(1) subalgebra, while z̄0, z̄±, w̄±1, c̄ generate the Schrödinger algebra
sch(1) and w±ω, c̄ generate the Heisenberg algebra h(1).
The critical values ω = 1 and ω = 3 are points of enhanced symmetry for the decoupled system.

6.1 The enhanced symmetry for the decoupled ω = 1 system

At the critical value ω = 1 three extra generators are found at degree 0 and −1:

q1 = y(∂x + x),

q2 = e−2ity2,

q3 = e−2ity(∂x − x). (34)
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They have to be added to the previous set of (generic) symmetry generators

z± = e±2it(∂t ± ix∂x + iy∂y + ix2 ± i
2),

z0 = ∂t + iy∂y,

d = − i
2
∂t,

c = 1,

w1b = eit∂y,

w1a = eit(∂x + x),

w−1a = e−it(∂x − x),

w−1b = e−ity. (35)

The extra non-vanishing commutation relations involving the qi’s generators are

[z0, q1] = iq1,

[d, q2] = −q2,
[d, q3] = −q3,

[z+, q3] = −2iq3,

[z−, q1] = 2iq3,

[w1b, q1] = w1a,

[w−1a, q1] = 2w−1b,

[w1b, q2] = 2w−1b,

[w1b, q3] = w−1a,

[w1a, q3] = −2w−1b,

[q1, q3] = −2q2. (36)

The symmetry algebra closes as a non semi-simple, 12-generator, Lie algebra.

6.2 The enhanced symmetry for the decoupled ω = 3 system

At the ω = 3 critical value the three extra generators r−j , j = 1, 2, 3, of degree −j, are encoun-
tered. We have, explicitly,

r−1 = e−2ity(∂x + x),

r−2 = e−4ity(∂x − x),

r−3 = e−6ity2. (37)

At ω = 3 the symmetry algebra is a 12-generator algebra which differs from the 12-generator
symmetry algebra of the ω = 1 decoupled system.
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The extra non-vanishing commutation relations involving the r−j generators are given by

[d, r−j ] = −jr−j ,
[z0, r−1] = ir−1,

[z0, r−2] = −ir−2,
[z−, r−1] = 2ir−2,

[z+, r−2] = −2ir−1,

[w+3, r−1] = w+1,

[w−1, r−1] = 2w−3,

[w+3, r−2] = w−1,

[w+1, r−2] = −2w−3,

[w+3, r−3] = 2w−3,

[r−1, r−2] = −2r−3. (38)

7 The contraction algebra

For γ 6= 0 and in the γ → 0 limit, a contraction algebra is recovered from (7) by suitably
rescaling the generators. The contraction requires the rescaling g 7→ g̃ = γsg (g is any generator
entering (7)), with

s = 0 : z0, z+, w3, c,

s = 1 : z−, w1, w−1,

s = 2 : w−3. (39)

The contracted 8-generator algebra expressed by z̃±, z̃0, c̃, w̃k (k = ±1,±3) is a subalgebra of
the full 12-generator symmetry algebra. The identification goes as follows

z̃+ = eS̃z+e
−S̃ = e2it(∂t + ix∂x + 3iy∂y + ix2 + 2i),

z̃0 = eS̃(2id− 3i
2 c)e

−S̃ = ∂t,

z̃− = eS̃(12ir−1)e
−S̃ = 12ie−2ity(∂x + x),

w̃+3 = eS̃w+3e
−S̃ = e3it∂y,

w̃+1 = eS̃(−2iw+1)e
−S̃ = 2ieit(∂x + x),

w̃−1 = eS̃(−4iw−1)e
−S̃ = 4ie−it(∂x − x),

w̃−3 = eS̃(48w−3)e
−S̃ = −48e−3ity,

c̃ = eS̃ce−S̃ = 1, (40)

with the similarity transformation given by S̃ = −3
2 it.

The contraction algebra corresponds to the two-dimensional Euclidean algebra acting on
two set of creation/annihilation operators. We have the e(2)⊃+h(2) algebra, with non-vanishing
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commutators given by

[z̃0, z̃±] = ±2iz̃±,

[z̃0, w̃k] = kw̃k,

[z̃+, w̃−1] = −4iw̃+1,

[z̃−, w̃+3] = 6iw̃+1,

[z̃−, w̃−1] = 2iw̃−3,

[w̃|k|, w̃−|k|] = (3− 2k)16c̃. (41)

8 Cryptohermitian operators and Hilbert space

The non-hermitian operator derived from (11) is

H0(γ) = −1

2
∂x

2 +
1

2
x2 + 3y∂y + iγx∂y +

3

2
. (42)

It acts on the Hilbert space L2(R2), with R2 expressed by the coordinates x, y. The H0(γ)
eigenvalues En,m are real, discrete, positive and bounded. For n,m ∈ N0 we have

En,m = n+ 3m+ 3
2 . (43)

Due to the reality of its eigenvalues H0(γ) belongs to the class of cryptohermitian operators
as defined by Smilga in [4]. Its eigenvectors, however, are not normalized in L2(R2). We have
indeed, for the ψn,m(x, y) eigenvector,

ψn,m(x, y) = ymϕn(x− iγm), (44)

with ϕn(x) the n-th eigenvalue of the ω1 = 1 harmonic oscillator.
Associated to H0(γ) one can introduce a different operator with the same canonical commu-

tation relations (therefore, the same spectrum, up to a vacuum energy constant), but different
hermitian conjugation properties. One is naturally induced to define K(γ) as

K(γ) = a†a+ 3b†b+
1

2
+ γ(a+ a†)b, (45)

through the positions

a = 1√
2
(x+ ∂x), a† = 1√

2
(x− ∂x), b = 1√

2
(z + ∂z), b† = 1√

2
(z − ∂z), γ = i√

2
γ. (46)

The two independent creation/annihilation operators (a, a† and b, b†) have non vanishing com-
mutators: [a, a†] = [b, b†] = 1.

The operator K(γ) acts on a new L2(R̃2) Hilbert space, where R̃2 is now expressed by the
coordinates x, z.

Unlike H0(γ), the operator K(γ) is mapped in the γ → 0 limit on the hermitian Hamiltonian
of two decoupled harmonic oscillators. The K(γ) eigenvectors belong to L2(R̃2). They are given
by the (unnormalized) states |n,m >= (a†)n(b†)m|vac >, where |vac >≡ |0, 0 > is the Fock
vacuum defined by the conditions a|vac >= b|vac >= 0.

One can read from the commutators

[K(γ), Aλ] = λAλ (47)
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which excited modes are created.
For any γ 6= 0, the solutions of the (47) equation are obtained for λ = ±3,±1

3 . The
corresponding modes are

A−3 = b,

A−1 = a+
1

2
γb,

A+1 = a† − 1

4
γb,

A+3 = b† − 1

2
γa† − 1

4
γa+

1

24
γ2b. (48)

In this basis the non-vanishing commutators are

[A−i, Aj ] = δij , (i, j = 1, 3). (49)

The non-hermitian operator K(γ) commutes with the “non-hermitian analog of the Number
operator”, N(γ). In terms of the Ak modes, the operators are given by

K(γ) = 3A3A−3 +A1A−1 +
1

2
,

N(γ) = A3A−3 +A1A−1,

[K(γ), N(γ)] = 0. (50)

The Fock vacuum |vac > satisfies

a|vac >= b|vac >= 0 , A−1|vac >= A−3|vac >= 0. (51)

The Hilbert space L2(R̃2) can be spanned by both sets of (unnormalized) states,

|n,m > = (a†)n(b†)m|vac >,
|n,m > = An1A

m
3 |vac > . (52)

We can therefore write

|vac >= |0, 0 >= |0, 0 > . (53)

The spectrum of K(γ), N(γ) coincides with the spectrum of the Hamiltonian and Number
operator of a decoupled harmonic oscillator. |n,m > is an eigenvector for K(γ), N(γ) with
respective eigenvalues n+ 3m+ 1

2 and n+m. In increasing order of K(γ) eigenvalues, the first
(unnormalized) common eigenvectors of K(γ), N(γ) are

(
1

2
, 0) : |0, 0 >= |0, 0 >= |vac >,

(
3

2
, 1) : |1, 0 >= |1, 0 >,

(
5

2
, 2) : |2, 0 >= |2, 0 >,

(
7

2
, 1) : |0, 1 >= |0, 1 > −1

2
γ|1, 0 >,

(
7

2
, 3) : |3, 0 >= |3, 0 >,

(
9

2
, 2) : |1, 1 >= |1, 1 > −1

2
γ|2, 0 > −1

4
γ|0, 0 >,

(
9

2
, 4) : |4, 0 >= |4, 0 > . (54)
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Since the operators are non-hermitian, their eigenvectors are non-orthogonal. This implies
measurable physical consequences. Let us suppose that we are able to prepare the system in
a given common eigenvector of K(γ), N(γ), let’s say the state |1, 1 >. Following the standard
rule of Quantum Mechanics we can compute the probability for this state to collapse, after a
measurement operation, to the vacuum state. A simple computation shows that the probability
is p = |N < 1, 1|0, 0 >N |2 (|0, 0 >N , |1, 1 >N are the normalized states). In the case at hand
we have

p =
|γ|2

16 + 9|γ|2
. (55)

This probability is restricted in the range 0 ≤ p < 1
9 < 1. The deformation coupling parameter

γ, via its squared modulus, has testable consequences.

9 Comment on Pais-Uhlenbeck oscillators and the ` ≥ 5
2 cases

The same spectrum of eigenvalues is obtained for
i) the coupled (γ 6= 0) cryptohermitian operator (42),
ii) the decoupled (γ = 0) cryptohermitian operator and (up to a vacuum energy shift)
iii) the hermitian Hamiltonian (given by (45) for γ = 0) of two decoupled oscillators.

The construction of Section 8 can be repeated by starting with the hermitian conjugate of
the (42) operator. In this case the spectrum of the three resulting operators is unbounded. It
is given, up to the vacuum energy shift, by En,m = n− 3m. The Hilbert space of the decoupled

harmonic oscillators with energy modes 1,−3 continues to be L2(R̃2), obtained by applying
the creation operators a†, b† to the Fock state |0, 0 > (a|0, 0 >= b|0, 0 >= 0). Due to the
unboundedness of the spectrum, |0, 0 > can no longer be interpreted as the vacuum state.

The system with unbounded spectrum is related to the Pais-Uhlenbeck oscillators. We
recall [5, 4] that the Pais-Uhlenbeck model is a higher derivative system. It admits, via the
Ostrogradskĭı construction [7] (see [17] for a review), a Hamiltonian formulation. The resulting
Ostrogradskĭı Hamiltonian is canonically equivalent to a set of decoupled harmonic oscillators
with alternating (positive and negative) energy modes. The n-oscillator Pais-Uhlenbeck system
is canonically expressed as

Hn =
n∑
i=1

(−1)i+1ωia
†
iai, (56)

where ωi ∈ R and the constraint ωi < ωi+1 is satisfied.
The harmonic oscillator with energy modes 1,−3 is a special case of the 2-oscillator Pais-

Uhlenbeck model. In a series of papers [8, 9, 10, 11, 12] the Pais-Uhlenbeck oscillators with
energy modes given (up to a normalization factor) by the arithmetic progression ωi = 2i − 1
were linked to the Conformal Galilei Algebras ĉga` (with ` = n− 1

2).
The present analysis proves that this association is rather subtle. The PDE, invariant under

the Conformal Galilei Algebra, is obtained for the coupled cryptohermitian operator with γ 6= 0.
The derivation of the Pais-Uhlenbeck oscillators requires two non-trivial passages:
1) to perform the γ → 0 decoupling limit. The decoupled PDE no longer possesses the Conformal
Galilei Algebra as invariance. Its symmetry algebra has been discussed in Section 6. The
contraction of the Conformal Galilei Algebra is a symmetry subalgebra;
2) to change the conjugation properties, by replacing the decoupled cryptohermitian operator
with the hermitian decoupled harmonic oscillator.
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For general half-integer `, the invariant PDEs which possess the Conformal Galilei algebra
ĉga` (for a definition, see [3]) as a symmetry algebra, depend on `+ 3

2 coordinates. The invariant
PDEs are deformations of decoupled equations, depending on ` − 1

2 deformation parameters
γj 6= 0 (j = 1, . . . , `− 1

2). The decoupled systems are recovered in the limit, for any j,γj → 0.
The invariant PDEs with continuous spectrum are

i∂τΨ(τ, ~x) =

(
−1

2∂
2
x1 + i

∑`−1
2

j=1 γjxj∂xj+1

)
Ψ(τ, ~x). (57)

The invariant PDEs with discrete spectrum are

i∂tΨ(t, ~x) =

(
−1

2∂
2
x1 + 1

2x
2
1 +

∑`+
1
2

i=2 ωixi∂xi + i
∑`−1

2
j=1 γjxj∂xj+1

)
Ψ(t, ~x). (58)

The energy modes ωi are normalized so that |ωi| = 2i − 1. The solution ωi = εi|ωi| with all
positive signs (∀i, εi = +1) corresponds to the bounded discrete spectrum discussed in [2]. By
taking the hermitian conjugation, the solution with flipped signs, εi = −1 for all i, also leads to
a ĉga`-invariant PDE.

An explicit computation of the on-shell condition for ` = 5
2 (the procedure straightforwardly

follows the one presented in Section 5), proves that the ĉga 5
2

invariance is guaranteed by both

choices of signs, ε2 = ±1 and ε3 = ±1. As explained above, the alternating choice (ε2 = −1, ε3 =
+1) is related to a special case of three Pais Uhlenbeck oscillators (with 1,−3, 5 energy modes).
An open problem is finding a general proof, valid for all half-integer `, that every choice of
εi = ±1 signs lead to the ĉgal symmetry algebra of the PDE equation (58).

10 Conclusions

In this paper we analyzed in detail the properties of the second-order PDEs, invariant under
the d = 1 centrally extended Conformal Galilei Algebra ĉga`, with half-integer `. Two classes
of PDEs are derived with, respectively, continuous and discrete spectrum. In the latter case the
spectrum is either bounded or unbounded. The PDEs depend on `− 1

2 non-vanishing parameters
γj which can be regarded as coupling constants. In the γj → 0 limit the PDEs are decoupled
equations and the conformal Galilei algebra is mapped into a contraction algebra.

The extension of this construction to the ` = 1
2 + N0 centrally extended Conformal Galilei

Algebras with d > 1 (see [3]) is immediate. The invariant PDEs with discrete spectrum corre-
spond to cryptohermitian operators whose spectrum is given by d copies of the energy modes
created in the d = 1 case.

An interesting non-trivial extension of the methods here presented can be applied to de-
termine the second-order invariant PDEs for the class of d = 2 centrally extended Conformal
Galilei Algebras with integer `. For these theories invariant PDEs with continuous spectrum
were constructed in [1]. So far, on the other hand, the invariant PDEs with discrete spectrum
have not been discussed in the literature. They will be presented in a forthcoming paper.
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