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Abstract

There are two foundational model-independent concepts of integrability in QFT.
One is “dynamical” and generalizes the solvability in closed analytic form of the
dynamical aspects as known from the Kepler two-body problem and its quantum
mechanical counterpart.

The other, referred to as ”kinematical” integrability, has no classical nor even
quantum mechanical counterpart; it describes the relation between so called field
algebra and its local observable subalgebras and their discrete inequivalent repre-
sentation classes (the DHR theory of superselection sectors). In the standard case
of QFTs with mass gaps it contains the informations about the representation of
the (necessary compact) internal symmetry group and statistics in form of a tra-
cial state on a ”dual group”. In Lagrangian or functional quantization one deals
with the field algebra and the division into observable /field algebras does presently
not play a role in constructive approaches to QFT. ”Kinematical” integrability is
however of particular interest in conformal theories where the observable algebra
fulfills the Huygens principle (lightlike propagation) and lives on the compactified
Minkowski spacetime whereas the field algebra, whose spacetime symmetry group is
the universal covering of the conformal group lives on the universal covering of the
compactified Minkowski spacetime. Since the (anomalous) dimensions of fields show
up in the spectrum of the unitary representative of the center of this group , the
kinematical structure contained in the relation fields/Huygens observables valuable
informations which in the usual terminology would be called ”dynamical”.

The dynamical integrability is defined in terms of properties of ”wedge local-
ization” and uses the fact that modular localization theory allows to ”emulate”
interaction-free wedge-localized operators in a bijective manner with the wedge lo-
calized interacting algebra. Emulation can be viewed as a generalization of the func-
torial relation between localized subspaces of Wigner particle spaces and localized
subalgebras of the global algebra of all operators on Wigner-Fock space which does
not require a classical-quantum quantization parallelism. Its extension to interact-
ing QFTs leads to a profound understanding of integrability versus nonintegrability
and of the crossing property of particle theory. Integrable models with nontrivial
scattering amplitudes can only occur in d=1+1 where they are only consistent with
elastic S-matrices. The associated field theories are the so-called ”factorizing mod-
els”; there existence can be (and in many cases has been) established by methods
of modular localized operator algebras.

1To be published in Foundation of Physics
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1 Integrability in classical and quantum theory

Integrability in celestial mechanics had originally the obvious meaning of being able to
solve the equation of motion in closed analytic form. The prototype model was the Kepler
two-body system, which in case of three or more celestial bodies can only be numerically
approximated with arbitrary accuracy. For the non-integrable case the terminology does
not just refer to the fact that an attempt to find a solution in closed analytic form remained
without success, but rather that there exists a proof that such a solution does not exist.

As the mathematical sophistication evolved, physicists and mathematicians developed
model independent criteria for integrability. The modern definition which is sufficiently
general to cover all of classical mechanics was in terms of the existence of a complete set
of conservation laws in involution [1].

This definition could be extended from mechanics to include classical field theory
where, according to Noether’s theorem, a symmetry in the Lagrangian setting leads to
a conserved current and integrability means that there exists an infinite complete set of
conserved currents in involution. Quantum mechanics is basically what is obtained from
classical mechanics by ”quantization”; the fact that this process is not an isomorphism
but a more artistic correspondence (thinking e.g. of the problem of ordering of operator
products) did not affect the inference of quantum integrability via quantization from its
classical counterpart. The most famous illustration is the quantum analog of the Kepler
problem i.e. the hydrogen atom. In this case the conservation laws which lead to integra-
bility can even be elegantly presented in terms a spectrum-setting O(4) group symmetry.
The quantum mechanical integrability is inherited from its classical counterpart by quan-
tization; anomalies need the presence of infinitely many degrees of freedom and hence can
only occur in quantum field theory (QFT).

There are many models of QFT which have remained outside the Lagrangian quanti-
zation formulation (most of the so-called d=1+1 factorizing models), in fact the ”scaling
Z(N) Ising model” [2] is representative (as the authors emphasize in the introduction of
their paper) for a class of well defined QFTs with very nontrivial short distance properties
beyond that of the unrealistic superrenormalizable canonical models to which the quantum
mechanical functional methods of Glimm-Jaffe [3] are applicable. Only a few integrable
models (including the famous Sine-Gordon model) allow a Lagrangian representation; the
first indication about field theoretic integrability came from the famous quasiclassical ob-
servations on the Sine-Gordon model by Dashen-Hasslacher and Neveu [4]. But even in
those fortunate cases where the Lagrangian quantization setting provides a renormalized
perturbation series, the latter is known to diverge. Lagrangian quantization, although
being able to ”baptize” a theory with a name from classical field theory, does not provide
a proof of existence of a QFT; it only leads to a formal power series which is mathemati-
cally consistent only in the formal sense of a power series. Hence the surprises about the
numerical success of renormalized QED and the subsequent observational achievements
of the standard model did not yet reach their closure.

The importance of the dynamically integrable d=1+1 factorizing models does not re-
sult from insights obtained through the classical parallelism of Lagrangian- or functional-
quantization. It rather has been revealed by extending a method which was first intro-
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duced in 1939 by Wigner2 as a means to obtain an unique and intrinsic classification of
relativistic particles (instead of having to cope with an ever-growing number of quantized
field equations leading to equivalent descriptions). In the context of QFT, representation
theoretical methods were first used in connection with current algebras and chiral confor-
mal QFTs. A link between those methods and the quasiclassical DHN observations was
the first indication that the quasiclassical Sine-Gordon spectrum was the exact ”nuclear
democracy” particle spectrum in a d=1+1 adaptation of a bootstrap setting [6] (later
bootstrap-formfactor setting [7]). This project reached its present (preliminary) closure
when it was realized that

• Elastic two-particle scattering functions fulfilling unitarity and the crossing property
can be classified [8][9] and lead to n-particle elastic S-matrices through a combina-
torial product formula. The Zamolodchikovs formal algebraization added a useful
facilitating tool [10] in the implementation of this (originally analytic) classification
project.

• The bootstrap-formfactor program associates to each such scattering function3 ex-
plicitly computable particle formfactors of local covariant fields from the (Borchers)
local equivalence class of (composite) fields. The relation between the scattering
function to an associated model of QFT is unique (uniqueness of the solution of the
inverse scattering problem) and the formfactors of (composite) fields which have
been computed in the bootstrap-formfactor project are formfactors of generating
fields in this unique QFT. For the solution of the existence problem one uses alge-
braic methods.

• The creation and annihilation operators of the Zamolodchikov-Faddeev algebra turn
out to be the Fourier components of covariant nonlocal vacuum-polarization-free
generators (PFGs) of interacting wedge-localized algebras [11][12]. They are spe-
cial objects within the theory of ”modular localization” which permits to ”emulate”
wedge-localized products of free fields inside the associated wedge-localized interact-
ing algebra.

• The action of translations on a wedge-localized algebra together with that of the
modular reflection (in d=1+1 the TCP operation) generate a net of right and left di-
rected wedge algebras whose double cone intersections are compactly localized alge-
bras which act cyclic and separating on the vacuum [14][15]. This (Reeh-Schlieder)
property establishes the nontrivial existence of factorizing models in the setting
of algebraic QFT. The local equivalence class of fields (of which the bootstrap-
formfactor program already determined their formfactors) are different ”coordina-
tizations” of the local net of operator algebras. As expected such generators inherit

2Wigner always maintained a philosophical stance; his critical position towards QFT did not result
from ignoring its great successes in renormalized QED, but rather from his philosophical conviction that
a more fundamental theory should not dance to the classical tunes of a less fundamental. An intrinsic
quantum understanding of causal localization as the recent ”modular localization” [5] was still far away,
and it is well-known that he remained critical with respect to the frame-dependent Born-Newton-Wigner
probabilistic localization.-

3In the presence of backward scattering and/or inner symmetry indices the scattering function is a
matrix function which fulfills the Yang-Baxter equation [13].
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all the technical problems of pointlike singular fields (operator-valued distributions)
which, through misunderstandings of the inherent singular nature of objects ob-
tained through field quantization, were erroneously interpreted as an internal in-
consistency of QFT (”ultraviolet catastrophe”) during the first three decades of its
existence.

• A sharp division between ”temperate” and non-temperate generating PFG’s (section
4) of wedge-localized algebras gives rise to a dichotomy of integrable/nonintegrable
QFTs. Modular localization relates this division directly to the foundational causal
locality principles of algebraic QFT, thus avoiding more indirect definitions via
complete sets of conserved currents in involution based on Lagrangian quantization.
In contradistinction to classical and quantum mechanics, integrability in QFT is
strictly tied to the spacetime dimension d=1+1. An existence proof in the (generic)
case of nonintegrable models does not yet exist, but as the three and more particle
systems of celestial classical- and quantum- mechanics such models (including the
standard model) will never be solved but at best approximated with increasing
accuracy.

• The DHR superselection theory [16] which constructs a full QFT from its local ob-
servables leads to a different kind of ”partial (or kinematical) integrability” which
is of a more kinematical nature. It is based on the fact that theories which are
nonintegrable in the previous (dynamical) sense may still contain integrable (fully
computable) substructures which characterize the positioning of their observable
subalgebras to their full field algebras. In the standard case of QFT with mass-gaps
the Doplicher-Haag-Roberts (DHR) superselection theory extracts this structure
from the local representation theory of the net of observables [16] in the form of
a tracial state on the dual of a compact group (including the statistics data). Al-
though this is crucial for understanding the origin of inner symmetries from the
causal localization structure of the observables (by definition invariant), its compu-
tational advantage is limited by the fact that the Lagrangian approach bypasses the
observables in favor of the charge-carrying fields. It becomes important for confor-
mal QFT where the observable algebras are Huygens-invariant. Even if they are not
explicitely known, they contain sufficient structure in order to be able to analyze
their local representation classes in terms of tracial states (Markov traces) on dis-
crete algebras (Hecke algebras) containing representations of the braid group. The
resulting operator algebras of type II1 are special cases of those appearing in the
Jones subfactor theory [17]. Unlike the algebra B(H) of all operators on a Hilbert
space and the causally localized subalgebras of QFT A(O) (”monades”, see later)
they are too ”small” for the realization of causal localization but they can take care
of the difference between left/right as it occurs in braiding. What makes this alge-
braic structure particularly interesting is that this algebraic structure contains the
unitary representing the center of the covering group which contains informations
about the spectrum of the anomalous dimensions (last section).

The new results in the above list concern the spacetime origin of integrability and
constitute the main part of this paper. Although the important unifying concept of
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modular localization within the modular theory of operator algebras exist for more than
a decade, I am perfectly aware that most of the readers to whom I want to communicate
these findings have not become aware about them before. In order not to loose those
readers, I will present in the next section some of them in an intuitive reader-friendly way
whenever this is possible (related papers are [18][49][59]).

The foundational role of modular localization is best accounted for by first showing
its importance in a variety of familiar problems of particle physics, before presenting in
section 4 the resolution of the integrability problem. In this way it will become clear
that this problem cannot be solved without a radical re-orientation with respect to the
principles of QFT.

The natural setting for the modular theory is that of ”local quantum physics” (LQP)
[16] which appeared in a rudimentary form already in 1957 in Haag’s first attempt [19]
to formulate QFT in an intrinsic way (without using any parallelism to the classical
Lagrangian fields). This setting competed with Wightman’s at that time already ex-
isting more mathematically based setting interpreting fields as operator-valued distribu-
tions. Both approaches were strongly influenced by Wigner’s 1939 particle classification in
terms of group representation concepts instead of quantization of classical field equations.
Haag’s basic idea was very simple and almost naive: measurements of local observables in
a causally closed spacetime region O which have a certain duration in time (the duration
of the activation of a particle counter) and spatial extension within O should be members
of an algebra (”ensemble” after the recognition that the restricted vacuum becomes an
impure thermal state). As an experimental physicist does not really know the internal
structure of his measuring tools, he can only obtain more precise informations by sharp-
ening the localization of the effective part of his counters and by using them in coincidence
and anti-coincidence arrangements. For extracting scattering data it is not necessary to
know the detailed properties of an individual O-localized observable, the information that
it belongs to a localized ensemble A(O) is sufficient since the individual differences only
show up in adjustable normalization factors of asymptotic operators.

As many ideas which do not result from the extension of an already existing formalism,
but rather from philosophical contemplations about a new setting, they are not to be
taken literally; but their metaphorical aspects remain harmless if they lead to a consistent
mathematical formulation, as it is the case with local quantum physics (LQP). Already
for the localization inside a noncompact spacetime region as a Rindler wedge, only a
uniform acceleration can keep a particle counter (observer) inside the causal horizon of
the wedge; the counter must be uniformly accelerated in the wedge direction in order to
prevent an escape through the wedge’s causal horizon (the Unruh Gedankenexperiment).
There is no harware blueprint to localize quantum hardware inside a compact spacetime
localization region, not even in form of a Gedankenexperiment. The localization within a
laboratory and the duration of the registering counting are only approximate realizations
of the metaphoric idealized localization; the precise realization of modular localization,
i.e. the analog of what in case of the wedge corresponds to unform acceleration, remains
in the dark. In spite of this, the description of a local observable as a member of a local
ensemble forming a localized algebra A(O) has turned out to be one of the most fruitful
nonperturbative ideas, notwithstanding its metaphoric origin. To its many already known
successes, this paper adds the foundational understanding of integrability which enriches
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the known bootstrap-formfactor project with an existence proof for the d=1+1 factorizing
models.

The illustration in terms of the Unruh Gedankenexperiment also exposes another as-
pect of causal localization which remained unresolved for a long time and even nowadays
appears somewhat mysterious to many physicists: the vacuum state on the global algebra
B(H) restricted to an ensemble of O localized observables turns into an impure thermal
KMS state. This is accompanied by an (entropy-creating) vacuum-polarization cloud at
the causal horizon. Whereas in QM the vacuum factorizes upon inside/outside partition
of the global R3 into a tensor product vacuum, the situation in QFT is radically differ-
ent [18]. There is a widespread misconception that these manifestations of localization
only exist in connection with quantum matter localized behind event horizons of black
holes associated with appropriate curved spacetimes, whereas the main difference to the
observer-dependent ”fleeting” Unruh-type Gedankenexperiment consists in the realization
that the dividing horizon is predetermined by the observer-independent properties of the
spacetime metric. In other words the observer’s proper time is identical to the Killing
time in a black hole world since the localization is predetermined by metric properties
and this time is also the one which is related to the measured temperature.

Causal localization in the sense of Haag’s LQP [16] is a metaphoric start of a mathe-
matically solid and physically very fruitful conceptional setting which stands fully on its
own feet. The history of QFT would have probably developed differently if these man-
ifestations had been noticed already at the time of Jordan’s 1925 discovery of QFT in
his attempt to understand the analogy between Einstein’s thermal fluctuations in open
subsystems of black-body radiation and his proposed fluctuations of quantum field sub-
systems obtained by restricting the vacuum of the quantum photon field to a spacetime
subvolume. Although the two fluctuation components (the wave- and particle- compo-
nent) in Einstein’s Gedankenexperiment on which he based his photon hypothesis were
identified by Jordan, the complete unravelling of the Einstein-Jordan conundrum4 was
only possible with the help of the recent modular localization property of LQP. In fact
the presentation of the full equivalence with Jordan’s d=1+1 ”photon” model (really a
chiral conformal current model) has only been given recently [21][32].

Fluctuation calculations in open subsystems only allow approximate solutions, and
as a result pose a conceptual problem. Whereas in renormalized perturbation theory for
pointlike localized fields the covariance and localitity aspects have been ”streamlined” into
an elegant formalism (in the Epstein-Glaser iteration scheme [24] this is most visible), this
elegance is of no avail in the E-J conundrum. It is difficult to maintain the local covariance
principle in such approximations and even in recent detailed and careful presentations of
Jordan’s calculation by historians of physics [22], there is a conceptional error on this
subtle but important point. The only known way to uphold the localization principles of
QFT throughout the calculation in Jordan’s model is to find an approximation for the
vacuum reduced to an interval Iε where ε is an ”attenuation length” (roughened surface)
conceded to both sides of the interval I within which the vacuum-polarization cloud at
the boundary attenuates. The mathematical formalism of modular localization offers a
canonical way (the split property) to do this [32]. Although it is impossible to describe

4For a presentation in a modern setting see [21] and references therein.
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the associated Gibbs state in closed form, one can see that its trace diverges logarithmi-
cally and that the appropriately normalized limiting state is a singular KMS state whose
associated Hamiltonian is the generator of the dilation which leaves the interval invari-
ant. The fluctuations of the energy-momentum tensor in such a state are the searched
for thermal fluctuation, but this time the thermal aspects are entirely caused by modular
localization.

One may only speculate that Einstein, in his dispute with Jordan, could have given
up his philosophical resistance against Born’s addition of the probabilistic interpretation
of QT. The probability which inevitably comes with the thermal manifestation of the
intrinsic modular quantum localization referring to an ensemble of objects sharing the
same localization is something with which Einstein would have had no problems; what
worried him philosophically was to attribute probabilities to measuring individual observ-
ables as done in QM. Since the more fundamental QFT in the form of LQP extracts all
measurable results from localized ensembles, the question arises whether one cannot do
particle theory solely based on the natural probability which enters in the notion of en-
sembles of local observables and their surprising intrinsic thermal properties. In this way
the Born probability would have not been linked with an individual particle and the pre-
sentation of the measurement problem starting from the Copenhagen interpretation up to
Everett’s multi-world formalism idea would have taken a different turn more compatible
with Einstein’s philosophical realism.

Perhaps with this additional insight Einstein could have supported Jordan against the
critical resistance of Born and Heisenberg (in order to obtain an extra section in the fa-
mous ”Dreimännerarbeit”). Unimaginable what turn the conceptual development of QFT
could have taken! The full conceptual arsenal of QFT would have been available starting
from the Dreimännerarbeit in 1925, most of the (still ongoing) fights about the measure-
ment issue would have been superfluous, and even the post wwII covariant renormalized
perturbation theory would have appeared as a natural perturbative implementation of
causality principles without being aggrieved by an ultraviolet catastrophe. Fundamental
laws of statistical mechanics would have been behind the behaviour of localized quantum
matter (with or without spacetime curvature) a long time before Ted Jacobson proposed
connections between general relativity and the fundamental law of thermodynamics [23].

In a relativistic DPI (direct particle interactions) scheme [18] based on interacting
multiparticle representations of the Poincaré group there are no covariant local observ-
ables. The velocity of light emerges in such a setting as a limiting asymptotic velocity of
the center of mass of wave packets. Like the velocity of sound in QM this is an effective
velocity which in the acoustic case depends on the exitation of the ground state and in
DPI refers to the exitations of the QM vacuum. An important fact in QFT, where one has
in addition to the covariant modular localization also the frame-dependent Born-Newton-
Wigner localization of states, consists in realizing that these two concepts coalesce in the
asymptotic time-like region; this is the basis of the Poincaré invariance of the S-matrix.
Hence the DPI is primarily a pure S-matrix property which only can take care of those
properties which allow a formulation entirely in terms of particles (cluster-factorization,
Stückelberg’s causal rescattering,..) [59]. The fact that localized wave packets also pos-
sess superluminal components does not contradict causality (the the discussion of Fermi’s
Gedankenexperiment in [18] and feferences therein).
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Many of the geometric aspects of local Lagrangians which were proposed in the 70s are
not consistent with causal localization (and its vacuum polarization and thermal aspects).
An example is the Wess-Zumino-Witten-Novikov Lagrangian which was proposed as a
Lagrangian formulation for the construction of group valued sigma-model fields from
the representation theory of chiral currents. Notwithstanding its mathematical appeal,
this topological Lagrangian is in conflict with localization properties of QFT which also
explains why it does not possess a perturbation theory based on locality (the original
Wess-Zumino Lagrangian does not have this problem).

Closely related is the question whether the Chern-Simons Lagrangian can really de-
fine a localizable QFT. Whereas the knot and 3-mf invariants have been extracted from
a Chern-Simons functional integral representation, using a quasiclassical approximation
of the C-S functional integral [28], it remains doubtful that the quantization of this La-
grangian provides a sufficient cardinality of phase space degrees of freedom for implement-
ing causal localization. The separation of such subalgebras of intertwiners of superselected
charges forming Hecke-type algebras with representations of the braid group, knot invari-
ants and 3-manifold invariants from the localization properties of the full theory is the
main tool of the DHR construction. It leads to type II1 algebras as they appear in the
subfactor work of Vaughn Jones [17] but these algebras are too small for implementing
causally localized subalgebras and the close relation with the quasiclassical Chern-Simons
construction suggests that a Chern-Simons-based Lagrangian or functional setting suffered
from the same limitation concerning the lack of localization. This small nonlocalizable
subtheory of a full localizable QFT is what is called its ”kinematically integrable” part in
the last section. It should not be confused with the (dynamical) integrability which only
occurs in d=1+1 and excludes dynamically integrable subtheories in higher spacetime
dimensions.

A recent mathematical rigorous algebraic construction [29] in the framework of local
quantum physics combined the localization aspects with the plektonic properties (braid
group representation and its inexorable connection to knot theory and three-manifolds)
under one conceptual roof and it is totally implausible that this richness can be related
to a C-S functional integral. The authors come to the surprising conclusion that the
Bargman-Wigner representations of d=1+2 particles with anomalous spin have no free
field realization but only admit interacting nonintegrable field theoretic extensions5. The
ensuing braid group representation is an extension of the infinite permutation group repre-
sentations resulting from the DHR superselection analysis of standard (bosonic, fermionic)
QFT (for more see the last section).

The modular localization structure leads to the necessity to rethink many popular
pictures and ”results”. Since the 60s geometric aspects of differential geometry played
an increasingly role, but whereas geometrical structures in mathematics have realizations
in very different contexts (example: Riemann surfaces as embedded in 3-dimensional
space, as the form of Fuchsian groups, ...), geometrical aspects of spacetime localization in
QFT are inexorably accompanied by thermal manifestations and entropy-causing vacuum
polarization. In chiral conformal QFT one may associate Riemann surfaces with particular

5In a way these particle representations of the Bargman infinite covering group associated with the
d=1+2 spacetime lead to QFTs which have no classical counterpart from which they could arise by
quantization.
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models. But in contrast to simple-minded geometrical visualizations they never represent
the ”living space” of a chiral conformal field theory but refer to conformal QFTs in global
non-vacuum (thermal KMS-like) states (the best studied case is a torus).

There is hardly any mathematical structure which is in bigger antagonism to modular
localization as string theory. To see the problem in a nut-shell, look at the string theorist’s
use of the Lagrangian of a classical relativistic particle describing covariant world-lines as
a ”warm up” to string theory [37]:

Lclass =
√
ds2 y cov. worldline xµ(τ) (1)

but @ quantized cov. Xop
µ (τ)

What the protagonists of such an idea forget to state is the second line. Acceptance of
such a wrong suggestion by the string community has thrown part of particle physics
back behind Wigner’s representation theoretical approach. There are simply no covariant
spacetime position operators in any dimension which describe the covariant embedding
of a string (or the spacetime embedding of a chiral theory into a target space).

The potentials Φi of an n-component abelian chiral current j = ∂Φ has been used as
an analog of a (nonexisting) relativistic position operator by string theorists. Thanks to
the fact that such a current theory has continuously many representations labeled by an
n-component continuous charge6 one may see this charge (zero mode) in analogy to an n-
component momentum vector whereupon the anomalous dimensions (which are quadratic
in the charges) correspond to mass squares. One can strengthen this analogy by using
the degrees of freedom contained in chiral multicomponent current as a representation
space of a Poincaré group so that the charge components and the zero mode components
become the momentum and localization variables on which this group acts.

Up to this point everything is exactly as string theorists want it to be. The error is
in the claim about the localization coming with this representation, which according to
string theorist is string-like wheras in reality it is pointlike. This follows from the fact that
wave function spaces which carry irreducible positive energy Wigner representation not
including the infinite spin representations (a requirement which is fulfilled by the reducible
superstring Wigner representation) is pointlike generated and so is its associated ”second
quantized” string field theory.

It is therefore of no surprise that the explicit calculation of the (graded) commutator
of string fields (for technical reasons up to an arbitrary bounded value of the κ2 in their
Källen-Lehmann representation) confirms this pointlike nature [38]. What has happened
is that by enforcing the representation of a Poincaré group, the oscillator variables in
Φ(x), after removing the zero mode (the would be localization point in target space),
become quantum mechanical oscillators in an internal space over this localization point.
In other words these oscillators, which in the chiral current model played a holistic role
of building up a pointlike chiral field, are now just quantum mechanical operators acting
in an internal space over a localization point in a space on which the Poincaré group acts
[30].

6The abelian current model belongs to the non-rational chiral theories which constitute the only known
QFTs with a continuous set of superselection secctors. This is the prerequisite for interpreting the inner
symmetry space as a target space on which noncompact inner groups can act.
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With the Xµ-variables in Polyakov’s Lagrangian referring (apart from the zero mode)
to the internal structure of a pointlike object, the claim that string theory leads to a
description of gravity becomes questionable.

To avoid misunderstandings, string-localized fields do exist ; they are typically of the
form Ψ(x, e) and are localized on spacelike semilines x+R+e, e a spacelike unit vector (see
next section), but different from the objects of string theory (e.g. the Polyakov string)
they are not solutions of Euler-Lagrange equations. In higher spacetime dimension there
are of course Lagrangians with inner noncompact classical symmetries, but unless the
classical field space is identical to that of the classical tensor/spinor space associated to
the spacetime living space of these objects, there exists no standard QFT associated via
quantizations to those Lagrangians. theory with mass gaps (since those must gave com-
pact inner symmetries). Here ”standard” means QFT with mass gaps, which with their
necessary compact internal symmetry group structure [16] cannot support noncompact
target spaces. Our discussion shows that even in those d=1+1 cases where there exist
a continuum of superselection sectors and the noncompact target space requirement is
fulfilled, the localization remains pointlike.

For later use (last section) we also add an remark about regularizations which are not
supported by modular localization. Whereas the dimensional regularization in interactions
of scalar particles do not seem to cause problems7 since scalar particles have a quite trivial
dependence of spacetime dimensions, the application of this regularization to theories
involving (m, s ≥ 1) fields is dubious since already the Wigner one-particle representations
depend in an essential way on spacetime dimensions. We will return to this point in the
last section (in connection with the beta=0 arguments for interacting conformal theories).

Hoping that the previous remarks may have aroused the reader’s curiosity in yet little
known ongoing new developments in the conceptual foundations of the more than 80 years
old QFT, I will try in the next two sections to take him along through some of its new
foundational concepts around ”modular localization”. Afterwards these concepts are used
to obtain a foundational insight into the meaning of integrability/nonintegrability. Far
from being a special niche of QFT, it will be clear that this is a central issue of QFT
which is closely related to Mandelstam’s program of the 60s to find a nonperturbative
access to particle theory in which the S-matrix and its properties plays an important
role not only as its observational ”crown”, but also in its computational setting. In
particular integrability sheds new light on its recently discovered ”semilocal” property of
representing a relative modular invariant for wedge-localization [18] which in turn leads
to a deeper conceptional insight into the crossing property of particle physics. In this way
it does not only become clear that Veneziano’s [39] dual model was based on the wrong
crossing, but it also becomes clear that the particle crossing is much more foundational
than it appeared in the setting of LSZ scattering theory.

Fortunately all these self-defeating positions of conceptual points made more than 40
years ago are not simply stupid mistakes, such that after their corrections one can pass
to buisiness as usual. Since they have been made on one of the conceptually most intri-
cate points of local quantum physics, there is the unique historical chance to obtain new

7The dimensional regularization was first used by Wilson [60] (and rewritten in therms of the Callen-
Symanzik setting [61]) for the purpose of calculation of critical indices which are intimately related to
properties of the beta-function.
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insights and to formulate new aims in particle physics. The new ideas about dynamic
and kinematic integrability in the present work are closely related to a correct concep-
tual understanding of the particle physics’ crossing identity. The particle crossing was
the conceptual anchor in Mandelstam’s first attempt at nonperturbative constructions in
particle physics based on the use of the S-matrix; hence the present work may also be
seen as revisiting that important cross road of the 60s in order in order to (hopefully)
take the right turn this time.

The critical remarks about string theory find their natural explanation that the repair
of conceptual error which led to it is very close to the presentation of integrability and
related ideas for a new nonperturbative setting of QFT which could establish existence
of nontrivial models and pave the way to their control through new nonperturbative
approximation ideas. So despite all critical remarks, the aim underlying this paper is
upbeat.

2 The modular localization approach of QFT

There are two avenues to modular localization, a mathematical and a more physical-
conceptual. The mathematical access starts from the Tomita-Takesaki modular theory of
operator algebras and makes contact with QFT by applying this theory to the algebraic
formulation of QFT in terms of spacetime-indexed nets of operator subalgebras [16]. An
important step was the recognition by Bisognano and Wichmann [33][47] that the ab-
stract modular group ∆it

A(O) and the modular reflection J acquire a geometric meaning in

case of the wedge-localized operator subalgebra A(W ) whereas the compactly localized
algebras and their modular data are constructed from intersections of these algebras [46].
The history of modular theory began in the middle of the 60s when, at a conference in
Baton Rouge [5] (US) mathematicians interested in operator algebras (Kadison, Tomita,
Takesaki,.. ) met physicists (Borchers, Haag, Hugenholz, Winnink,..) working on an
intrinsic formulation of statistical quantum mechanics of open systems, avoiding quanti-
zation boxes and taking volume→∞ limits. In that context an older computational trick
used by Kubo, Martin, and Schwinger took on a fundamental conceptual significance and
in this way the KMS property became part of the joint mathematics/physics heritage.
Whereas the box-quantized thermal Gibbs states always stay in the realm of the standard
(type I∞) algebras B(H) of all bounded operator, the thermodynamic limit8 converts this
into the same ”monad” (hyperfinite type of III1 factor algebra in Connes Haagerup classi-
fication) algebra as they occur through localization in QFT. However the localization [33]
aspect only appeared 10 years after the study of thermal properties of open systems and
only then it became clear that localization, thermalization, and the generation of vacuum
polarization clouds are inexorably intertwined.

We begin with the physical conceptual setting which starts from Wigner’s classification
of irreducible positive energy representations of the Poincaré group. In addition to the
Born localization associated with the non-covariant (frame -dependent) position operator

8The tensor factorization of type I∞ ”thermofield theory” breaks down and the algebra changes its
type.
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which after adjustment to the relativistic invariant wave function is called Newton-Wigner
localization, there is a radically different ”modular localization”. Whereas the Born lo-
calization is extrinsic9 and connects directly with the probability interpretation of wave
functions, the modular localization is intrinsic, i.e. it only uses concepts of Wigner’s
representation theory. For matters of notational simplicity we use the case of a scalar
massive particle.

It has been realized, first in a special context in [11] and then in a general mathe-
matical rigorous setting in [34] (see also [35][36]), that there exists a natural localization
structure on the Wigner representation space for any positive energy representation of
the proper Poincaré group. The starting point is an irreducible (m>0, s=0) one-particle
representation of the Poincaré ´group on a Hilbert space H10 of wave functions with the
inner product

(ϕ1, ϕ2) =

∫
ϕ̄1(p)ϕ2(p)

d3p

2p0

(2)

For other (higher spin, m=0) representations the relation between the momentum space
wave function on the mass shell (or light cone) and the covariant wave functions is more
involved as a consequence of the presence of intertwiners u(p, s) between the manifestly
unitary and the covariant form of the representation. Selecting a wedge region W , that
is a Poincaré transform of the standard wedge W0 = {x ∈ Rd, xd−1 > |x0|}, one notices
that the unitary wedge-preserving boost U(ΛW (χ = −2πt)) = ∆it

W commutes with the
antiunitary reflection JW on the edge of the wedge (i.e. along the coordinates xd−1− x0).
The distinguished role of the wedge region is that it produces a commuting pair of (boost,
antiunitary reflection). This has the unusual and perhaps unexpected consequence that
the unbounded and antiunitary operator

SW := JW∆
1
2
W , S2

W ⊂ 1 (3)

since JW∆
1
2
WJW = ∆

− 1
2

W

which is intrinsically defined in terms of Wigner representation data, is involutive on its
dense domain and has a unique closure (unchanged notation) with ranSW = domSW .

The involutivity means that the SW -operator has ±1 eigenspaces; since it is antilinear,
the +space multiplied with i changes the sign and becomes the - space; hence it suffices
to introduce a notation for just one eigenspace

K(W ) = {domain of ∆
1
2
W , SWψ = ψ} (4)

JWK(W ) = ZK(W )′ = K(W ′), duality

K(W ) + iK(W ) = H, K(W ) ∩ iK(W ) = 0

9Born localization entered the already existing QM through Born’s famous probabilistic interpretation
of (the Born approximation of) the scattering amplitude leading to the notion of cross sections which was
later extended to the position operator and its associated wave functions. The old (Bohr-Sommerfeld)
QM as well as Heisenberg’s new version did not yet deal with probabilistic concepts and (starting from
Einstein up to this date) probability remained a point of contention among philosophers of science.

10The construction actually works for arbitrary unitary positive energy representations, not only irre-
ducible ones.
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wherw Z in this formula is a statistics factor which depends on the Wigner spin s of the
representation Z = eiπs.

It is important to be aware that we are dealing here with real (closed) subspaces K
of the complex one-particle Wigner representation space H1. An alternative is to directly
deal with complex dense subspaces K(W ) + iK(W ) as in the third line. Introducing the
graph norm in terms of the positive operator ∆, the dense complex subspace becomes
a Hilbert space H∆ in the graph norm. The second and third line require some more
explanation. The upper dash on regions denotes the causal disjoint (the opposite wedge),
whereas the dash on real subspaces means the symplectic complement with respect to the
symplectic form Im(·, ·) on H.

The two properties in the third line are the defining relations of what is called the
standardness property of a real subspace11; any standard K space permits to define an
abstract s-operator

S(ψ + iϕ) = ψ − iϕ, ψ, ϕ ∈ K (5)

S = J∆
1
2

whose polar decomposition (written in the second line) yields two modular objects, a
unitary modular group ∆it and an antiunitary reflection which generally have however no
geometric significance. The domain of the Tomita S-operator is the same as the domain
of ∆

1
2 namely the real sum of the K space and its imaginary multiple. Note that this

domain is determined solely in terms of Wigner group representation theory.
The observations up to this point seem to be somewhat remote from physics, but

there is an additional fact which converts these formal observations into a foundational
properties of QFT. This is the fact that the domain of SW is precisely the dense subspace
of those Wigner wave functions which are localized in W. In field theoretic terms this is
the one-particle projection of the space of the dense Reeh-Schlieder domain12, a notion
which was known to physicists before the concept of modular localization. The K spaces
result from the one-particle projection of the Hermitian part of the W-smeared fields.
Their symplectic complement is identical to the real subspace obtained from applying JW
to KW

K ′W := {χ| Im(χ, ϕ) = 0, all ϕ ∈ KW} = JWKW

It is easy to obtain a net of K-spaces by U(a,Λ)-transforming the K-space for the
distinguished W0. A bit more tricky is the construction of sharper localized subspaces via
intersections

K(O) =
⋂
W⊃O

K(W ) (6)

where O denotes a causally complete smaller region (noncompact spacelike cone, compact
double cone). Intersection may not be standard, in fact they may be zero in which case

11According to the Reeh-Schlieder theorem a local algebra A(O) in QFT is in standard position with
respect to the vacuum i.e. it acts on the vacuum in a cyclic and separating manner. The spatial
standardness, which follows directly from Wigner representation theory, is just the one-particle projection
of the Reeh-Schlieder property.

12The dense space of states generated by applying smeared fieldsA(f) =
∫
A(x)f(x)dx with suppf ⊂W

to the vacuum [16].
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the theory allows localization in W (it always does) but not in O. Such a theory is still
causal but not local in the sense that its associated free fields are pointlike. One can show
that the intersection for spacelike cones O = C for all positive energy is always standard
[34]. A standard subspace is uniquely affiliated with a Tomita s-involution (5).

Unlike the Newton-Wigner position operators and their eigenspaces, these spaces are
frame independent (covariantly defined) and for two causally separated regions O1 and
O2 the simplectic inner product vanishes

Im(ψ1, ψ2) = 0, ψi ∈ K(Oi) (7)

[Φ(ψ1),Φ(ψ2)] = 0

where the Φ(ψ) are the so-called Segal operators [56]. Hence the symplectic inner product
of modular localized one-particle wave functions is nothing else as the free field commu-
tator function: the modular localization preempts the algebraic structure of free fields
without the use of any quantization formalism. Naturally this would have been of great
interest to Wigner, but the modular localization concepts were only available more than
half a century after Wigner’s pathbreaking work on the classification of particle spaces.

Note that the relativistic DPI (direct particle interaction, see below) setting [18] also
starts from Wigner particles but it ignores the presence of this modular localization struc-
ture and follows the logic of multiparticle representation theory of the Poincaré group
instead of looking for operators which create modular localized states from the vacuum.

There are three classes of irreducible positive energy representation, the family of
massive representations (m > 0, s) with half-integer spin s and the family of massless
representation which consists really of two subfamilies with quite different properties
namely the (m = 0, h = half − integer) class, often called the neutrino-photon class,
and the rather large class of (m = 0, κ > 0) massless infinite helicity representations
parametrized by a continuous Casimir parameter κ [36].

For the first two classes the the standardness property also holds for double cone
intersections of wedges O = D = ∩W⊃DW for arbitrarily small D i.e. the associated in-
tersection of K-spaces maintains the standardness property. But this is definitely not the
case for the infinite helicity family for which the localization spaces for compact spacetime
regions turn out to be trivial13. Passing from localized subspaces K in the representation
theoretical setting to singular covariant generating wave functions (the first quantized
analogs of generating fields) one can show that the D localization leads to pointlike sin-
gular generators (state-valued distributions) whereas the spacelike cone localization C is
associated with semiinfinite spacelike stringlike singular generators [36]. Their second
quantized counterparts are pointlike or stringlike covariant fields. It is remarkable that
one does not need to introduce generators which are localized on hypersurfaces (branes).

Although the observation that the third Wigner representation class is not point-
like generated was made many decades ago, the statement that it is semiinfinite string-
generated, and that one does not have to use generators which localize on larger dimen-
sional submanifolds, is of a more recent vintage [34][36].

But what is the physical significance of the frame independent modular localization as
compared to the frame-dependent probabilistic Born-Newton-Wigner localization which is

13It is quite easy to prove the standardness for spacelike cone localization (leading to singular stringlike
generating fields) just from the positive energy property which is shared by all three families [34].
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used in the dissipation of particle wave packets and the formulation of particle scattering14

?
The best way to picture modular localized particle wave functions from a field theo-

retic viewpoint is to say that such states form dense subspaces which correspond in field
theoretic terms to the projections of the dense subspaces obtained by applying the O
localized subalgebra A(O) to the vacuum (the Reeh-Schlieder domain [16] corresponding
to O) and projecting the result into the one particle space, in more precise mathematical
terms

P1H(O) = K(O) + iK(O) ≡ H1(O) (8)

H(O) = domS(O) ⊃ A(O)Ω, S(O)AΩ = A∗Ω, A ∈ A(O)

where S(O) is the modular operator which is determined by A(O) and in whose domain
A(O)Ω is densely embedded15.

More important is the opposite use, namely the construction of QFT in a completely
intrinsic manner, i.e. without any parallelism to a less fundamental classical theory (quan-
tization). Part of this step has been taken in the beginning of the first part of Weinberg’s
book [44]. In the following this will be extended from the viewpoint of modular localiza-
tion and in section 4 the beginnings of an intrinsic approach to interacting systems will
be presented.

There is a very subtle aspect of modular localization which one encounters in the
second (m = 0, s ≥ 1) representation class of massless finite helicity representations (the
photon-graviton class). Whereas in the massive case the relation of the physical spin s

with the formal spin in the spinorial fields Ψ(A,Ḃ) follows the naive angular momentum
composition rules [44] ∣∣∣A− Ḃ∣∣∣ ≤ s ≤

∣∣∣A+ Ḃ
∣∣∣ , m > 0 (9)

s =
∣∣∣A− Ḃ∣∣∣ , m = 0 (10)

The zero mass finite helicity family in the second line has a significantly reduced number
of spinorial descriptions. But why is there, in contradistinction to classical field theory
no covariant s=1 vector-potential Aµ or no gµν in case of s=2 ? Why are the admissible
covariant generators of the Wigner representation in this case limited to field strengths
(for s=2 the linearized Riemann tensor)?

The short answer is that all these missing covariant generators exist as covariant
string-localized fields, whereas the above method resulting in (10) was (as the quannti-
zation approach) only aimed at pointlike generating (wave function-valued distributions)
wave functions of the Wigner unitary representation (Hilbert-) space; there are simply
no pointlike generators since their existence would contradict the positivity properties of
a Hilbert space! The full range of spinorial possibilities (9) returns as soon as we allow

14Actually Born introduces it together with the cross section in the Born approximation; the relation
with the quantum mechanical position operator and Schrödinger wave functions came later.

15At the time of the discovery of the density of the spaces A(O)Ω the modular theory was not yet
known. There is no change of content if one uses the same terminology for their modular extension
domS(O).
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generating wave functions Ψ(A,Ḃ)(x, e) if s 6=
∣∣∣A− Ḃ∣∣∣ which are localized on semiinfinite

spacelike strings:

U(Λ)Ψ(A,Ḃ)(x, e)U∗(Λ) = D(A,Ḃ)(Λ−1)Ψ(A,Ḃ)(Λx,Λe) (11)[
Ψ(A,Ḃ)(x, e),Ψ(A′,Ḃ′)(x′, e′

]
±

= 0, x+ R+e >< x′ + R+e
′

Here the unit vector e is the spacelike direction of the semiinfinite string and the last
line expresses the spacelike fermionic/bosonic spacelike commutation. The best known
illustration is the (m = 0, s = 1) vectorpotential representation; in this case it is well-
known that although a generating pointlike field strength exists, there is no pointlike
vectorpotential acting in a Hilbert space. The clash which potentials create between
localization and the Hilbert space (which has no counterpart in the classical setting) can
be resolved in two opposite ways. The conventional description coming from quantization
violates the Hilbert space setting through the presence of ghosts; this is from a conceptual
point of view the more radical one because it sacrifies the most cherished principle of QT
in order to maintain the less foundational formal rules of quantization. In the BRST
formalism the invariance under BRST transformation is an essential tool in order to
return to a Hilbert space setting; but the prize to be paid is that physical charge-carrying
matter fields remain outside the perturbative formalism dealing with correlation functions
of charge-carrying fields16.

The modular localization approach offers a different option in the form of stringlike
covariant vector potentials Aµ(x, e). This has the advantage that the physical origin of the
semiinfinite spacelike string localization of the charge carriers17 becomes manifest [85].
But since every formulation of perturbation theory is (directly or indirectly) based on
causal locality of covariant fields, one faces a new problem: an extension of the Epstein-
Glaser approach to causal locality situation of spacelike strings (for partial results see
[45]).

In the case (m = 0, s = 2) the ”field strength” is a fourth degree tensor which has the
symmetry properties of the Riemann tensor (it is often referred to as the linearized Rie-
mann tensor). In this case the string-localized covariant potential is of the form gµν(x, e)
i.e. resembles the metric tensor of general relativity [85].

Even in case of massive free theories, where the representation theoretical approach of
Wigner does not require to go beyond pointlike localization, covariant stringlike localized
fields exist. Their attractive property is that they improve the short distance behavior
e.g. a massive pointlike vector-potential of sdd=2 passes to a string localized vector
potential of sdd=1. In this way the increase of the sdd of pointlike fields with spin s
can be traded against string localized fields of spin independent dimension with sdd=1.

16They can only indirectly be recovered in the form of recipes for photon-inclusive charged particle
scattering cross sections.

17The on-shell manifestations are well known since the time of the famous Bloch-Nordsiek paper. In
nonabelian gauge theories this problem is more series: non of the correlation functions exists (in any
gauge). The infrared divergencies are not there as long as one keeps the string directions e generic charge
[85].
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This observation would suggest the possibility of an enormous potential enlargement of
perturbatively accessible higher spin interaction in the sense of power counting.

A different kind of spacelike string-localization arises in d=1+2 Wigner representations
with anomalous spin [69]. The modular localization approach preempts the spin-statistics
connection already in the one-particle setting, namely if s is the spin of the particle (which
in d=1+2 may take on any real value) then one finds for the connection of the symplectic
complement with the causal complement the generalized duality relation

K(O′) = ZK(O)′ (12)

where the square of the twist operator Z = eπis is easily seen (by the connection of Wigner
representation theory with the two-point function) to lead to the statistics phase = Z2

[69]. (Beware that the same letter isused in section 4 for the generator center of the center
of the conformal group)

The fact that (apart from Wigner’s ”infinite spin”) one never has to go beyond string
localization18 in order to obtain generating fields for a QFT is remarkable in view of the
many attempts to introduce more extended (quasiclassical ”branes”) objects into particle
theory.

It is helpful to be again reminded that modular localization, unlike BNW localization,
cannot be connected with probabilities and projectors. It is rather related to aspects
of causal localization. As will be seen in the fourth section modular localization is
also an important tool in the non-perturbative construction of interacting models by
representation-theoretical ideas.

3 Algebraic aspects of modular theory

A net of real subspaces K(O) ⊂H1 for a finite spin (helicity) Wigner representation can be
”second quantized”19 via the CCR (Weyl) respectively CAR quantization functor; in this
way one obtains a covariant O-indexed net of von Neumann algebras A(O) acting on the
bosonic or fermionic Fock space H = Fock(H1) built over the one-particle Wigner space
H1. For integer spin/helicity values the modular localization in Wigner space implies the
identification of the symplectic complement with the geometric complement in the sense of
relativistic causality, i.e. K(O)′ = K(O′) (spatial Haag duality in H1). The Weyl functor
takes this spatial version of Haag duality into its algebraic counterpart. One proceeds as
follows: for each Wigner wave function ϕ ∈ K(O) ∈ H1 the associated (unitary) Weyl
operator is defined as

Weyl(ϕ) := exp i{a∗(ϕ) + a(ϕ)} ∈ B(H) (13)

A(O) := {Weyl(ϕ)|ϕ ∈ K(O)}′′ , A(O)′ = A(O′)
18Note that for (m = 0, s ≥ 1) only the field strength are pointlike generators whereas potentials

are string-localized. The use of these potentials in interactions leads however to the necessity to use
string-localized generating charged fields.

19The terminology 2nd quantization is a misdemeanor since one is dealing with a rigorously defined
functor within QT which has little in common with the artful use of that parallellism to classical theory
called ”quantization”. In Edward Nelson’s words: (first) quantization is a mystery, but second quantiza-
tion is a functor.
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where a∗(ϕ) and a(ϕ) are the usual Fock space creation and annihilation operators of a
Wigner particle in the wave function ϕ, and the double prime means the double commu-
tant. This leads to a functorial relation between localization subspaces of the one-particle
space and the local subalgebras often referred to as second quantization. Defining the
algebra in terms of the double commutant makes it a von Neumann algebra i.e. a weakly
closed operator algebra.

This functorial relation between real subspaces and von Neumann algebras via the
Weyl functor preserves the causal localization and commutes with the improvement of lo-
calization through intersections ∩ according toK(O) = ∩W⊃OK(W ), A(O) = ∩W⊃OA(W ).
This property of the functorial relation can be conveniently expressed in the commuting
diagram

{K(W )}W −→ {A(W )}W (14)

↓ ∩ ↓ ∩
K(O) −→ A(O)

Here the vertical arrows denote the tightening of localization by intersection whereas
the horizontal ones denote the action of the Weyl functor. This commuting diagram
expresses the functorial relation between particles and fields in the absence of interactions.
In the interacting case the loss of the diagram and the unsolved particle-field problems
are synonymous. It is also the reason why, in contrast to QM, the existence problem of
interacting QFTs remains unsolved. The wedge regions continue to play a distinguished
role in attempts to construct interacting models (for modular constructions in d=1+1 see
below).

The case of half-integer spin representations is analogous [35], apart from the fact that
there is a mismatch between the causal and symplectic complements which must be taken
care of by a twist operator Z and as a result one has to use the CAR functor instead
of the Weyl functor. The case of d=1+2 Bargman-Wigner representation theory permits
anomalous spin connected with braid group statistics. This is the only known case for
which a ”free plekton field” cannot be attained by the functorial second quantization;
even the ”freest” plektons are not free in the technical sense since plektonic statistics
inexorably comes with vacuum polarization independent of the presence of interactions
[29].

In case of the large family of irreducible zero mass ”infinite spin” representations in
which the lightlike little group is faithfully represented, the finitely localized K-spaces are
trivial K(O) = {0} and the most tightly localized nontrivial spaces are of the form K(C)
for C an arbitrarily narrow spacelike cone. As a double cone contracts to its core which is
a point, the core of a spacelike cone is a spacelike semiinfinite string. The above functorial
construction works the same way for the Wigner infinite spin representation, except that
in that case there are no nontrivial algebras which have a smaller localization than A(C)
and hence there is no field which is sharper localized than a semiinfinite string.

As stated before, stringlike generators are also available in the pointlike case and they
have an improved short distance behavior. In fact in certain cases (”massive QED”,
massive Yang-Mills) their use could be that of a ”catalyzer” for getting over the power-
counting hurdle with the string-localization so that after having achieved this one may
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return to pointlike fields with short distance dimensions bigger than 1. For the construc-
tion of stringlike generators it is important to use modular localization properties rather
than covariance [36]. The Euler-Lagrange aspects plays no direct role in this construction
since the causal aspect of hyperbolic differential propagation are fully taken care of by
modular localization and also because most of the spinorial higher spin representations
(9) cannot be characterized in terms of unconstrained Euler-Lagrange equations anyhow.
The modular localization is the more general method of implementing causal propagation
than that from hyperbolic equations of motions.

A basis of local covariant field coordinatizations is then defined by Wick composites
of the free fields. The case which deviates furthest from classical behavior is the pure
stringlike infinite spin case which relates a continuous family of free fields with one irre-
ducible infinite spin representation. Its non-classical aspects, in particular the absence of
a Lagrangian, is the reason why the spacetime description in terms of semiinfinite string
fields has been discovered only recently rather than at the time of Wigner’s representation
theoretical approach.

Using the standard notation Γ for the second quantization functor which maps real
localized (one-particle) subspaces into localized von Neumann algebras, and extending
this functor in a natural way to include the images of the K(O)-associated operators
sO, δO, jO (here we use small letters for the one-particle operators) which are denoted by
SO,∆O, JO, one arrives at the Tomita Takesaki theory of the interaction-free local algebra
(A0(O),Ω) in standard position20

HFock = Γ(H1) = eH1 ,
(
eh, ek

)
= e(h,k) (15)

∆O = Γ(δO), JO = Γ(jO), SO = Γ(sO)

SOAΩ = A∗Ω, A ∈ A(O), SO = JO∆
1
2
O

With this we arrived at the core statement of the Tomita-Takesaki theorem in the absence
of interactions which is a statement about the two modular objects ∆it

0 and J0 on the
algebra

σt(A(O)) ≡ ∆it
OA(O)∆−itO = A(O) (16)

JOA(O)JO = A(O)′ = ZA(O′)Z∗

In words: the reflection JO maps an algebra (in standard position) into its von Neu-
mann commutant and the unitary group ∆it

O defines a one-parametric automorphism-
group σt of the algebra. In this form (but without the last geometric statement involving
the geometrical causal complement O′) the theorem holds in complete mathematical gen-
erality for ”standard pairs” (A,Ω). The free fields (20) and their Wick composites are
”coordinatizing” singular generators of this O-indexed net of operator algebras in the
sense that the smeared fields A(f) with suppf ⊂ O are (unbounded operators) affiliated
with A(O) and in a certain sense generate A(O). In the classifications of von Neumann
algebras these local algebras are of a very different type as their global counterpart.
The latter is of the same type as quantum mechanical algebras namely an algebra of

20The functor second quantization functor Γ preserves the standardness i.e. maps the spatial one-
particle standardness into its algebraic counterpart.
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all bounded operators on a Hilbert space B(H). The local subalgebras are Murray-von
Neumann factor algebras of a completely different type; in physics one only encounters
them in local subalgebras of QFT or in thermally represented global algebras. We will
refer to such an algebra as a ”monads” and refrain here from explaining the terminology
”hyperfinite type III1 factor algebra which would force us to present the Connes-Haagerup
classification of von Neumann factors [46].

In the above second quantization context the origin of the T-T theorem and its proof
is clear: the symplectic complement passes via the functorial operation to the operator
algebra commutant and the spatial one-particle automorphism goes into its algebraic
counterpart. The definition of the Tomita involution S through its action on the dense
set of states (guarantied by the standardness of A) as SAΩ = A∗Ω and the action of
the two modular objects ∆, J (15) is part of the general setting of the modular Tomita-
Takesaki theory of abstract operator algebras in ”standard position”; standardness is the
mathematical terminology for the physicists Reeh-Schlieder property i.e. the existence21

of a vector Ω ∈ H with respect to which the algebra acts cyclic and has no ”annihilators”
of Ω. Naturally the proof of the abstract T-T theorem in the general setting of operator
algebras is more involved.

The domain of the unbounded Tomita involution S turns out to be ”kinematical” in
the sense that the dense set which features in the Reeh-Schlieder theorem [16] is deter-
mined in terms of the representation of the connected part of the Poincaré group i.e. the
particle/spin spectrum22. In other words the Reeh-Schlieder domains in an interacting
theory with asymptotic completeness are identical to those of the incoming or outgoing
free field theory.

The important property which renders this useful beyond free fields as a new con-
structive tool in the presence of interactions, is that for an interacting standard pair
(A(W ),Ω) the antiunitary involution J depends on the interaction, whereas ∆it contin-
ues to be uniquely fixed by the representation of the Poincaré group i.e. by the particle
content. In fact it has been known for some [11] time that J is related with its free
counterpart JW,in through the scattering matrix

JW = Sscat JW,in (17)

This modular role of the scattering matrix as a relative modular invariant between
an interacting theory and its free counterpart comes as a surprise because usually one
thinks of Sscat as a fully nonlocal (global) object obtained via LSZ scattering theory. But
it is precisely this new semilocal aspect which opens the way for an inverse scattering
construction. If one only looks at the dense localization of states which from the domain
domS (the closure of the Reeh-Schlieder theorem in the graph norm), one misses the
dynamics which is fully contained in the modular J which ”reshuffles” the states within

21In QFT any finite energy vector (which of course includes the vacuum) has this property as well
as any nondegenerated KMS state. In the mathematical setting it is shown that standard vectors are
”δ−dense” in H.

22For a wedge W the domain of SW is determined in terms of the domain of the ”analytic continuation”

∆
1
2

W of the wedge-associated Lorentz-boost subgroup ΛW (χ), and for subwedge localization regions O the
dense domain is obtained in terms of intersections of wedge domains.
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domS = ranS. The properties of J are essentially determined by the relation of localized
operators A to their Hermitian adjoints A∗23.

The physically relevant facts emerging from modular theory can be condensed into
the following statements:

• The domain of the unbounded operators S(O) is fixed in terms of intersections
of the wedge localized algebras A(O) = ∩W⊃OA(W ) domains associated to SW and
domSW is determined by the representation of the Poincaré group (and hence by the
particle content alone) and therefore of a kinematical nature. These dense domains
change with O i.e. the dense set of localized states has a bundle structure.

• The complex domains DomSO = K(O) + iK(O) decompose into real subspaces
K(O) = A(O)saΩ. This decomposition contains dynamical information which in
case O = W includes the Sscat-matrix (17). In the next section arguments will
be presented which suggests that with the help of a new emulation formalism (the
extension of the Wigner representation approach to the realm of interactions) the
Sscat-matrix fixes A(W ) uniquely

Modular localization determines the holistic aspect of QFT [32] which places this
theory into a sharp contrast with QM, even with relativistic QM in the form of the direct
particle theory (DPI) [18] since the causal localization is absent. A one-dimensional chain
or string of oscillators can without any change be embedded into a higher dimensional QM;
this is because quantum mechanical localization has no intrinsic meaning; the position
operator may be part of the living space or of an imagined internal space. An embedding
of a lower-dimensional into a higher dimensional QFT which respects the principles of
modular localization is not possible, or to phrase it the other way around: the restriction
of a QFT to a lower dimensional submanifold ”remembers” that it is the restriction of
a more complete theory as a result of its holistic nature, it does not comply with the
physical properties of QFT in that lower dimensional spacetime.

In particular it is not possible to embed a one-dimensional chiral theory into a higher
dimensional QFT in form of a spacetime string. It is however a mathematically interesting
question to ask whether fields can have internal symmetry indices on which noncompact
group can act. Here by internal symmetry indices we mean indices which are not ten-
sor/spinor indices referring to the tensor/spinor calculus of the living spacetime of the
object under consideration. Classically this is possible, the requirements of classical local-
ization are independent of the nature of the classical field space (the classical target space).
But for ”standard QFTs” (those with mass gaps) the modular quantum localization only
permits compact internal symmetry groups (the result of the DHR superselection analysis
[65]). The prerequisite for a noncompact target space is a continuous set of superselec-
tion sector. The only such situations occur in chiral conformal QFTs, more precisely in

23According to a theorem of Alain Connes the existence of operator algebras in standard position can
be inferred from the spatial part of the theory if the real subspace K permit a decompositions into a
natural positive cone with suitable substructure. Although this construction has been highly useful in
Connes classification of von Neumann factors, it has not yet been possible to relate this to physical
concepts.
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the (lesser understood) non-rational chiral models. The best studied model is that of an
n-component abelian current jk(x). The formally defined exponential ”sigma field”

Ψ(x, ~q) = ei~q
~Φ(x) = ei~q

~Φ0+~q~Φosc.(x), ∂Φk(x) = jk(x) (18)

can indeed support the action of a Poincaré group and this action can even be unitary and
fulfill the positive energy restriction. Here the zero mode ~Φ0 is an n-component number
which plays the role of the target localization point i.e. on which the Poincaré group
acts as on a localization point of a pointlike field. Having established that the space
which the chiral sigma field generates from the vacuum carries a reducible superstring
representation of the Poincaré group all properties attributed to string theory follow
except that the localization is point- and not string-like. Since the stringlike objects
of the Wigner infinite spin representation do not appear as irreducible components the
states of this representation have pointlike generating wave-function-valued distributions
and the ”second quantization” leads to infinite component pointlike fields. The oscillator
contributions from ~Φosc.(x) act in a quantum mechanical inner space which should be
pictured ”on top” of a localization point (similar to spin components) without extending
the localization ”sideways”.

What facilitated getting into the ”embedding trap” is the Φk(x) = Xk(x) notation [37]
by which string theorists want to suggest that the current potentials are really covariant
spacetime coordinate operators which by their dependence on the ”source parameter” x
trace out a stringlike embedded conformal object in the ”target (alias inner symmetry)
space”. This is patently wrong; since Wigner’s failure [43] to introduca a covariant local-
ization operator we know that covariance can only be obtained within the field theoretic
modular localization whereas for particles the only localization is the quantum mechani-
cal Born localization through the frame-dependent position operator. To strengthen this
point further string theorists point to an analogy of the Nambu-Goto Lagrange description
with that of a classical relativistic particle (see first section).

The use of the multicomponent current model for obtaining a representation of the
Poincaré group on a target space of a non rational chiral model is not its only use.
As mentioned in the introduction a much deeper (in the author’s opinion) use consists
in the so-called maximal local extensions. Here the idea is to use those superselection
sectors which are generated by fields of integer scale dimensions (commuting for lightlke
separations) for an extension of the observable algebra [25]. The maximal ways of doing
this can be classified in terms of even integral lattices [26][27]. It turns out that the case
of selfdual integral even lattices The associated conformal net of algebras on a circle have
the remarkable property that they satisfy Haag duality for algebras of disjoint intervals
precisely of the even integral lattice is selfdual which is in a curious way related to the finite
number of sporadic group leaving selfdual even integral lattices invariant. In contrast to
the quantum mechanical use in the dual model where oscillators contribute to the internal
space of a point-localized string wave function space, the relation of localization and its
Haag duality concept to selfdual integral lattices (Leech lattices) and sporadic groups
(moonshine group) is really deep.

The only somewhat curious aspect which distinguishes the superstring construction
from standard constructions is that the space generated by the chiral sigma fields is
irreducible i.e. there are operators which intertwine the irreducible Wigner components.
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It is this requirement of a dynamical reducible Wigner representation which is extremely
selective24 and leads together with the energy positivity to one 10-dim. realization (apart
from a finite number of ”M-theoretic” variations). The problem starts with the claim
that this particular representation in 10 spacetime dimensions is the one from which
we should extract our living space by dimensional reduction. Whereas the sequence
foundational→ unicity (theory of everything) may have some philosophical support, its
inverse the string theoretic credo: rareness→ foundational seems to be more a matter
of faith than of rational science. Incorrect understandings of the intrinsic (modular)
localization as mentioned at the end of the introduction (1) are probably the cause of this
conceptual derailment.

There is another path which leads more directly to dual models and its superstring
(m,s) spectrum which has been presented by Mack [40]. It also uses conformal QFT but
does not restrict ab inicio to chiral models. Conformal QFTs have a property in that
they do not only admit asymptotically convergent Wilson-Zimmermann short distance
expansions but possess also globally convergent operator expansions

A(x)B(y) =
∑
k

∫
dzFA,B;Ck(x, y; z)Ck(z) (19)

where the sum goes over a basis of (composite) fields with certain properties. Applied to
a 4-point function and using spacelike commutativity this leads to 3 different complete
pairings. A suitably defined Mellin-transform leads to 3 representations of the Mellin
transformed meromorphic function T (s, t, u) whose first order poles are (up to a parameter
of a mass which enters through the definition of the Mellin transform) precisely given by
the scale dimensions of the Ck(z). This is the conceptual origin of the dual model which
was first discovered by Veneziano [39] in a pedestrian tour de force. There are as many dual
models in this general sense as there are conformal QFTs. Demanding that the ”would
be particles” have momenta on which a unitary and positive energy representation of the
Poincare group acts requires the scale dimensions to be quadratic in the charges carried
by the C’s which then leads back to the sigma model associated with a n=10 component
(vector and spinor indices) superstring and its M-theoretic variation. For details we reer to
Mack’s paper [40]. The reason why we mentioned these results at all is to emphasize that
this conformal field crossing leading to the dual model has nothing to do with the particle
crossing property which is inexorably related to the idea of emulation in the next section.
It is precisely at this point where Mandelstam’s important attempt at a construcive use
of S-matrix ideas went wrong and why the present work may be seen as a synthesis of
Sscat-matrix ideas and LQP both linked by the property of Sscat of representing a relative
modular invariant of wedge localization).

There remains the question whether one can associate at all a quantum theory with
the Nambu-Goto Lagrangian in it original square root form. On this subject Pohlmeyer
[42] has given a rather detailed answer. He first exhibited an infinite number of global
classical conservation laws which shows that we are dealing with an integrable system.

24The ”dynamical” means that it is not a trivial direct sum of free fields over one point, but there are
operators (from the chiral theory) which intertwine between the levels of the infinite mass/spin tower.
Such fields where looked for in the 60s by Barut, Kleinert and others (Chapter 9, appendix I [41]). The
later 10 dimensional superstring field is the only known solution.
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The Poisson brackets of these ”charges” can be computed and quantized according to the
usual wisdom of how Poisson brackets can be translated into commutation relation. This
leads to an integrable theory which does not seem to be an integrable QFT in the sense
of the present work (there seems to be no way to get localization). The content seems to
be unrelated to that associated to the canonical quantization of the string theorists [42].

The holistic nature of QFT presents itself most forcefully in the possibility of character-
izing a quantum field theory by the positioning of a finite number of copies of an abstract
monad (interpreted as wedge-localized monads) acting in a common Hilbert space. A
”modular inclusion” of one monad into another defines a chiral QFT, for a 3-dimensional
theory one needs 3 modular positioned monads and placing 6 monads into a specific mod-
ular position leads to a model of d=1+3 QFT. The abstract positioning of determines
not only the abstract algebraic substrate of a QFT but also the Minkowski spacetime
and the action of the Poincaré group on it. The interpretation of a modular inclusion of
two monads is context dependent; if there are no other monads present then it defines a
chiral theory; if there are other monads around then the monads describe wedge algebras
in the position of lightlike inclusions. It is this intrinsic relation of the abstract algebraic
positioning of monads in a Hilbert space to the concrete localization of quantum matter
in spacetime that deserves the terminology ”holistic”; it forbids embedding of a lower into
a higher dimensional QFT and it places severe restrictions on ”dimensional reduction” in
QFT. Quantization is not a boundless game, the holistic nature of QFT shows its limits.
The problem is that one cannot see these limitations on the level of Lagrangian quantiza-
tion; it would be visible if one tries to ”curl up” extra dimensions in explicitely computed
correlation functions or if one uses structural arguments which reveal the holistic nature
of QFT25.

It is interesting to look at the difficulties which our ancestors encountered with these
holistic aspects.

From the time of the ”Einstein-Jordan conundrum” [32] through Jordans subsequent
discovery of QFT, Heisenberg’s discovery of vacuum polarization, Unruh’s Gedanken-
experiment, the Hawking radiation and the problem of the origin of the cosmological
constant, in all those cases the holistic nature of QFT asserts itself.

4 “Emulation” as an adaptation of Wigner’s repre-

sentation theoretical idea to the presence of inter-

actions

Wigner was the first who found an intrinsic way to describe relativistic particles in terms
of his classification of unitary positive energy representations which by covariantization
[44] lead to spaces of causally propagating wave functions (obeying linear hyperbolic
differential equation) without reference to quantization. The transition to free quantum
fields in Wigner-Fock space is a functorial construction for which it is better to avoid the

25If the model has sufficient analyticity properties which allow real/imaginary time Wick-rotations, one
can ”curl up” a time component by taking the high temperature limit in a KMS state und create a new
time direction by Wick rotation.
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terminology ”second quantization”26.
Wigner’s theory clearly showed that there can be no covariant position operator xµop(τ)

which arises through quantization of the covariant relativistic classical world line xµ(τ)
which fulfills the Euler-Lagrange equation of L =

∫ √
ds2; but his attempt to find a hint

of covariant causal localization in his representation theoretic setting ended in failure, the
Born-Newton-Wigner position operator which is an adaptation of Born’s quantum me-
chanical probabilistic concept based on the projectors of the selfadjoint position operator
adapted to the covariant inner product of relativistic wave functions is frame dependent
(noncovariant). As we know now, he had no chance to find the intrinsic natural entrance
which only was discovered more than 50 years later thanks to the new concept of modular
localization [12][34][36]. This explains perhaps why Wigner, besides Jordan and Dirac
one of the founders of QFT, never participated in the renormalized QED surge. Mod-
ular localization is not directly related to probabilities but rather through the thermal
statistical mechanics aspects of modular localized ensembles.

He certainly would have embraced modular localization and the functorial completely
intrinsic access to interaction-free QFT. This section addresses the problem of its extension
to incorporate interactions. The first step consists in a foundational understanding of the
particle-field problem which leads to the breakdown of the functorial relation. This is
most appropriately achieved by referring to a recent sharpened version [56] of an old
theorem (from the times of before modular-localization) which has been established by
Jost and the present author in the early 60s [55].

Theorem 1 (Mund’s algebraic extension [56] of the J-S theorem) A Poincaré-covariant
QFT in d≥1+3 fulfilling the mass-gap hypothesis and containing a sufficiently large set of
”temperate” wedge-like localized vacuum polarization-free one-particle generators (PFGs)
is unitarily equivalent to a free field theory.

The terminology requires some explanation. Here instead of ”QFT” it would have been
more appropriate to use the expression ”AQFT” (algebraic QFT) or ”LQP” (local quan-
tum physics) in order to indicate that one is not confined to a quantization approach. But
on the other hand this could have created the wrong impression that we are talking about
a different theory, whereas the real aim is just a conceptual and methodological extension
of the theory beyond the classical bonds to Lagrangian or functional quantization and
the ensuing diverging renormalization series. In other words QFT in the present context
refers to a fundamental theory of matter which, by being more fundamental than classical
theory, should not be forced to dance according to the tune of a supposed parallelisms
with a less fundamental theory.

The mass gap hypothesis in the theorem is necessary in order to derive LSZ scatter-
ing theory which relates scattering amplitudes with spacetime-dependent (time-ordered)
correlation functions and attributes an asymptotic role to particles in their relation to
fields which gives, in the case of a ”complete particle interpretation” the Hilbert space
the structure of a Wigner-Fock space. ”PFG” in the theorem stands for localized in-
teracting operators which, similar to smeared free fields, create particle states (in the

26Ed Nelson hit the misleading ring of this terminology on its head when he said: ”quantization is an
art (Laut Schrader sagte Nelson glaube ich “miracle”), but second quantization is a functor”.
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present case one-particle states) without admixture of vacuum polarization but are not
themselves free free field operators. The localization region in the case at hand is a wedge.
Larger noncompact regions have the full Minkowski spacetime as its causal completion
Stimmt das??; their B(H) type algebras are generated by free incoming/outgoing cre-
ation/annihilation operators and lead to a trivial realization of the above theorem. Its
nontrivial aspect results from the tension between the particle structure and causal lo-
calization. Its intuitive content is that larger localization regions faciltate the absence
of vacuum polarization and hence favor the reconciliation of particle states with causal
localization principle of QFT.

Temperateness of these generators means that, like Wightman fields, they have a
translation-invariant domain; the translations can then be used to pass from the PFGs to
operator-valued tempered distributions [48]. As we will see later, it is this requirement
which is very restrictive; the theorem would break down if we only require covariance
under those transformations which leave the wedge-localization region invariant (which
only allows half-sided and transverse translations besides the wedge preserving boosts).
This is the world of nonintegrable theories associated with nontemperate PFGs. The main
motivation behind the above theorem is to understand and explore the precise frontier
between theories with and without interactions in terms of localization properties in order
to find intrinsic methods to classify models of QFT and rigorous ways to demonstrate their
existence and mathematically controlled approximations. Its proof uses recent progress
about wedge-localization [48]. The theorem destroys the functorial connection between
modular localization of particle states and of algebras (14) already on the level of wedges
as soon as interactions are present. What remains however in the presence of interactions
is the existence of PFG operators with non-temperate (–> non translational invariant)
domain properties which are associated with wedge-localized algebras which (as shown
below) amounts to a replacement of a functorial relation by the much weaker concept of
”emulation”.

It turns out that wedge-localized temperate PFGs lead to QFTs with Sscat = 127 in
d > 1 + 1, and to purely elastic S-matrices Selscat d=1+1 which includes all the integrable
factorizing models. This leads to the following foundational definition of integrability in
QFT.

Definition 2 A model of QFT is called (dynamically) integrable if it possesses temperate
wedge-localized PFGs. (This will be further specified below, see Definition 4.) Apart from
theories with S=1 and free fields in d > 1+1, this leaves only the known family of factoring
models in d=1+1.

It will be shown that all models which were already known to be integrable in the
naive sense of having sufficiently many conserved currents or being solvable within the
bootstrap-formfactor program (belonging to the class of factorizing models), are also
integrable in this more general and also more abstract way. This definition complies
with the holistic nature of QFT which places localization and its inexorable companions
namely vacuum polarization and thermal manifestations into the center of attention and

27It is conceivable that Sscat = 1 by the use of more powerful mathematical arguments leads to the
freeness of the theory as in the case of spacelike-localized cones (strings).
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hence places limits on the use of mathematical fact about (differential) geometry. The
holistic property of QFT leaves no place for the existence of an integrable subtheory
embedded in form of a QFT subalgebra localized on a two-dimensional subspace This is
very different from QM where localization is not an intrinsic concept and integrability
permits realizations in every spatial dimension. This holistic aspect also manifests itself in
the connection between the KMS condition for wedge-localized algebras and the crossing
properties of formfactors [49]. As will be shown in the sequel, the implementation of
the particle crossing property is precisely where Mandelstam’s nonperturbative S-matrix
based project failed. A new program with similar physical motivation but a different
conceptual and mathematical setting which saves the old idea of a unique relation between
an S-matrix and a full model of local quantum physics may be viewed as its replacement.
As in all previous considerations we assume asymptotic completeness i.e. that the one-
particle states and their multi-particle counterparts span the Hilbert space in form of a
Wigner-Fock space.

We start with our derivation of the particle crossing property whose proof will lead us
to the new notion of ”emulation” and a foundational understanding of integrability versus
nonintegrability within the setiing of modular localization. It states that there exists an
identity (the crossing identity) which relates the n-particle vacuum polarization formfactor
to an analytic continuation onto the backward mass shell (involving anti-particles) of the
connected part of the k, (n−k) formfactor (the matrixelement of a local operator between
in-out states)

〈0 |B| p1, ..pn〉in = out 〈−p̄k+1..,−p̄n |B| p1, ..pk〉incon (20)

B ∈ A(O), O ⊆W, p̄ = antiparticle of p

The modular localization theory adds an important intermediate step to this statement:
the particle content of the left hand side can be reformulated into a field theoretic expecta-
tion of wedge localized operators which in turn can be rewritten with the help of the KMS
identity (associated with the thermal manifestation of wedge localization) into another
field theoretic expectation. In a second step the latter can be re-expressed in the setting
of particles where it turns out to represent an analytically continued formfactor. In other
words, the particle reformulation does not lead directly to an on-shell physical quantity,
but at least to one which is related to such a a quantity by an analytic continuation which
stays on the complex mass shell (i.e. in the particle setting). In many textbooks one
finds a formal derivation of particle crossing based on the LSZ scattering formalism. In
this derivation the form of the disconnected terms by which the full right hand formfactor
deviates from its connected part by the omission of contraction terms consisting of prod-
ucts of invariant 2p0iδ(pi− pj) delta functions multiplied with lower formfactors (see [13])
is not correct. These terms have been obtained from the incorrect assumption that the
LSZ reduction formula also holds for overlapping wave functions; its derivation from the
rigorous Haag-Ruelle scattering theory is however restricted to nonoverlapping situations
[53] which prevent to get on top of multiparticle threshold singularities28. The use of the

28Outside these thresholds the Haag-Ruelle approximants approach their asymptotic values faster than
any inverse power 1/tn, whereas the hitting of a threshold singularity convertes this into power law [52]
which is insufficient for the LSZ derivation.
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thermal KMS29 setting shows that the contraction terms are much more involved: instead
of being products of delta functions with lower formfactors they involve the interaction
(through the explicit appearance of scattering amplitudes) in an essential way.

An alternative derivation of particle crossing from Einstein causality which is essen-
tially restricted to the elastic amplitude has been given in [58][54] under certain analyticity
assumptions. This method, although completely correct in its analytic details, does not
reveal much about the conceptual setting of crossing, in particular its relation to the
thermal aspects of wedge localization which it shares with correct setting for the ther-
mal manifestation of the Unruh effect [57] [32] and with more general situations of black
hole Hawking radiation in which the fleeting causal horizon is replaced by an observer-
independent event horizon defined in terms of the spacetime metric of curved spacetime.

There is a conceptual complication resulting from the fact that the crossing relation
involves the in/out algebras in addition to the interacting algebra. These are different
algebras acting in the same Wigner-Fock space and sharing the same P-representation.
But the KMS relation involves only one algebra; fortunately this problem can be solved
by ”emulating” opererators from the free algebra Aln(W ) within the interacting algebra
A(W ). Before explaining this procedure it is helpful to recall first the extraction of the
particle content from the field theoretic KMS relation in the absence of interactions.

Let B be a wedge-smeared (test function with support in W) composite of a free
field A(x) i.e. a Wick-ordered polynomial, and let A(1) ≡: A(g1)..A(gk) : and A(2) ≡:
A(h1)..A(hl) : be Wick-ordered products smeared with W-supported test functions. The
KMS relation30 for the expectation value of a product of B with A(1) and A2 is the cyclic
relation results from the restriction of the global vacuum to the localized wedge algebras〈

BA(1)A(2)
〉 KMS

=
〈
A(2)∆ BA(1)

〉
, ∆it = U(ΛW (−2πt)) (21)

y 〈0 |B| p1, .pk, qk+1.., qk+l〉 = 〈−q̄1, ..,−q̄l |B| p1, ..., pk〉conn

where the second line results from converting its field content into particle states after
retaining only the totally Wick-ordered contribution in the product of the two A. The
anti-particle momenta on the backward mass shell which appear on the right hand side are
defined by analytic continuation and the subscript conn indicates omission of disconnected
contribution which contain 2p0δ(~p− ~q) delta functions and lower particle matrixelements
of B; this omission corresponds to the removal of Wick contraction terms. Throwing the
A(2)∆ term onto the left side vacuum and using the fact that the star-conjugation can be
expressed in terms of the Tomita modular operator S as well as the commutation relation
∆J∆

1
2 = ∆

1
2J (important for q → −q̄ ) [59], one obtains agreement with the crossing

relation (20) since in and out coalesce in the absence of interactions. For 0 < Imt < π
the expectation values are analytic functions, but on the distribution-valued boundaries
one finds delta function contributions on both sides which come from poles.

Now we come to the more subtle case with interactions. We use the notation A(W ) for
the wedge-localized subalgebra of the interacting system and correspondingly Ain(W ) =

29The replacement of the thermal Gibbs representation, which for open systems (in the thermody-
namic limit) ceases to make mathematical sense [51], by the Kubo-Martin-Schwinger analytic boundary
formulation.

30The global vacuum expections restricted to the wedge algebra becomes a KMS state.
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free algebra. A stands for an operator affiliated with the interacting algebra A(W ),
in symbols AηA(W ) and likewise Ain ηAin(W ) for the associated free situation. Since
modular localization (i.e. the Tomita S-operator) depends on the algebra, the S-operators
for the two wedge algebras are different operators in the same Hilbert space. But since
the representation of the Poincaré group is shared between the free and the interacting
net of operator algebras, this implies that the two algebras share the modular unitary for
the wedge region which is the Lorentz boost.

The idea behind emulation, which creates bijectively related operators in the A(W )-
algebra from those in the corresponding Ain(W ) algebra, is based on the following lemma
(extending the special case of one-particle states in [48])

Lemma 3 Any state |ψ〉 ∈ domg SA(W ) = domSAin(W ) = dom∆
1
2 can be generated from

the vacuum by two uniquely determined affiliated operators in each of the two algebras

|ψ〉 = A |0〉 = B |0〉 , A ηAin(W ), B ηA(W ) (22)

AA′ |0〉 = A′ |ψ〉 , A′ ∈ A′in(W ), BB′ |0〉 = B′ |ψ〉 , B′ ∈ A′(W )

Here the last line defines the operators on a dense set (the Reeh-Schlieder property
of the commutant algebras) and hence also the closures of the operators A,B (for which
we will maintain the same notation). As will be seen in the sequel, this lemma has some
powerful consequences.

This bijection between operators affiliated with different W-localized algebras sharing
the same modular unitary ∆it is not an algebraic operator equivalence. Rather the emu-
lation is based on the fact that the infinitely many possibilities of chosing operators for
creating a prescribed vecor state becomes unique if the operator belongs to a localized
algebra and the state belongs to the domain of the Tomita S associated with that alge-
bra31. So strictly speaking what we call somewhat sloppily emulation of operators is a
bijection of operators between different algebras which is defined through states from the
dense domS. Different from an isomorphism, it does not respect the star-operation since
A∗ |0〉 = SAin(W ) |ψ〉 whereas B∗ |0〉 = SA(W ) |ψ〉 ≡ SscattA

∗ |0〉 is a different state, i.e. the
star operation does not commute with the operation of emulation.

Applying this to the situation at hand and denoting the emulated operator by attach-
ing a subscript A(W ) we write

A ≡: Ain(f1)...Ain(fn) :, A −→ AA(W ) ηA(W ), suppf ⊂ W (23)

if AA(W ) |0〉 = A |0〉 =
∣∣f̌1, ..f̌n

〉in
, f → f̌ , mass shell projection

where f̌ is the particle wavefunction associated to the testfunction f. Here and in the
following we restricted our setting to the presence of just one kind of particle; in the
presence of different types of particles (bound states) there is a separate emulation of

31This property is closely related to the Reeh-Schlieder property which is sometimes imprecisely referred
to as the ”state-operator relation”.
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each type. The KMS relation, from which the particle crossing is to be derived, reads
now [49] 〈

B(A
(1)
in )A(W )(A

(2)
in )A(W )

〉
=
〈

(A
(2)
in )A(W )∆B(A1

in)A(W )

〉
(24)

∆(A
(2)
in )∗A(W ) |0〉 = ∆

1
2J0A

(2)
out |0〉 (25)

where A
(1,2)
in is now a Wick product of W-smeared incoming fields as in (21); its outgoing

charge-conjugate counterpart appears on the right hand side by throwing the (A
(2)
in )A(W )∆

operator onto the bra-vacuum.
Whenever an emulated k-fold Wickproduct acts directly on the vacuum one can forget

the emulation subindex and reconvert it into a particle state; the remaining nontrivial
problem is to convert the emulated Wick-product in the middle of the rleft hand side
acting on the k-particle state〈

0|B(A
(1)
in )A(W )|p1, ..pk

〉in
=? (26)

what is particle content of (A
(1)
in )A(W )A

(2)
in |0〉

into particle states. Imagining a decomposition of the unknown state by writing the not
explicitly known operator (A

(1)
in )B(W ) in the second line into a possibly infinite series of

Wick-ordered products of free fields in the spirit of GLZ expansions [50] with yet unknown

coefficient functions, we can Wick-expand the product (A
(1)
in )A(W )A

(2)
in |0〉. The totally

Wick-ordered term is known since the two operators commute inside Wick-ordering and
the A(W )-subscript can be omitted. This leads to the expected n-particle contribution
i.e. the left hand side in (20).

On the other hand the formal application of the LSZ reduction formalism to this n-
particle-vacuum matrixelement would lead to the well-known reduction formula which
contains beside the analytic n-particle term disconnected terms consisting of products
of delta function contraction terms with B-formfactors with a lesser number of particles
depending on the remaining variables (see A1 in [13]). This contribution is precisely what
one formally expects by rewriting the lefthand side as an onshell restriction of Fourier
transformed time-ordered functions and contraction terms from coinciding momenta. Be-
fore we show that the delta function contact structure (however multiplied with different
explicitly interaction dependent terms) is also the structure which follows from rewriting
(24) in terms of particle states, we specify our notion of integrability in QFT in terms of
properties of emulation:

Definition 4 A QFT with a complete particle interpretation is called integrable if it per-
mits a ”temperate” emulation of wedge-localized Wick products of incoming free fields
i.e. if the domain of the unbounded emulated operators is translation invariant and their
Fourier transform can be defined. This is a generalization of PFGs (= one-particle em-
ulats) in [48]. Theories violating this property as a result of the nonexistence of such
temperate domains are nonintegrable.

As a result of the modular localization nature of the emulation construction the do-
mains of the emulats are always invariant under wedge preserving symmetries, but in
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certain cases they also have a larger invariance which includes translations; in these cases
the PFGs and more generally emulated products of wedge-smeared free fields permit a
Fourier analysis in case they are polynomial bounded [48].

In [48] it was also shown that the algebraic structure of integrable models is very
restrictive. In d>1+1 their scattering matrix is necessarily trivial Sscat = 1, see also
Theorem 1, and in d=1+1 only models with elastic S-matrices are integrable. This leaves
only the elastic scattering functions32 and their associated factorizing models resulting
from the solution of the d=1+1 bootstrap formfactor program are all integrable. The
absence of inelastic thresholds leads to meromorphic formfactors in the on-shell θ rapidity
parametrization p = m(chθ, shθ). This permits to encode the Bose statistics (a similar
construction works for fermions) into the θ-ordering writing formally

|θi1 , ...θin〉 := |θ1, ...θn〉in , if θi1 > ... > θin (27)

which allows to associate other orderings obtained by analytic continuation inside form-
factors (i. e. via the other ways to approach the real boundary)33 with different states
generated by the application of operators which are different from the incoming fields. In
the setting of [13] the analytic change of this ordering (taking boundary values in different
order of Imθ → 0) inside formfactors can be generated from transpositions in terms of the
multiplication with scattering functions. The result is a crossing formula with contrac-
tion terms which differ from those of the LSZ reduction formula by additional dynamical
factors involving matrixelements of the S-matrix. For our purpose it suffices to illustrate
this in the simplest case of a 4-particle formfactor (formula (3.14) in [13])

〈θ1 |B| θ2, θ3, θ4〉in = 〈0 |B| θ1 + iπ, θ2, θ3, θ4〉in + 〈θ1|θ2〉 〈0 |B| θ3, θ4〉in + (28)

+ 〈θ1|θ3〉Sscat(θ1 − θ2) 〈0 |B| θ2, θ4〉in +

+ 〈θ1|θ4〉Sscat(θ1 − θ2)S(θ3 − θ1) 〈0 |B| θ2, θ4〉in

The θ1 + iπ the vacuum polarization term stands for the analytic continuation. Note that
p(θ + iπ) = −p(θ). As explained in [13], the S-matrix factors arise from the re-ordering
which is necessary to obtain the identification with the in-state (27).

Note that the last two contraction terms contain dynamic-dependent S-matrix factors
which are different from those of the contraction terms in the books. As mentioned be-
fore the reason is that the standard contraction terms correspond to coalescing momenta
contributions at the onset of multi-particle thresholds where the strong Haag-Ruelle ap-
proximation of scattering states for large times (faster than any inverse power) breaks
down [52][53]. As those authors emphasize, this limits the derivation of the LSZ reduc-
tion formula to non-overlapping wave packets. The presentation based on the analytic
exchange of θ′s can be equivalently described in terms of a wedge-localized operator for-
malism [12][14] with Z-F commutation relations.

32In the multicomponent case of elastic scattering (which allows for backward scattering) the scattering
functions are matrix-valued and fulfill the Yang-Baxter relation [13].

33In higher spacetime dimensions the momenta in the rapidity parametrization have a transverse com-
ponent and the θ´-ordering has to be replaced by the velocity ordering with respect to the chosen wedge
[48].
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The appearance of these dynamical modifications has its analog in the formula for the
action of the emulated operators on particle states e.g.

(Ain(f))A(W ) |θ1, θ2〉in =

∫
dθf̌(θ) |θ, θ1, θ2〉+ f̌(θ1) |θ2〉+ (29)

+ Sscat(θ1 − θ2)f̌(θ2) |θ1〉 , p = m(chθ, shθ), |p〉 ≡ |θ〉

and two-incoming field emulations on a one-particle state (a consequence of (28))

(: Ain(f1)Ain(f2) :)A(W ) |θ3〉 =

∫
dθ1dθ2f̌1(θ1)f̌2(θ2) |θ1, θ2, θ3〉 (30)

+

∫
dθ1f̌1(θ1)f̌2(θ3)S(θ2 − θ3) |θ1〉+

∫
dθ2f̌1(θ3)f̌2(θ2)S(θ1 − θ3) |θ2〉

The last two terms are the wave function-smeared contact terms which result from ap-
plying the reordering. Note that the three-θ state still needs analytic re-ordering in order
to rewrite it in terms of a 3-particle in state. These formulas have also an easy algebraic
derivation in the operator setting of the reordering with the help of the transpositions
in terms of the scattering function [12][14] which we will return to below. The higher
particle formulas contain products of two particle S-matrices.

The emulation concept leads to a sharp division into two kinds of situations, integrable
d=1+1 QFT models for which the emulated operators have translation-invariant domains
permitting Fourier analysis which results in temperate generators of A(W ), and non-
temperate PFGs whose domains are only invariant under those restricted transformations
which leave W invariant. Unlike ordinary (Wightman) fields, emulated operators do
not directly carry physical properties, but as the result of their localization covering the
whole noncompact spacetime wedge region which implies that their vacuum polarization
properties are especially benign and mathematically more susceptable than interacting
pointlike fields. Although one cannot use them directly for the extraction of physical
properties their generated wedge algebras can be sharpened by intersections in order to
arrive at spacelike cone or double cone localized algebras. It is well known that interactions
increase the conceptual distance between particles and local fields and it is helpful to think
that wedge localization offers the best compromise of particles with fields.

The construction of the bijection of operators between the incoming (free) wedge
algebra with those of the interacting algebra depends on two properties: the equality of
the domains of the two Tomita S-operators and the existence of a scattering matrix which
enters the definition of J = SscatJin and which is indispensible for checking the wedge
commutativity

[A(W ′),A(W )] = 0, A(W ′) = A(W )′ ≡ JA(W )J (31)

where as usual the dash on the region stands for the causal disjoint and on the algebra
for its commutant. The scattering matrix is the only dynamical object which enters the
construction. It is surprising that integrable QFT exist at all since the temperateness
requirement of a translation invariant domain is not natural from the domS point of
view.
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There is an additional more physical attribute of nontemperateness. A QFT associated
to an S-matrix with inelastic multiparticle thresholds does not lead to formfactors which
are meromorphic in the rapidity variables; the presence of cuts prevents the encoding of
analytic θ−exchange into a θ−ordering. The problem is similar to that which occurs in
a Wightman theory with plektonic fields. Wheres the Bargman-Hall-Wightman domain
for fields with permutation group statistics is ”schlicht”, it contains cuts in the case of
d=1+2 braid group statistics. Hence it is not possible to encode the different ways of
approaching the boundary into the the order in which the imaginary parts are taken
to zero; one also needs to specify the paths which are used in this process [29]. Here
we will not discuss how this can be achieved in the presence of the threshold cuts in
formfactors. Rather we will present a conjecture about the nature of contraction terms in
the nonintegrable case which reproduces the above formulas if specialized to the integrable
case. The nonintegrable analog to formula (29) reads

(Ain(f))B(W ) |θ1, θ2〉 = ((Ain(f)) |θ1, θ2〉)conn + f̌(θ1) |θ2〉+ (32)∫ ∫
dθ′1dθ

′
2Sscat(θ

′
1, θ2|θ1, θ

′
2)f̌(θ′2) |θ1〉+ ....

For easier comparison the two-particle contribution was seperated from the remaining
inelastic terms whose involved structure will be explained below. Whereas it is true that
if the S-matrix for the incoming θ are sufficiently close together the inelastic contributions
are absent, this cannot be used inside θ- integrals.

This leaves the problem of the analog of products of elastic S-matrices as in (28). To
get an idea about what to do, we first rewrite them in terms of the full 3-particle S-matrix

S(θ1 − θ2)S(θ3 − θ1) = S−1(θ2 − θ3)S(3)(θ1, θ2, θ3; θ1, θ2, θ3) (33)

in words, the product can be written in terms of a 3-particle factorizing S-matrix in which
one of the particles, θ1, passes through two particles which have no direct interactions
(implemented by the multiplication with the inverse two-particle S-matrix). In case of
matrix-valued scattering functions we have to use the Yang-Baxter relation in order to
compensate the inverse two-particle S-matrix and be left with the left hand side of (33).
In this form it is easy to guess (a rather unique looking) expression for the general case:

S((r + s-inert) p′s→ (r + any) p′s) ≡ (34)∑
n

S−1
full(n-p′s→ any p′s)Sfull(p1 + k-inert p′s→ p1 + n-p′s)

where the imposition of particle momentum conservation + Yang-Baxter algebra rules
allows to return to the previous formula by specialization to the integrable case.

In this form the idea of a momentum preserving ”grazing shot” with p onto an ”inert
swarm” activates the latter while maintaining the velocity of the ”bullet”.

Such a guess taken serious for the general non-integrable case would allow to write the
expressions which multiply the contractions in terms of infinite sums involving S-matrix
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elements. The full crossing including the contact terms would then realize an shell version
of Murphy’s law in particle theory34 i.e. a particular formfactor would communicate with
all other formfactors.

But how is one able to prove such a conjecture. In principle its proof is simple; one
”only” has to verify that the PFG behind these KMS properties is ”wedge local” i.e.〈

ψ
∣∣∣[J (A′in)A(W ) J, (Ain)A(W )

]∣∣∣ϕ〉 = 0 (35)

J = SscatJin, Ain, A
′
in ηAin(W )

on the dense set of states mentioned before. But this is easier said than done.
There is another important message here. In an operator formulation of crossing in the

nonintegrable case it is not possible to encode the operator structure into the permutation
group linking the transposition to the scattering function. The analytic prerequisite for
doing this was the use of θ as a uniformization variable, which breaks down in the
presence of inelastic thresholds.

Here it is helpful to look at a similar problem in Wightman’s theory when in d=1+2
the permutation group statistics has to be replaced by the more general braid group
statistics. In that case there are cuts in the analytic Bargman-Hall-Wightman domain,
and the possible ways of reaching the boundary (i.e. the ordering in which the imaginary
parts pass to zero) has to be taken into account for the operator interpretation on the
physical boundary. This process cannot be encoded into the operator content on the
physical boundary; one also must specify the order of paths (crossing cuts). This leaves
an infinite number of possibilities instead of the n! permutation group orderings. In
fact in the plektonic case these possibilities are parametrized on the boundary by words
in the braid group. We conjecture that a similar phenomenon may occur in the setting
of emulation; this could significantly simplify the emulation formalism for nonintegrable
theories.

In the distant future one could expect that this S-matrix-based setting may lead to an
existence proof for an associated local net and to controllable approximation techniques
for quantities of physical interests. This then would set the same kind of conceptual
closure on QFT and make it akin to any other area of theoretical physics.

In the case of integrable models the encoding into operators based on the repre-
sentation of the analytic transposition in terms of the scattering function leads to the
Zamolodechikov-Faddeev structure for the creation/annihilation components of the one-
particle PFG emulates (

Ain(f̌)
)
A(W )

=

∫
∂±strip

f̌(θ)Z(θ)dθ, (36)

Z( )Z( ′) = S( − ′)Z( ′)Z( ); Z∗(θ) ≡ Z(θ − iπ)

Originally these operators were introduced as a mnemonic device to keep track of com-
binatorial algebraic structure, but in the 90s it was realized that they represent much

34”Anything which can couple (according to the rules of superselected charges) actually does couple”.
QM is (even in its relativistic form [18]) is par excellence the theory which remains outside the range of
Murphy’s law.
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more than that; they admit a spacetime interpretation as generators of wedge localized
algebras. Integrable models did not only lead to existence proofs, but they also permit
to compute formfactors of pointlike fields [13]. Exact computability can of course not be
expected in the nonintegrable situation, but it is not unrealistic that besides being able to
assure the existence of models one may be able to find controllable approximations based
on the above ideas, which replace the uncontrollable perturbative series. In the integrable
(temperate PFGs) case the wedge localization can be directly proven from these algebraic
commutation relations [12][14].

The algebraic construction of factorizing models also reveals that the collection of
viable QFTs (insofar ”viable” makes sense in d=1+1) is much larger than those which
can be associated with a Lagrangian; this corresponds to the fact that there are by far
more crossing-analytic, Poincaré invariant and unitary elastic scattering functions than
local Lagrangian interactions. For each such S-matrix one can construct the formfactors of
a local QFT [62]. We cannot tell nature to use only those models which have a Lagrangian
name; the best we can hope for in a Lagrangian setting is that of the Lagrangian models
comes close to what nature presents us.

The present approach shows in a clear form that the crossing on which Veneziano
constructed his dual model has nothing to do with the crossing in the sense of particle
physics in this article. Rather what was called crossing in the dual model referred to a
”field crossing” in conformal 4-pointfunctions. It also arises from a crossing property but
one which results from a conformal 4-point correlation function. More accurately it results
from the Mellin transformation of global (converging) conformal operator expansions. The
scale dimensions of the composite fields define the pole positions and since there are 3
pairings to which one can apply operator expansions this leads to a crossing identity [40]
which according to its derivation is not related to particle physics. In fact conformal
fields cannot be related with interacting particles since their LSZ limits vanish (see next
section). This implies that also on pure theoretical grounds (forgetting phenomenology)
the dual model and string theory was never part of particle physics.

It also cannot be based on a source-target interpretation of chiral sigma models. In
the introduction we showed that a lower dimensional QFT can never be embedded into a
noncompact target space, in fact d>1+1 QFT do not possess noncompact target spaces
and for nonrational conformal QFT, for which this is possible, the oscillatory degrees of
freedom are not arranged in form of a string-localized extension in spacetime but rather
as inner degrees of freedom sitting ”over a spacetime localization point” including the
mass-spin tower.

The insuffient conceptual understanding which led to the beginning of string theory
perpetuated itself in globalized communities which are unable to provide arguments which
spot its fault lines, even less to dispose of it in a scientific setting. Even its opponents have
to rely on sociological criticism which have a high entertainment value and prolong ST’s
lifetime. In fact since some opponents built their reputation on sociological arguments
and the lack of observability and not on conceptual physical arguments based on particle
theory, they in fact have little desire to lead this development to a closure and in this
way contribute to its prolongation. There is however a consolation in that particle theory
has never experienced an error whose solution presents such a new and potentially deep
insight into the foundations of particle theory; after its resolution particle theory will not
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be the same.
Inspite of the present critique, the step of Mandelstam to place the S-matrix into a

computational approach was not in vain, even though his later closing of ranks with the
dual model setting ended in a blind allay. Taking the original idea and combining it with
Haag’s idea of local quantum physics one obtains a powerful new tool in nonperturbative
particle physics.

5 Kinematic integrability

There exists a different notion of ”kinematic” integrability which is not directly related
to the dynamics of a model but rather refers to a discrete combinatorial structure of its
countable superselected charge sectors which the DHR superselection theory [16] uniquely
associates to a local (neutral and invariant under inner symmetries) observable algebra.
More explicitely it refers to the structure of the set of higher equivalence classes of localiz-
able representations of the observable net {A(O)}O⊂R4 given in its vacuum representation.
In the case of massive theories with Bose/Fermi statistics this structure turns out to have
the form of a tracial state on the algebra of the infinite permulation group which can
be shown to be the dual of a compact ”internal symmetry” group commuting with the
Poincaré group [16]. The internal symmetry group acts on a larger ”field algebra” which
contains the observable algebra as a fixed point algebra under the action of the symmetry
group [65]. This construction explains the spacetime origin (only localizable representa-
tions frature in this construction) of Heisenberg’s isospin urform of inner symmetries and
in this way demystifies the ”inner” aspect. Modulo some natural conventions the entire
structure is already preempted in the local net structure (the relative positioning) of the
observable algebra35. This is a situation which is consistent but not properly understood
in the Lagrangian quantization setting; inner symmetry is a quantum concept since it
classifies inequivalent representations, there is no classical reason (mechanics, Maxwell
fields) for its introduction. In low dimensions (d ≤ 1+2) where in generic cases the infinite
permutation group has to be replaced by the infinite braid group, the strict separation
between inner and spacetime symmetries breaks down.

As mentioned before, in the standard case of compactly localizable representations or
representations with mass-gaps in d ≥ 1 + 3 this additional structure can be identified36

with a Markov trace on the infinite permutation group P∞; it is then used in order to
enlarge the observable algebra to the ”field algebra” [16] which contains the former as the
vacuum sector together with all other charge-carrying inequivalent representation classes.
By construction the field algebra cannot be extended further because all localizable rep-
resentation classes have already been incorporated. The result confirms the central role
of modular localization in QFT.

The result implies that the fields with inner symmetry indices transforming according
to a noncompact group (not related to the tensorial/spinorial spacetime symmetries of the
”living space”) are forbidden as a result of the causal localization which also determines the

35There is a strong analogy to Mark Kac’s famous dictum: to hear the shape of a drum.
36Meines Wissens ist diese Darstellung der S∞ doch nur ein Teil der ganzen SA-Struktur.

Kann man denn mit ihre Hilfe wirklich das ganze Gruppendual konstruieren?
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localization of charge carriers and the Hilbert space structure, although classically such
fields are allowed. This sets limits to quantization whose nonobservance would violate
the holistic nature of QFT. Wheras in the previous section the Lagrangian quantization
setting turned out to be too narrow; most of the large family of integrable models have
no known classical counterpart. On the other hand the absence of d ≥ 1 + 2 noncompact
inner symmetries prevent a quantum source–>target embedding. Although the presence
of a continuous superselection structure which only occurs in ”nonrational” chiral theories
makes inner symmetry (”target”) spaces on which noncompact groups can act possible,
the resulting target representation are pointlike and not stringlike. This is in particular
the case of a 10 component sigma model which is used to obtain the positive energy
superstring representation of the Poincaré group, i.e. the chiral theory envisaged as living
on a lightlike line (after second quantization) does not become embedded into target space
but rather represents an infinite component dynamical field. Already by using the known
fact that there are no covariant position operators Xµ(τ) one realizes that there is no
spacetime dimension in which this is possible; it simply contradicts the causal localization
principle of QFT. The degrees of freedom of the infinite chiral oscillators (apart from the
zero mode) enrich the inner space over a ”target point” and never not go into a stringlike
material extension in the sense of ”target localization”. The string-localization in string
theory is an illusion whose origin is the confusion of the intrinsic notion of localization of
QFT with the Born’s imposed (probabilistic) localization in QM.

To avoid any misunderstanding, within the class of non-rational chiral sigma model
target spaces (the quantized counterpart of the classical field space and the generalization
of internal symmetry space) it is possible to realize noncompact target space symmetries in
the associated representation and ”their second quantization”. But why should anybody
get carried away by this observation and erect a foundational gravity-including theory
on top of it ? Admittedly it is somewhat surprising that the imposition of unitarity and
positive energy on the target structure of a sigma model [59] leads to a an almost unique
(apart from a finite number finite ”M-theoretic modifications) solution called (mislead-
ingly) the superstring representation. But why infer from this ”almost uniqueness” that
it should be interpreted as the start of a TOE ? Usually one believes that foundational
explanations should be rather unique and not the other way around. Let us not get car-
ried away and interpret M-theoretic properties of 10 parametric Poincaré target symmetry
carrying chiral sigma models as foundational observations about our living spacetime, in
particular in view of the fact that the misunderstanding of localization is closely related
to that which led to the confusion about the particle physics crossing explained in the
previous section.

If the terminology ”kinematic integrability” would only refer to the fact that the
tracial states on the infinite permutation group allow an explicit exact construction of
intertwining ”charge transporters” of superselected charges and encode inner symmetries,
it would not be very interesting; one does not want to shoot sparrows with cannons. There
are however two more interesting important cases which remained outside this standard
DHR setting and for which this terminology has a nontrivial content. One is local gauge
theory involving zero mass potentials. In this case the gauge-invariant observable algebra
(generated by currents, field strength and suitable pointlike charge-neutral composites of
matter fields) would be the natural candidate for the observable algebra. But such algebras
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are expected to have continuously many superselection-sectors [16] and the way to extend
the observable algebras so that they only admit a countable number has not yet been
clearly understood37. In particular it has not yet been possible to formulate the expected
existence of bilocals with a ”gauge bridge” and the status of their asymptotic limiting
behavior and its possible relation to the issue of confined and invisible quantum matter.
This is not surprising because even a complete understanding of charged ”infraparticles”
in relativistic abelian gauge theories has not yet been achieved.

There is also a family of massless theories whose conceptual complexity is somewhere
between the standard DHR theory and its gauge theoretic extension. These are the
conformal theories, which we will treat in the rest of this section. Conformal invariant
QFTs began to attract the interest of a few individuals (already in the early sixties)
against the resistance of the majority of particle physicists. The reasons for this initially
negative attitude by particle physicists were three-fold

1. A conformal field with canonical short distance behavior is inevitably a free field.

2. A conformal QFT cannot be perturbatively constructed directly from free massless
fields and the perturbative behavior of massive renormalizable d=1+3 models, con-
trary to some models in d=1+1, is not ”soft” which would allow to take a massless
limit within the perturbative Lagrangian setting.

3. The LSZ scattering limits of interacting conformal fields vanish38; how can one
extract physical observables?

These critical observations were originally (at the beginnings of the 60s) in the form of
suspicions and ”gut feelings”, but they later took the form of mathematical theorems39.
The proof for two of the statements is actually quite simple, the first follows from the
fact that the canonicity of scale dimension requires the two-point function to be that
of a massless free field, which in turn implies the freeness of the field itself. The third
is a consequence of the fact that the increase of the short distance dimension above its
smallest possible value allowed by positivity (that for a free field) automatically lessens
the singularity at the place of the zero mass shell p2 = 0 which in turn is too weak to
compensate the dissipating behavior of wave packets in order to arrive at a nontrivial LSZ
limit. One would be reluctant to mention these evident facts if there was no recent flurry
of papers (in connection with conformal gauge theories and the AdS-CFT correspon-
dence) which used the terminology scattering ”amplitudes” as if there was some infrared
magic which allowed nontrivial zero mass shell restrictions of of correlation functions ex-
ist. Whereas one can construct conformal tree graphs, there are no scattering amplitudes
of which they are the tree approximation. The Bloch-Nordsiek-Frautschi-Yennie-Suura

37However see forthcoming work by Buchholz, Doplicher and Roberts where the DHR superselection
theory is extended to include QED.

38The Hilbert space positivity forces the Källén-Lehmann spectral measure to have a singularity which
is milder than a mass-shell delta function.

39In many contemporary articles the fact that the tree-approximation of conformal theory (isomorphic
to the classical structure) allow a restriction to a zero mass shell has been used to incorrectly alledge that
they can describe quantrum particles in the sense of scattering theory and the S-matrix.
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prescription for inclusive cross section cannot be expressed in terms of spacetime cor-
relation functions in the analogy to the LSZ reduction formalism, but at least there is
a physical interpretation of the inclusive cross section whereas the physical meaning of
the Kinoshita-Lee-Nauenberg ”theorem” for QCD (inclusive finiteness after avaraging in
addition over colors) without observed gluons remains unclear. None of these statements
about the existence of inclusive cross sections holds in conformal QFT, ”conformalons”
simply do not make sense.

Since conformal theories were expected to appear ”in some way” as zero mass limits40

of particle theories, their structural properties began to attract interest in the 70s; another
reason was their expected (nonperturbative) mathematical simplicity as compared to
QFTs describing particles: this made them theoretical laboratories for the study of pure
field properties. From the viewpoint of the DHR superselection theory, which is based
on spacelike locality, these theories are not distinguished from the ones with a particle
interpretation since the pointlike nature (no necessity for stringlike generating fields)
of generating conformal fields can be proven as a consequence of conformal invariance.
What makes the conformal models interesting as a theoretical laboratory is the fact that
they allow a new view about the relation between the observable and the superselected
charge carrying fields which is in a more direct way based on spacetime properties. It is
precisely this simplification which suggests that they may be the first QFTs for which the
existence of d=1+3 nontrivial models cannot only be proven but for which their algebras
and generating fields can actually be constructed. By definition conformal observables
are not only Einstein causal but also ”Huygens causal” i.e. their commutators also vanish
for timelike separation so that the commutators of the observables live exclusively on the
mantle of the light-cone. This leads to a completely new relation between an observable
algebra and its (only spacelike localized) field algebra. For defining Huygens observables
one does not have to refer to inner symmetries.

An important step in setting up this new relation of a conformal observable algebra and
its enlarged field structure is the 1975 conformal decomposition theory [66][67][68]. There
were two viewpoints about conformal invariance; one can either say that conformal fields
”live” (are univalued) on the universal covering of the compactified Minkowski spacetime
Mc, or they are distribution-valued sections on Mc. In the first case [68] (which probably
goes back to Irving Segal) we encounter infinitely many ”heavens” above and ”hells” below
Mc and there exists a generator of the center of the universal conformal covering group

Z ∈ ˜SO(4, 2) (for d=1+3) and Zn n = ±N numbering those heavens and hells and n = 0
corresponding to the compactification Mc of our living spacetime. The center is a certain
conformal rotation at the angle 2π which results in the formula specZ =

{
ei2πdα

}
where

dα runs over the (anomalous) conformal field dimensions.
There is a strong analogy of this situation to the physics of plektons in d=1+2. In this

case the Poincaré group P has an infinite covering P̃ , but the spacetime has none. The
Wigner-Bargmann representation theory however creates a kind of covering due to the
semiinfinite string-like nature of the plektonic wave functions [69]. The anomalous spatial
spin corresponds to the anomalous dimension and the plektonic statistics resembles an

40Formally such a massless limit forces all multi-particle threshold and their associated cuts to be on
top of each other. The difficulty of associating particle physics with conformal QFT is the problem of
reconstructing a possible theory decribing massive particles from which it may have resultet in this way.
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imagined timelike plektonic exchange, with the statistical phase [16] corresponding to the
eigenvalue of Z.

There are special fields for which the dimension is integer41, in interacting theories
these are typically conserved currents (including the energy-momentum tensor) resulting
from the ”localization” of global symmetries. These fields are not only local, but they fulfill
the Huygens property since their commutator vanishes also for timelike separations. We
will briefly refer to these observables as ”Huygens observables” and they generally form a
subalgebra of what one usually calls observables. In terms of group theory this means that
these Huygens observables live on the compactification Mc of M and transform according
to the conformal group SO(4, 2), whereas anomalous dimension fields transform according

to the covering ˜SO(4, 2) and live on the covering space M̃c. The former fulfill space- and
time-like commutativity; as mentioned before their commutators are concentrated on the
mantle of the light cone and their correlations can be reduced to multivariable rational
analytic functions [70]. Despite their simple appearance, nontrivial d=1+3 Huygens fields
have not yet been constructed.

The Huygens observables on Mc are connected to anomalous dimensional fields which
together with the Huygens observables create the full conformal field algebra. They are
not only enlarging the Hilbert space but they also augment the ”living space” Mc →
M̃c. If one wants to stay in Mc, the fields become sections; in particular the anomalous
dimensions play the role of generalized superselected charges42. An application of the
spectral decomposition theory to the generators of the center Z yields

A(x)→ Aα,β(x) ≡ PαA(x)Pβ, Z =
∑
α

ei2πdαPα (37)

Aα,β(x)Bβ,γ(y) =
∑
β′

R
(α,γ)
β,β′ (x, y)Bα,β′(y)Aβ′,γ(x)

The R-matrices depend discontinuously on spacetime, they are constant but different
for time- and space- like separations. For time-like separation the distinction posi-
tive/negative timelike is topologically similar to left/right distinction in chiral theories.
Indeed the arguments [72] which led to braidgroup representations and exchange algebras
in case of chiral theories also apply here; the Artin braids related to statistics which lead
to the exchange algebras pass to those which are related to a physically more abstract
exchange in time-like direction. But whereas these are the only restrictions in the setting
of chiral theories (light-like) or for d=1+2 massive ”plektons” (space-like) on the commu-
tation relation of the component fields, the requirement that the components represent
the permutation group for spacelike separations leads to restrictions which were not there
in those cases; they are characteristic for all conformal QFT with d > 1 + 1. The simulta-
neous fulfillment of the time-like Huygens structure and the spacelike Einstein causality
leads to new problems [73] which were solved only partially, to which we will return at
the end of this section.

41For semiinteger dimension as they already occur for free spinors it is necessary to take the double
covering of Mc. These fields fulfill an extended Huygens principle on the double covering.

42The analogy works better with squares of charges since the matter-antimatter charge compensation
has no counterpart the composition of anomalous dimensions.
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The group theoretical cause of the simplification in d=1+1 is the factorization of its
conformal group SO(2, 2) = SL(2, R)× SL(2, R) which leaves the 3-parametric Moebius
group as the space-time symmetry of a chiral theory on R or its compactification S1 (with
the possibility to extend it to Diff(S1)). The group theoretical factorization is followed
by a chiral decompostion of the d=1+1 conformal theory into its chiral components.
The chiral theories live on a light ray (or its compactification) and have proven to be
the most susceptible to classification and construction, in particular in case of rational
models (models with a finite number of generating fields). The first illustrative model for
the decomposition theory was the exponential Boson field [66]. In this case the analogy
of anomalous dimension with superselecting charges takes a very concrete form. In a
somewhat formal way of writing

j(x) = ∂xV (x), 〈j(x)j(x′)〉 ∼ 1

(x− x′ + iε)2
(38)

Ψq(x) = eiqV (x), [Q,Ψq(x)] = qΨq(x), Q =

∫
j(x′)dx′

Ψq(x) =
∑
q′

Ψq′

q (x), Ψq′

q (x) ≡ Ψq(x)Pq′

In the last line the Pq′ are the projectors onto the subspaces Hq′ where q′ runs over all
superselected charge values which occur in the theory (discrete except in non-rational
chiral theories). It is now easy to see that the dilation acts quadratically in the charges
as43

U(λ)Ψq(x)U(λ)∗ = λq
2

Ψq(λx) (39)

The Mc preserving transformations will not see the indices which result from the projec-
tion whereas the generator of the center Z is sensitive to them because of the quadratic
relation between charges and anomalous dimensions Z = e2πiQ2

which maintains the pos-
itivity of the dimensions in the presence of the charge-anticharge symmetry. It is not
necessary to work with the double indexed fields since the range projector is fixed by
charge conservation.

For a long time the only nontrivial illustration of chiral theories these exponential
Bose fields were the only examples. This changed abruptly when Belavin, Polyakov and
Zamolodchikov [76] showed that the problem of chiral conformal theories is in an interest-
ing way related with infinite dimensional Lie-algebras which are related to local observable
algebras (typically those generated by currents and energy-momentum tensor). They con-
structed many models with a finite number of generating fields (primary fields) associated
with those observable algebras and presented an algorithmus which made it possible to
compute 4-point functions as the solution of a finite number of euclidean differential
equations (continued back to real time).

This in turn led to a more careful look at the algebraic structure behind the braid
group commutation structure [72]. The main step was the reformulation of the DHR
superselection theory, in which the permutation group plays the central role, to the braid
group [74] of which the permutation group results by simplification in the relation for

43The dilation generator D has continuous spectrum whereas the conformal rotation and the generator
of the center Z describe the diecrete anomalous dimension spectrum (mod 1 in case if Z).
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adjacent generators. The Z-phases are the statistical dimensions in the DHR setting; but
whereas the latter only take on the values ±1 their connection with the R matrices leads to
a much more interesting Z-spectrum. The DHR construction of local endomorphisms leads
in the simplest case [75] (for which the square of an irreducible endomorphism decomposes
into two irreducible ones) to a braid group realization related to the Hecke algebra; for 3
irreducible subendomorphisms one obtains the Birman-Wenzl algebra . All these algebras
come with a natural unique state which has the properties of a Markov trace. It turns out
that this extended DHR analysis leads also to knot theory and invariants of 3-manifolds;
it is a special case of the Vaughn Jones subfactor inclusion theory of type II1 factors.

All these insights, as deep and interesting as they may be, were not yet of direct help
in higher dimensions where the representation theoretical approach turns out to be more
demanding and even the structure of Huygens observables is only incompletely understood
[70].

An unexpected hint at a mechanism which combines the search for conformal theories
with supersymmetry and leads to U(N) central charges came from the observations in [71].
There has been a concerted effort to find perturbative arguments for such supersymmetric
conformal models and the most popular candidate has been the N=4 supersymmetric
Yang-Mills gauge theory in which a massless Dirac spinor is the supersymmetric partner
of the gluon field. In order to be able to assess the present situation of this research, it is
helpful to first look at situations which are less controversial.

If the looked-for conformal theory can be viewed as a ”smooth” massless limit m →
0 of a massive renormalizable theory one is in the best of all possible situations. In
fact the Thirring model is a good illustration for such a situation. Not only was its
massless conformal limit explicitely known before its perturbation theory (including its
beta function) was worked out, the proof of the vanishing of its Callan-Symanzik beta
function was motivated by the smoothness in m→ 0 (see [79]) and the vanishing of beta
was the perturbative signal of this smoothness. This smoothness seems to be a generic
property of all models which are integrable in the sense of the previous section even if
they do not contain a coupling parameter as the massive Ising field theory. Contrary
to the particle masses which are part of the intrinsic nonperturbative construction, the
coupling parameter is a perturbative concept which for a few factorizing models (example:
Sine-Gordon) can be abstracted from the mass spectrum from the S-matrix bootstrap.

Short of a perturbative calculation methods for interacting zero mass correlation func-
tions, the only known perturbative argument for a conformal invariant QFT consists in
trying to describe it as the m→ 0 limit of a massive theory and to show that its Callen-
Symanzik beta function vanishes. One of the models for which this was shown to all
orders was the massive Thirring model. In this exemplary case one is not only able to
demonstrate its low order vanishing, but thanks to a clever combination of the Callen-
Symanzik equations with the Ward identities which already proved successful in case of
an all order proof for the absence of anomalies [77][78] (in particular for the axial current)
one was able to derive a differential equation of the form [79]

β(g)∂gh(g) = 0 (40)

where the function h(g) can be expressed in terms of finite normalization parameters which
in turn have a well-defined perturbative coupling expansion. For the confirmation of the
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vanishing of beta to all orders it is only necessary to show the much easier nonvanishing
of h to first order in g.

This embedding into a massive theory comes into conflict with reality if such a repre-
sentation as a zero mass limit of a massive QFT is not possible as in the case of the su-
persymmetric N=4 Yang-Mills theory where the N=4 extension of supersymmetry comes
into conflict with the fact that such an enlargement implies conformal invariance. In this
case there is no renormalization scheme which permits to define infrared-finite correla-
tion functions in renormalized perturbation theory. There exists however the dimensional
regularization prescription which, although not systematically (inductively) applicable to
local correlations (and therefore outside the range of the Callen-Symanzik methods) can
be used to compute global would be beta functions in lowest order. Since QFT, con-
trary to QM, depends in an essential way on spacetime dimensions (already the Wigner
particle representation theory does!) there is no conceptual justification for such an un-
guided calculation which is extremely remote from known proofs in integrable models
which generically already come with a very smooth behavior for m→ 044. During its more
than 40 years of existence there is little conceptual support for such calculations, its fame
is buildt on the derivation of asymptotic freedom (and the related Nobel prize) but not
on its conceptual transparency.

Recently [85] it became clear that the cause of these infrared divergencies is the semi-
infinite string-like localization of covariant gluon fields which, as a result of their self-
interaction, are ”stronger” string-localized than the observable charge matter fields in
QED. Whereas in abelian gauge theories the infrared divergencies are confined to on-shell
quantities, in nonabelian gauge theories this happens even off-shell and in the absence
of quantum matter. A computational scheme based on renormalizable string-localized
potentials Aµ(x, e) (localized on the spacelike half-lines x + eR+, e

2 = −1) is still in its
infancy [85][86], and the situation is still inconclusive. The only known perturbative con-
strucction of d=1+3 interacting conformal QFT starts (in the spirit of footnote 40) from
a massive model and checks the vanishing of the beta function. A direct attempt without
the intervention of a massive extension in a Hilbert space by dimensional regularization
is not reliable.

There is another, this time much more series psychological reason to be careful. The
intense interest in this model is not driven by the desire to understand the working of
conformal invariance in d=1+3 per se, but rather to contribute to the largest number
of papers which were ever written on a rather narrow but extremely popular problem in
particle theory during the last 20 years: Maldacena’s conjecture that the N=4 SusyYM
theory corresponds uniquely to a 5-dim. (gravity related) theory. There exists certainly a
AdS5 − CFT4 correspondence between local algebras; its formulation in terms of gener-
ating pointlike localized quantum fields is however only possible in passing from the higher
dimensional to the lower dimensional field [88], whereas in the inverse direction this can
only be done in the algebraic setting of local quantum physics. This correspondence which
has been first observed on a group theoretic level in the 60s by Fronsdal extends to local
algebras, a fact which underlines the deep relation between positive energy relation of
spacetime symmetry groups and locality (spacelike commutativity). But its mathemati-

44Many models (e.g. the d=1+1 massive Ising QFT) have no couplings and hence no beta function,
but do possess a conformal massless limit.
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cally firmly established existence does not mean that starting from a physical theory on
one side one obtains a corresponding physical theory on the other side; the study of the
free AdS field shows that its CFT counterpart is an (overpopulated, the causal shadow
property violating). A similar phenomenon even happens in case on implements a di-
mensional reduction to a lower dimensional spacetime (”holography onto a brane”) where
also the spacetime symmetry is reduced. Against naive classical intuition the lower di-
menseional QFT is unphysical since it retains all degrees of freedom of the original QFT
which formally looks like a QFT on the brane with an unphysical infinite dimensional
inner symmetry [40]. This is certainly not the same as the model obtained by first apply-
ing a klassical Klein-Kaluza reduction and then applying quantization. Further studies
of this property of overpopulation is necessary.

The correct degree of freedom concept showed that this property is quite different in
QFT from what one is used to in QM [16]. A simple explicit illustration is provided by
applying the correspondence to a 5-dimensional free AdS field. As expected, the resulting
4-dimensional conformal object is mathematically impeccable but unfortunately patho-
logical on one of the two physical side. In fact as far back as 1962 [81] such generalized
fields were used to argue that a local algebraic formulation of QFT, based on physical
postulates instead of the picture arising from Lagrangian quantization, cannot be solely
based on Einstein causality (spacelike commutativity) and Poincaré covariance, but there
are also timelike causal propagation properties (which formally are fulfilled in every order
of Lagrangian perturbation theory). It was therefore satisfying that generalized free fields
which always looked suspicious in view of their mass spectrum, are excluded with the
help of the time slice requirement. The object coming from the free AdS field is precisely
a conformal generalized free field with these unphysical properties. This is the simplest
illustration of a causality problem which always occurs; the conformal side may be much
more complicated, but it always violates the causal propagation in the indicated way. Of
course this does not mean that one cannot play mathematical games as e.g. translating
the standard renormalized perturbation theory from the AdS side to the conformal side
where it leads to a mathematically consistent non Lagrangian perturbation theory starting
from the zero order generalized free field [82]. Mathematically there is no problem.

The problem of perspective candidates for conformal 4-dim. conformal theories and
their potential discrete integrable aspects has nothing to do with the sociological phe-
nomenon which led and still leads to such an immense number of publications without
tangible result. Here one perhaps should pay attention to the fact that the old pre-
electronic vernacular ”many people cannot err” has given place to its post-electronic
inverse.

Even if it should turn out that there are simply no conformal invariant Lagrangian
models in d=1+3 at all, this is by no means the end of the story. Of all the conformal
theories in d=1+1 (apart from the rather trivial exponential Bose field) none is associated
to a Lagrangian; they rather were constructed by representation theoretical means in the
way indicated above. If there is any way of linking a chiral model to a Lagrangion, then
such a knowledge comes only very indirectly e.g. through holographic projection on the
lightray of one of the few massive factorizing models which admit a Lagrangian name.

For the sake of the argument let us assume that there is really a conformal super-
symmetric Yang-Mills model, then the question about the dimensional spectrum of its
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gauge invariant composites is indeed important, because it would be the first hold into a
hitherto hidden area of higher dimensional anomalous dimensions. As in the chiral case,
the conformal models can be divided into rational and nonrational ones where rational
means that the number of dimensions of (composite) fields modulo integers is finite and
the occurrance of nonrational models (continuously many superselection sectors) can pre-
sumably be excluded as in higher dimensional massive theories. As will be shown below,
the braid group is always a subgroup of the full group following from applying the DHR
theory both to the spacelike causality as well as to the timelike Huygens behavior. Hence
the spectrum is expected to be similar to that following from the braid group representa-
tion encountered in the Hecke algebra representations of certain families of rational chiral
models.

As we have shown in the previous section, the notion of dynamical integrability is
limited to d=1+1. Partial dynamical integrability on subsystems of higher dimensional
models is not possible45 but fortunately there is the concept of a ”kinematical” (and
generally discrete) substructure which in the conformal case includes the structure of
the spectrum of anomalous dimensions. So attempts to determine that spectrum are
reasonable. When we criticise the concrete proposal that the spectrum of anomalous
dimensions of composites for the supersymmetric Yang-Mills theory is related to the
spectrum of a Heisenberg spin chain [83] it is only because the argument seems to be
based on an oscillator representation of the conformal group in which the spectrum of
dilations is discete. This cannot be, because in any positive energy unitary representation
the dilation and the translations have continuous spectrum.

If one only looks at the timelike structure of conformal theories, the situation would
be topologically similar to chiral theory on a light ray, the topological forward/backward
lightcone distinction corresponds to the left/right aspect. In both cases one therefore
expects the representation theory of the inductive limit of the braid group B∞ to be
relevant. To be more precise, as mentioned before in connection with the Hecke algebra,
the physical braid group matrices arise by dividing out an ideal within the abstract group
algebra. The spacelike action of the permutation group Pn however intertwines with the
Bn in a nontrivial way [73], and the group which is relevant for the higher dimensional
conformal QFT is the braid-permutation group BP∞ [84]. It is not difficult to write the
defining relation between the bi, ti i = 1, 2, .... generators but the representation theory
has not been developed. The Z spectrum of any 4-dim. conformal model should belong
to one of these representations but unlike in the chiral case where the exponential Bose
field was available a long time before the later systematic construction of families of chiral
models, there exists presently no illustrative nontrivial example; the conformal invariant
generalized free field (which results from the AdS free field by applying the correspon-
dence) is too far away from physical fields46 in order to be of much interest. Presently no

45This is related to the holistic nature of QFT which makes it impossible to embed a two-dimensional
model into a higher dimensional one. Vice versa the restriction of a QFT to a brane (not its quasiclassical
image) ”feels” that it comes from a higher dimensional theory by retaining the original degrees of freedom.
A formulation of the classical Klein-Kaluza dimensional reduction in the form as it has been proposed
in the literature is not possible in QFT.

46Its abundance of degrees of freedom leads to the before-mentioned pathological timelike causality
properties and the absence of reasonable thermodynamic behavior.
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representation of BP∞ of physical relevance is known. To find such representations one
should extend the DHR superselection analysis to such a situation.

Finally some remarks about the relation of the present results to the Coleman-Mandula
theorem [89] (C-M) are in order. The latter states that under certain assumptions (mainly
concerning particle states and the analytic structure of the S-matrix) the full symmetry
is a direct product of the Poincaré with internal symmetry. The DR theorem, with
somewhat different assumptions, restricts the inner symmetries to compact symmetry
groups. Supersymmetry is outside the assumptions of both theorems. In the C-M case
this is well known, and the DR theorem simply starts from assumptions which place
the bosonic part into the algebra of local observables and the fermionic part into the
field algebra which is separated from the former by superselection rules and in this way
misses supersymmetry. But that supersymmetry is a symmetry unlike any other is seen
in the mechanism of spontaneous breaking in a heat bath. Whereas e.g. the Lorentz
symmetry breaking follows the normal pattern of spontaneous symmetry breaking, the
loss of supersymmetry is more violent: it ”collapses” [90] i.e. the linking together of Bosons
and Fermions is less stable than that expected from a ”normal” Goldstone spontaneous
symmetry breaking.

The 2-dimensional integrable models have been known to be outside the applicability
of the C-M theorem since the nature of their infinitely many conservation laws contradict
the preconditions of the theorem 47. For theories involving (m = 0, s ≥ 1) representations
or for conformal theories, the particle assumptions of C-M are violated. Apart from
supersymmetry, this identifies the models outside the range of the C-M theorem precisely
with dynamically or kinematically non-integrable models.

6 An epilog

The results about integrability, particle crossing and the modular localization setting ap-
pear at first sight far removed from the kind of physics which features in the ongoing LHC
measurements. In fact cynics may argue that the associated string-critical consequences
are as far off as string theory itself. But this may be a wrong conclusion since the assertion
of the causal locality principles could have consequences for the Higgs issue and related
problems.

On the one hand it may be helpful to remind readers of some facts which seem to
have been lost in the ”maelstrom of time”. Before the Higgs mechanism degenerated
into the presentation of ”Gods particle” and its mystic power to generate a mass spec-
trum by spontaneous symmetry breaking, there was Schwinger’s idea of charge screening
[91][85][86] which does not break any symmetry (a gauge symmetry is not a spontaneously
breakable symmetry!) but rather converts the complex electrically charged field into a
real neutal field by forcing the integral over the zero component of the conserved current
to vanish (and not to be infinity as in the Goldstone mechanism of spontaneous symme-
try breaking). In that case the formfactor has a more analyticity than in QED, which

47As the breakdown of the cluster argument (which separates interactions from the identity) for 2-
particle elastic scattering shows, integrable theories are close to free fields which violate the C-M assump-
tions in a trivial way.
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allows the alias photon to be a massive object. The total number of degrees of freedom
stays the same and this Schwinger screening mechanism is the QFT counterpart of the
quantum mechanical Debeye screening which does not change the particle structure but
only generates long range effective interaction potentials. Schwinger’s bad luck with this
useful idea was that he wanted to exemplify it in spinor QED where it has no perturbative
realization. If he would have used scalar QED he would have obtained the Higgs model
with the same results as Higgs but in a totally different conceptual setting. This is the
conceptual historical background why in the old days the mechanism was more correctly
called the Schwinger-Higgs screening [91].

But on a more foundational level one could ask to what extent is the Schwinger-
Higgs screening the only mechanism for obtaining renormalizable interacting massive
vectormesons. This statement does not fall from heaven but is an inevitable technical
consequence of using the gauge theoretical indefinite metric (BRST ghosts) setting which
requires for its consistent implementation the presence of additional physical degrees of
freedom of which the simplest realization is the Higgs field. But in the abelian setting
this is not the only mass-generating mechanism, there is also a theory without additional
physical degrees of freedom called massive spinor QED [77]. It uses some of the indefinite
metric ideas borrowed from gauge theory, but in this case they only serve to stay within
the power counting limit of renormalization (the short distance dimension 2 of massive
vectormesons without the lowering action of ghosts would destroy this property). At this
point one may ask the question; is there a way to keep the dimension at d=1 which is
required by renormalizability if one does not use ghosts? The answer is positive: semiin-
finite string-localized massive Aµ(x, e) have d=1. The role of the massive string-localized
field would be that of a catalyzer which allows to stay below the powercounting barrier so
that after having achieved this one may as well return to the pointlike d=2 description of
pointlike fields. So the problem is how does one use string-localized fields in a perturbative
context. If this turns out to be true I would risk to bet that the resulting point-localized
massive theory is identical to that obtained in the old days within a ghost formalism.

In the nonabelian case there is no perturbative massive Yang Mills theory without
the Schwinger-Higgs screening in the present gauge formalism. But perhaps there exists a
string-localized massive version with pointlike composites (representing F 2, ..). A massive
Yang-Mills theory with the help of a ”string-localized catalyzer” in the setting of Callen-
Symanzik equation for Epstein-Glaser renormalized correlation functions could also lead
to a more credible calculation of the beta function of nonabelian gauge models. None of
these ideas have been put to a test.
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