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ABSTRACT. This paper examines some solutions for confluent and double-confluent Heun equa-
tions and their applications to the Schrödinger equation with quasi-exactly solvable potentials. In
the first place, we review two Leaver’s solutions in series of regular and irregular confluent hyper-
geometric functions for the confluent equation [E. W. Leaver, J. Math. Phys. 27, 1238 (1986)] and
introduce an additional expansion in series of irregular confluent hypergeometric functions. Then,
we find the conditions under which one of these solutions can be written as a linear combination
of the others. In the second place, by means of limiting procedures we generate solutions for the
double-confluent equation as well as for special limits of both the confluent and double-confluent
equations. In the third place, solutions of the Heun equations are used to solve the one-dimensional
Schrödinger equation for quasi-exactly solvable potentials. We consider a symmetric and an asym-
metric double-Morse potentials which appear in the theory of quantum spin systems [O. B. Zaslavskii
and V. V. Ulyanov, Sov. Phys. JETP 60, 991 (1984)], a bottomless volcano-type potential which
gives degenerate eigenstates [S. Kar and R. R. Parwani, Europhys. Lett., 80, 30004 (2007)], and a
potential which leads to quasinormal modes, that is, to solutions presenting complex energies [H. T.
Cho and C. L. Ho, J. Phys. A: Math. Theor. 40, 1325 (2007)].

I- INTRODUCTION

We deal with solutions of Heun equations and their possible applications to the Schrödinger
equation with quasi-exactly solvable (QES) potentials. We consider only the confluent (CHE) and
the double-confluent (DCHE) Heun equations, and one limiting case of each of these. The solutions
for the CHE come directly from the differential equation, while the solutions for the other equations
are obtained from the solutions of the CHE by limiting processes. Initially, we briefly discuss each of
these equations and their connections; some more details are found in previous works [15, 16, 17, 27].
Then, we outline the main features of their solutions and present the QES potentials that will be
used as examples.

The CHE [11, 12, 36], also known as generalized spheroidal wave equation [44, 45], in the form
used by Leaver [27] reads

z(z − z0)
d2U

dz2
+ (B1 +B2z)

dU

dz
+

[
B3 − 2ηω(z − z0) + ω2z(z − z0)

]
U = 0, (ω 6= 0) (1)

where Bi, η and ω are constants and z = 0 and z = z0 are regular singular points with indicial
exponents (0, 1 + B1/z0) and (0, 1 − B2 − B1/z0), respectively. At the irregular point z = ∞ the
behavior of the solutions, obtained from the normal Thomé solutions [27, 35], is given by

lim
z→∞

U(z) ∼ e±iωzz∓iη−(B2/2). (2)

The singularity parameter z0 may take any value and, when z0 = 0, the CHE gives the following
DCHE with five parameters [27]

z2d
2U

dz2
+ (B1 +B2z)

dU

dz
+

(
B3 − 2ηωz + ω2z2

)
U = 0, (B1 6= 0, ω 6= 0) , (3)

where now z = 0 and z = ∞ are both irregular singularities (B1 = 0 and/or ω = 0 are degenerate
cases [16]). At z = ∞ the behavior is again given by Eq. (2), while at z = 0 the normal Thomé
solutions afford

lim
z→0

U(z) ∼ 1, or lim
z→0

U(z) ∼ eB1/zz2−B2 . (4)
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The CHE and the DCHE admit a limit which changes the nature of the irregular singularity at
z =∞, keeping unaltered the other singular points. This limit is obtained by letting that [16, 17]

ω → 0, η →∞, such that 2ηω = −q, (Whittaker-Ince limit) (5)

where q is a constant. It is called Whittaker-Ince limit because Whittaker and Ince have used a
similar procedure to get the Mathieu equation (12) from the Whittaker-Hill equation (11) [19, 21].
The Whittaker-Ince limit of the CHE is

z(z − z0)
d2U

dz2
+ (B1 +B2z)

dU

dz
+ [B3 + q(z − z0)]U = 0, (q 6= 0) (6)

(if q = 0 this equation can be transformed into a hypergeometric equation), while the Whittaker-Ince
limit of the DCHE is

z2d
2U

dz2
+ (B1 +B2z)

dU

dz
+ (B3 + qz)U = 0, (q 6= 0, B1 6= 0) (7)

(if q = 0 and/or B1 = 0 the equation degenerates into a confluent hypergeometric equation or simpler
equations [16]). Eqs. (6) and (7) differ from the CHE and DCHE, respectively, by the behavior of
their solutions at the irregular point z = ∞, which now is obtained from the subnormal Thomé
solutions [35], namely,

lim
z→∞

U(z) ∼ e±2i
√

qzz(1/4)−(B2/2), (8)

in contrast with the behavior of original equations (normal Thomé solutions). Eq. (7) also results
when we take z0 = 0 in Eq. (6).

The preceding equations and their connections are summarized in the following diagram which
is a modified version of a diagram given in Ref. [17]. The upper boxes (9) display the CHE and the
DCHE. The lower boxes (10) show the Whittaker-Ince limits corresponding to the CHE and DCHE,
respectively.

z(z − z0)
d2U

dz2
+ (B1 +B2z)

dU

dz
+

[
B3 − 2ηω(z − z0) + ω2z(z − z0)

]
U = 0.

z0→0=⇒
z2d

2U

dz2
+ (B1 +B2z)

dU

dz
+

(
B3 − 2ηωz + ω2z2

)
U = 0.

(9)

⇓ (ω → 0 and η →∞, such that 2ηω = −q) ⇓

z(z − z0)
d2U

dz2
+ (B1 +B2z)

dU

dz
+

[B3 + q(z − z0)]U = 0.

z0→0=⇒
z2d

2U

dz2
+ (B1 +B2z)

dU

dz
+

(B3 + qz)U = 0.

(10)

These connections among equations having different types of singularities become fully effective only
when solutions of the CHE admit both the Leaver and the Whittaker-Ince limits. Counter-examples
are provided by Hylleraas [20] and Jaffé’s [22] solutions which admit none of these limits, as we can
see by using Leaver’s form for such solutions [27].

Now we introduce the Whittaker-Hill and the Mathieu equations which are particular cases of
both the CHE and the DCHE [11]. A trigonometric (hyperbolic) form of the Whittaker-Hill equation
(WHE) is [2, 21]

d2W

du2
+ κ2

[
ϑ− 1

8
ξ2 − (p+ 1)ξ cos(2κu) +

1
8
ξ2 cos(4κu)

]
W = 0, (WHE). (11)
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If u is a real variable, this equation represents the usual WHE when κ = 1 and the modified WHE
when κ = i. On the other hand, the Mathieu equation has the form [32]

d2w

du2
+ σ2

[
a− 2k2 cos(2σu)

]
w = 0, (Mathieu equation), (12)

where σ = 1 or σ = i for the Mathieu or modified Mathieu equation, respectively. Some details about
solutions for the WHE and Mathieu equation regarded as CHE or DCHE are given in Ref. [17]. The
Mathieu equation is also a particular case of equation (7) as shown in section III. Incidentally, the
original Whittaker-Ince limit [19, 21] is obtained when ξ → 0, p → ∞ so that pξ = 2k2, κ = σ and
ϑ = a in the WHE. This gives the Mathieu equation.

On the other hand, the solutions of the Heun equations assume one of following forms [36]

∑
n

an fn(z) =
∞∑

n=−∞
an fn(z),

∞∑
n=0

an fn(z),
N∑

n=0

an fn(z), (13)

where the series coefficients an satisfy three-term or higher order recurrence relations, fn(z) is a
function of the independent variable and N is a non-negative integer. These are called, respectively,
two-sided infinite series, one-sided infinite series and finite series. The finite series are also known as
quasi-polynomial solutions, quasi-algebraic solutions or Heun polynomials. Notice the convention

∑
n

=
∞∑

n=−∞
(14)

Expansions in two-sided infinite series are necessary to assure the series convergence when there
is no free constant in the Heun equations. Thus, all the parameters of the CHE and DCHE which
rule the time-dependence of Klein-Gordon and Dirac test-fields in some Friedmannian spacetimes
[6, 15] are determined from conditions imposed on the spatial part of the wave functions [37, 38].
Similarly, in the scattering problem of ions by a finite dipole [27] or by polarizable targets [7, 16] all
the parameters of the radial Schrödinger equation are known.

When some parameters of the Heun equations assume special values, one-sided infinite series
truncate on the right giving expansions in finite series. These Heun polynomials are important to
get solutions for QES problems [39, 40, 42, 43]. In effect, according to Kalnins, Miller and Pogosyan
[23], a problem is exactly solvable if its solutions are given by (generalized) hypergeometric functions;
a problem is QES if its solutions are given by finite-series whose coefficients necessarily satisfy three-
term or higher order recurrence relations. This definition suggests a relation between Heun equations
and QES problems. We will consider only the CHE and the DCHE, but in fact there are potentials
for which the Schrödinger equation leads also to the general, biconfluent and triconfluent Heun
equations, as explained in Appendix A.

Excepting possibly the Heun polynomials, in general the solutions for the Heun equations do
not converge for the entire range of the independent variable. Then, it is necessary to consider two
or more solutions converging over different domains and having the appropriate behaviors at the
singular points. It is also necessary to take into account the transformation rules which generate new
solutions from a known solution (these rules result from substitutions of variables which preserve the
form of the Heun equations but modify their parameters).

We will start with a set of three solutions for the CHE, represented by two-sided infinite series
which have coefficients that satisfy three-term recurrence relations. These solutions admit both the
Leaver and the Whittaker-Ince limits and, so, we can generate sets of solutions for all the equations
discussed above. Solutions obtained from this set by means of transformation rules are given in
Appendices C and D.

More precisely, in Sec. II we take two Leaver’s solutions in series of regular and irregular confluent
hypergeometric functions for CHE and introduce another expansion in series of irregular confluent
hypergeometric functions - see the solutions given in Eqs. (43a) and the recurrence relations (43b) and
(43c). The expansion in series of regular functions converges for any z, whereas the two expansions in
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series of irregular functions converge for |z| > |z0|. From the properties of the three-term recurrence
relations and of the hypergeometric functions, we shall find conditions which permit to write one
solution as a linear combination of the others in the region |z| > |z0|. These conditions also assure
that the series coefficients of the three solutions are proportional to each other.

The solutions for the limits of the CHE, given in the diagram, are obtained by the same procedure
used in Ref. [17], where a set having only two solutions in terms of one-sided series of hypergeometric
functions was considered. Thus, in Sec. III we find a set of three expansions in series of Bessel
functions for Whittaker-Ince limit (6) of the CHE, the three solutions possessing exactly the same
series coefficients. In Sec. IV we find that the solutions for the DCHE are again given by series of
confluent hypergeometric and the solutions for Whittaker-Ince limit of the DCHE are given by series
of Bessel functions once more.

The solutions of the CHE and DCHE are applied to the one-dimensional Schrödinger equation
with QES potentials. For a particle with mass µ and energy E the time-independent Schrödinger
equation is written as

d2ψ

du2
+ [E− V (u)]ψ = 0, u = ax, E =

2µE
~2a2

, (15)

where a is a real constant, x is the spatial coordinate and V (u) is a function proportional to the
potential. This is the so-called normal form of a second order differential equation (Appendice A)
and, for each potential, Eq. (15) must be converted to the canonical form of the CHE and DCHE,
Eqs. (1) and (3), in order to use the mentioned solutions. The wave function ψ is required to be
bounded for all values of the variable u and, in particular, at the singular points of the equation.

We select three QES potentials. First we regard double-Morse potentials [26], more exactly the
potentials used by Zaslavskii and Ulyanov in the study of quantum spin systems [46, 41], namely,

V (u) =
B2

4

(
sinhu− C

B

)2

−B
(
s+

1
2

)
coshu, s = 0,

1
2
, 1,

3
2
, · · · , (16)

where C is a real constant such that C ≥ 0. If C = 0, the potential is symmetric [V (u) = V (−u)] and
the the Schrödinger equation reduces to a modified Whittaker-Hill equation which will be treated as
a CHE in Sec. II.D. On the other side, if C > 0 the potential is asymmetric and the Schrödinger
equation becomes an instance of the DCHE, considered in Sec. IV.B. The second is a potential given
by Cho and Ho [8], namely,

V (u) = −b
2

4
sinh2 u−

[
(`+ 1)2 − 1

4

]
cosh2 u

, (` = 0, 1, 2, · · · ) (17)

where b > 0 is a real constant. This is a bottomless potential in the sense that V (u) → −∞ when
u→ ±∞. If b2 < 4(`+ 1)2 − 1, it is a volcano-type potential [24] given by an inverted double well;
if b2 ≥ 4(` + 1)2 − 1, the potential is similar to the one of an inverted oscillator. This potential is
discussed in Sec. III.C where the Schrödinger is reduced to the Whittaker-Ince limit (6) of the CHE.
The third example deals with a QES potential given again by Cho and Ho [9], namely,

V (u) = −b
2

4
e2u − (`+ 1)de−u +

d2

4
e−2u, (` = 0, 1, 2, · · · ) (18)

where b and d are real constants. As u→ ∓∞, V (u)→ ±∞ and so the potential is unbounded from
below on the right, that is, when u→∞. This potential gives rise to quasinormal modes, that is, to
solutions having discrete complex energies. In Sec. IV.B we find that these energies can be obtained
from a DCHE.

The quasi-exact solvability results from the values attributed to the parameters s and `, since
these values imply finite-series solutions from which we can determine a limited number of energy
levels. On the other hand, there are also infinite-series solutions which in principle could afford the
remaining part of the spectrum, but these solutions have been discarded on the grounds that they
are not finite (bounded) for all values of the independent variable [23].
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We will find that for the potential (17) there are finite- and infinite-series solutions which are
bounded for all values of u. For the potential (18) there are two possibilities: if d > 0, only finite
series are bounded; if d < 0, only infinite series are bounded. For the double-Morse potentials (16)
there are finite-series solutions which are bounded for all values of u, but there is no single infinite-
series solution bounded for all values of u. However, for the latter problem there is one solution that
is bounded at one singular point and another solution that is bounded at the other point. A third
solution (which can be written as linear combination of the others) is bounded in the intermediate
region.

Thus, in Sec. II we deal with the CHE, in Sec. III with the Whittaker-Ince limit (6) of the CHE,
and in Sec. IV with the DCHE and its limit (7). Sec. V presents some conclusions. Appendix A
discusses relations among Heun equations and quasi-exactly solvable problems, Appendix B gives
some properties of the confluent hypergeometric functions, while Appendices C and D are devoted
to the transformations of the CHE and its Whittaker-Ince limit, respectively.

II. THE CONFLUENT HEUN EQUATION

In this section we review the two Leaver solutions in series of regular and irregular confluent
hypergeometric functions for the confluent Heun equation [27] and introduce the extra expansion
in series of irregular confluent hypergeometric functions. The fact that the expansion in terms of
regular functions converges for any z (the expansions in terms of irregular functions converge for
|z| > |z0|) distinguishes the present solutions from the Leaver expansions in series of Coulomb wave
functions [27] since the latter converge only for |z| > |z0|.

In Sec. II.A we recall some features of three-term recurrence relations for the series coefficients
and supply properties of the confluent hypergeometric functions which enter the solutions for the
CHE and DCHE. We also write down the Barber-Hassé solutions in power series since these are
important to obtain finite-series solutions as well as to cover the cases in which the expansions in
series of regular confluent hypergeometric functions are not valid. In addition, we derive a new result
concerning the solutions of the Whittaker-Hill equation (11).

In Sec. II.B we analyze the set constituted by the expansions in series of confluent hypergeometric
functions. This is called the fundamental set of solutions because, by means of the transformation
rules given in Appendix C, it originates other sets of solutions for the CHE and, by way of limiting
processes, it affords sets of solutions for the other equations given in the schema of the first sec-
tion. We find the conditions under which one solution of the fundamental set is given as a linear
combination of the others. After that, we truncate the two-sided series from below in order to get
one-sided series solutions as well. In Sec. II.C we discuss the convergence of new expansion in series
of irregular confluent hypergeometric functions and, in Sec. II.D we examine the solutions of the
Schrödinger equation for the symmetric double-Morse potential.

II.A. General remarks and the Barber-Hassé expansions

If bn denotes the series coefficients of one-sided series solutions, then the three-term recurrence
relations are written in the form

α0b1 + β0b0 = 0, αnbn+1 + βnbn + γnbn−1 = 0 (n ≥ 1) (19)

where αn, βn and γn depend on the parameters of the differential equation. These relations form
a infinite system of homogeneous linear equations which has nontrivial solutions for bn only if the
determinant of the respective infinite tridiagonal matrix vanishes. This demands some arbitrary
parameter in the differential equation, that is, in the elements of the matrix. Equivalently, these
recurrence relations imply a characteristic equation given by the infinite continued fraction [27]

β0 =
α0γ1

β1−
α1γ2

β2−
α2γ3

β3−
· · · , (20)

which must be satisfied in order to assure the series convergence.
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If γn = 0 for some n = N + 1, where N is a positive integer, the one-sided series terminates at
n = N and, consequently, gives a finite-series solution with 0 ≤ n ≤ N [2]. In effect, if γN+1 = 0 we
can choose the parameters of the equation so that bN+1 = 0 in the relation

αN+1bN+2 + βN+1bN+1 + 0× bN = 0.

This implies that bN+2 = 0 and, from the recurrence relations (19), bn = 0 for any n ≥ N + 1. Thus
the recurrence relations can be written in the form

β0 α0 0 · · · 0
γ1 β1 α1

0 γ2 β2 α2
...

γN−1 βN−1 αN−1

0 · · · 0 γN βN





b0
b1
b2
...

bN−1

bN


= 0. (21)

If the elements αi, βi and γi of the previous matrix are real and if

αiγi+1 > 0, 0 ≤ i ≤ N − 1, (22)

then all the N + 1 roots of its determinant are real and different [2]. This theorem is important to
determine a part of the energy spectra in the case of quasi-exact potentials. On the other hand, if
αn = 0 for some n = N , the series begins at n = N + 1, but in this case one may set n = m+N + 1
and rename the series coefficients in order to obtain a series beginning at m = 0.

Now we suppose that there is a second solution with coefficients cn satisfying

α̃0c1 + β0c0 = 0, α̃ncn+1 + βncn + γ̃ncn−1 = 0 (n ≥ 1), (23)

where βn is the same as in Eq. (19). Then, if

α̃nγ̃n+1 = αnγn+1, (24)

it follows from Eq. (20) that both solutions have the same characteristic equation if n takes the same
values in both series: in these circumstances, bn and cn in general are proportional to each other.
We emphasize that this proportionality requires the same range for n in Eqs. (19) and (23) because
there are cases in which the relation (24) is formally satisfied, but one solution is given by a finite
series while the other is given by an infinite series, as we will see in the paragraph after Eq. (49c).
In these cases one series breaks off on the right and the other on the left.

We extend the previous remarks to doubly infinite (or two-sided) series. These expansions present
a parameter ν which must be determined from a characteristic equation if there is no free parameter
in the differential equation, or can be chosen at will if there is a free constant. The recurrence
relations for the series coefficients bn now take the form

αnbn+1 + βnbn + γnbn−1 = 0, (−∞ < n <∞) (25a)

where αn, βn, γn and bn depend on the parameters of the differential equation as well as on ν. These
recurrence relations lead to the characteristic equation [27]

β0 =
α−1 γ0

β−1−
α−2 γ−1

β−2−
α−3 γ−2

β−3−
· · ·+ α0 γ1

β1−
α1 γ2

β2−
α2 γ3

β3−
· · · . (25b)

If there is a second doubly infinite series having the recurrence relation α̃ncn+1+βncn+γ̃ncn−1 = 0
such that the condition (24) is fulfilled, then both solutions satisfy the same characteristic equation
(25b). The two series are really doubly infinite if neither the coefficients of bn+1 and cn+1 nor the
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coefficients of bn−1 and cn−1 vanish, since such conditions assure that the summation extends from
negative to positive infinity in both solutions. This requires that

αn, α̃n, γn and γ̃n do not vanish for any n, (26)

a requirement which imposes constraints on the parameters of differential equation and on the char-
acteristic parameter ν, in the case of two-sided series. These conditions will be useful for study-
ing the sets of two-sided solutions of the CHE and DCHE. In addition, if we choose ν such that
α−1 = α̃−1 = 0, then the series are truncated on the left since the summation begins at n = 0. Thus,
we have

α−1 = α̃−1 = 0 ⇒ one-sided series with n ≥ 0. (27)

Other restrictions on ν and on the parameters of the Heun equations come from the properties
of the special functions used to construct the series solutions. Thus, let us consider expansions in
series of regular and irregular confluent hypergeometric functions for the CHE, denoted by Φ(a, c; y)
and Ψ(a, c; y) respectively. These are solutions of the confluent hypergeometric equation [13]

y
d2ϕ

dy2
+ (c− y)dϕ

dy
− a ϕ = 0, (28)

where the parameters a and c will depend on summation index n, on the parameters of the Heun
equations and also on the characteristic parameter ν in the case of two-sided infinite series. In fact,
the following four solutions for Eq. (28)

ϕ1
n(y) = Φ(a, c; y), ϕ2

n(y) = Ψ(a, c; y),

ϕ3
n(y) = ey y1−cΦ(1− a, 2− c;−y), ϕ4

n(y) = ey y1−c Ψ(1− a, 2− c;−y) (29)

are all of them defined and distinct only if c is not an integer [13]. Furthermore, if

a, c and c− a are not integer, (30)

then any two of the solutions (29) form a fundamental system of solutions for confluent hypergeo-
metric equation [13]. The formula

Ψ(a, c; y) =
Γ(1− c)

Γ(a− c+ 1)
Φ(a, c; y) +

Γ(c− 1)
Γ(a)

y1−c Φ(a− c+ 1, 2− c; y), (31)

gives the analytic continuation of Ψ in terms of Φ. The expression of Φ in terms of Ψ is obtained
from the previous one by using the relation Γ(z)Γ(1− z) = π/ sin(πz). One finds [13],

Φ(a, c; y) = eiπaε Γ(c)
Γ(c− a)

Ψ(a, c; y) + eiπε(a−c) Γ(c)
Γ(a)

ey Ψ(c− a, c;−y), (ε = ±1) (32)

where the plus or minus signs are to be taken throughout following the conventions

ε = 1, if − 1 = eiπ; ε = −1, if − 1 = e−iπ ⇒ (−1)c = eiπc; (−1)c = e−iπc.

The relation (31) allows writing Φ(a, c; y) as a combination of a regular and an irregular confluent
hypergeometric functions; analogously, Eq. (32) gives Ψ(a, c; y) in terms of regular and irregular
functions.

In the following we deal only with one expansion in series of regular and two expansions in series
of irregular confluent hypergeometric functions as solutions for the CHE and DCHE. These solutions
correspond to the above solutions ϕ1

n(y), ϕ2
n(y) and ϕ4

n(y) for the confluent hypergeometric equation.
ϕ3

n(y) is discarded because it would lead to a solution whose domain of convergence excludes all the
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singular points of the CHE. Then, the formula (32) is the only necessary to link the solutions.
Consequently, the conditions (30) are replaced by

a, c and c− a are not zero or negative integers. (33)

The present conditions combined with conditions (26) will allow us to use Eq. (32) in order to write
one solution of the CHE or DCHE as a linear combination of the others.

Now we write down some of the Barber-Hassé solutions in series of (z−z0) for the CHE [4, 17, 27].
They converge for finite values of z. The first solution is

Ubarber
1 (z) = eiωz

∞∑
n=0

a(1)
n (z − z0)n, (|z| = finite) (34a)

where recurrence relations for the coefficients are given by (a(1)
−1 = 0)

z0

(
n+B2 + B1

z0

)
(n+ 1) a(1)

n+1 +
[
n (n+B2 − 1 + 2iωz0) +

B3 + iωz0

(
B2 + B1

z0

) ]
a

(1)
n + 2iω

(
n+ iη + B2

2 − 1
)
a

(1)
n−1 = 0. (34b)

This expansion will provide solutions to the CHE for the case in which the Leaver expansion in
regular hypergeometric functions, given in the following, is not valid, and admits both the Leaver
and the Whittaker-Ince limits. Furthermore, it provides finite-series solutions with 0 ≤ n ≤ N when
iη +B2/2 = −N .

In fact we may generate a group containing 16 sets of solutions for the CHE by applying to the
previous solution the transformation rules given in Appendix C. We write the solutions obtained by
using the rules T1 and T2 applied in the order given in Eq. (C6). The solution Ubarber

2 , which admits
only the Whittaker-Ince limit, is

Ubarber
2 (z) = eiωzz

1+
B1
z0

∞∑
n=0

a(2)
n (z − z0)n, (35a)

where the recurrence relations for a(2)
n are

z0

(
n+B2 +

B1

z0

)
(n+ 1)a(2)

n+1 +
[
n

(
n+ 1 + 2iωz0 +B2 +

2B1

z0

)
+ iωz0

(
B2 +

B1

z0

)
+

(
1 +

B1

z0

) (
B2 +

B1

z0

)
+B3

]
a(2)

n + 2iω
(
n+ iη +

B1

z0
+
B2

2

)
a

(2)
n−1 = 0. (35b)

The solution Ubarber
3 admits both the Leaver and Ince limits. It reads

Ubarber
3 (z) = eiωzz

1+
B1
z0 (z − z0)

1−B2−B1
z0

∞∑
n=0

a(3)
n (z − z0)n, (36a)

where the a(3)
n satisfy the relations

z0

(
n+ 2−B2 −

B1

z0

)
(n+ 1)a(3)

n+1 +
[
n (n+ 3 + 2iωz0 −B2) + 2−B2+

B3 + iωz0

(
2−B2 −

B1

z0

) ]
a(3)

n + 2iω
(
n+ 1 + iη − B2

2

)
a

(3)
n−1 = 0. (36b)
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Ubarber
4 , which admits the Ince limit but not the Leaver limit, is

Ubarber
4 (z) = eiωz(z − z0)

1−B2−B1
z0

∞∑
n=0

a(4)
n (z − z0)n, (37a)

with the recurrence relations

z0

(
n+ 2−B2 −

B1

z0

)
(n+ 1)a(4)

n+1 +
[
n

(
n+ 1 + 2iωz0 −B2 −

2B1

z0

)
+B3+

iωz0

(
2−B2 −

B1

z0

)
+
B1

z0

(
B2 +

B1

z0
− 1

)]
a(4)

n + 2iω
(
n+ iη − B1

z0
− B2

2

)
a

(4)
n−1 = 0. (37b)

The solutions for the CHE give solutions for the Whittaker-Hill equation (WHE). If U(z) sym-
bolizes the solutions for the CHE, the solutions W (u) for the WHE (11) are obtained by writing
[17]

W (u) = U(z), z = cos2(κu), (κ = 1, i) (38a)

where the parameters of U(z) are given in terms of the parameters of the WHE by

z0 = 1, B1 = −1
2
, B2 = 1, B3 =

1
4
[(p+ 1)ξ − ϑ], iω =

ξ

2
, iη =

p+ 1
2

. (38b)

For the WHE, the Baber-Hassé solutions solutions become even or odd solutions with respect to the
change of the sign of u.

Now we derive a result concerning the solutions of the WHE, to be used in Sec. II.D. For this,
first we apply the transformation rule T4 given in Eq. (C4) to the solution Ubarber

1 and find the
solution Ubarber

5 for the CHE, namely,

Ubarber
5 (z) = eiωz

∞∑
n=0

(−1)na(5)
n zn, (39a)

where the coefficients are given by (a(5)
−1 = 0)

z0

(
n− B1

z0

) (
n+ 1

)
a

(5)
n+1 +

[
n (n+B2 − 1− 2iωz0) +

B3 + iωB1 + 2ηωz0] a(5)
n − 2iω

(
n+ iη +

B2

2
− 1

)
a

(5)
n−1 = 0. (39b)

Hence, we find that

α
(1)
i γ

(1)
i+1 = 2iωz0

(
n+B2 +

B1

z0

)
(n+ 1)

(
n+ iη +

B2

2

)
,

α
(5)
i γ

(5)
i+1 = −2iωz0

(
n− B1

z0

)
(n+ 1)

(
n+ iη +

B2

2

)
,

which, for the WHE, reduce to

α
(1)
i γ

(1)
i+1 = −α(5)

i γ
(5)
i+1 = 2iω(n+ 1)

(
n+

1
2

) (
n+ iη +

1
2

)
. (40)

We can show that for the WHE

α
(j)
i γ

(j)
i+1 = −α(j+4)

i γ
(j+4)
i+1 , (j = 1, 2, 3, 4) (41)

where the coefficients on the the left-hand side are obtained from the recurrence relations of the
solution Ubarber

j , and the coefficients on the the right-hand side are obtained from the recurrence
relations of the solution Ubarber

j+4 obtained from the former solution by the rule T4. Consequently,
if there is one finite-series solution satisfying the condition (22) which assures real roots for the
characteristic equation, then there is also a solution for which that condition is not fulfilled.
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II.B. The fundamental set of solutions

First we examine the two-sided infinite series solutions and then we obtain the one-sided series. It
is worth advancing that the solutions in terms of regular confluent hypergeometric functions Φ(a, c; y)
are not valid when the first parameter a is zero or a negative integer. This is true if a does not depend
on the summation index n, since the Kummer relations (B1) give another hypergeometric function
in which the first parameter depends on n.

Defining the function Φ̃(a, b; y) by [27]

Φ̃(a, c; y) =
Γ(c− a)

Γ(c)
Φ(a, c; y) =

Γ(c− a)
Γ(c)

[
1 +

a

1!c
y +

a(a+ 1)
2!c(c+ 1)

y2 + · · ·
]
, (42)

the fundamental set reads

U1(z) = e−iωz
∑

n

(−1)nb(1)
n Φ̃

(
B2

2
− iη, n+ ν +B2; 2iωz

)
,

U∞1 (z) = e−iωz
∑

n

(−1)nb(1)
n Ψ

(
B2

2
− iη, n+ ν +B2; 2iωz

)
,

Ū∞1 (z) = eiωz
∑

n

c(1)
n (−2iωz)1−n−ν−B2 Ψ

(
1 + iη − B2

2
, 2− n− ν −B2;−2iωz

)
, (43a)

where the recurrence relations for b(1)
n and c(1)n are

(n+ ν + 1)
(
n+ ν + iη + B2

2

)
b
(1)
n+1 +

[
(n+ ν)(n+ ν +B2 − 1 + 2iωz0)+

B3 + iωz0

(
B2 + B1

z0

) ]
b
(1)
n + 2iωz0

(
n+ ν +B2 + B1

z0
− 1

)
b
(1)
n−1 = 0. (43b)

and

(n+ ν + 1)c(1)
n+1 +

[
(n+ ν)(n+ ν +B2 − 1 + 2iωz0) +B3 + iωz0

(
B2 + B1

z0

)]
c
(1)
n +

2iωz0
(
n+ ν +B2 + B1

z0
− 1

) (
n+ ν + iη + B2

2 − 1
)
c
(1)
n−1 = 0. (43c)

Apart from a multiplicative constant, the coefficients b(1)
n and c(1)n are connected by

c(1)
n = Γ

(
n+ ν + iη +

B2

2

)
b(1)n , (44)

provided that the argument of the gamma function is not zero or negative integer.
The solutions U1(z) and U∞1 (z) have been taken from Eqs. (166) and (167) of Leaver’s paper

[27] with ν replaced by ν +B2. On the other hand, by using a Kummer relation given in Eq. (B1),
Ū∞1 (z) is rewritten as

Ū∞1 (z) = eiωz
∑

n

c(1)
n Ψ

(
n+ ν + iη +

B2

2
, n+ ν +B2;−2iωz

)
. (45)

Then, it becomes clear that this solution can be obtained by substituting n+ν for n in the one-sided
solution given in Eq. (33a) of Ref. [17] and by allowing that the summation runs from negative
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to positive infinity. The solution U1 converges for any z [27], while both U∞1 and Ū∞1 converge for
|z| > |z0|. From the fact that Φ(a, c; 0) = 1 and from Eq. (B2), it follows that

lim
z→0

U1(z) ∼ 1, lim
z→∞

U∞1 (z) ∼ e−iωzziη−B2
2 , lim

z→∞
Ū∞1 (z) ∼ eiωzz−iη−ν−B2

2 . (46)

Thus, two different behaviors at z =∞ are included in the solutions belonging to the same set.
Since we are dealing with three solutions for a second order linear differential equation, now we

establish the conditions to get one of these as a linear combination of the others in a domain where
the three solutions are valid. From the recurrence relations (43b) and (43c) we find that the three
series are really doubly infinite if

ν, ν +B2 +
B1

z0
and ν + iη +

B2

2
are not integers, (47a)

since under these conditions neither the coefficients of b(1)n and c
(1)
n nor the coefficients of b(1)n−1 and

c
(1)
n−1 vanish, that is to say, the series do not truncate on the left or on the right. The last condition

also assures that the series coefficients are linked by Eq. (44) and in turn this implies that there is
a unique characteristic equation. If, in addition to conditions (47a) are valid, that is,

n+ ν +B2,
B2

2
− iη and n+ ν + iη +

B2

2
are not zero or negative integers,

then Eq. (32) may be used to prove that any of the three solutions is a linear combination of the
others. Since n extends from −∞ to ∞ (two-sided series), the above conditions are equivalent to

ν +B2 and ν + iη +
B2

2
are not integers;

B2

2
− iη is not zero or negative integer, (47b)

which repeat one of the conditions (47a).
In summary, to express one solution in terms of the others, the three solutions must be given

by two-sided series and the formula (32) for analytic continuation of the hypergeometric functions
must hold. These are the general conditions which may be applied to any set of solutions generated
from the first set through the transformation rules of the CHE. In fact, they are equivalent to the
conditions (26) and (33).

If U1 is a superposition of U∞1 and Ū∞1 in the common domain of convergence (|z| > |z0), then
the behavior of U1 when z → ∞ must be given by a combination of the behaviors of U∞1 and Ū∞1 .
However, for certain problems as in Sec. II.D, one of the expansions in irregular functions may be
inadequate when z →∞ and, consequently, U1 becomes inappropriate as well. This conclusion also
results if we consider only the solution U1 and the behavior of Φ(a, c; y) when y →∞ [13].

Only the restriction on the values of (B2/2) − iη cannot be satisfied by a convenient choice of
ν. This restriction also arises if we consider the solution U1(z) by itself, disregarding its connection
with the other solutions. In fact, if (B2/2)− iη = −m (m = 0, 1, 2, · · · ), the hypergeometric function
Φ(a, c; y) which appears in U1 becomes a polynomial of degree m with respect to its argument [1]
and, then, the summation from negative to positive infinity is meaningless. The solution

Up
1 (z) = e−iωz

∞∑
n=0

d(1)
n (z − z0)n, (|z| = finite) (48a)

where recurrence relations for the coefficients are (d(1)
−1 = 0)

z0

(
n+B2 +

B1

z0

) (
n+ 1

)
d

(1)
n+1 +

[
n (n+B2 − 1− 2iωz0) +

B3 − iωz0
(
B2 +

B1

z0

) ]
d(1)

n − 2iω
(
n− iη +

B2

2
− 1

)
d

(1)
n−1 = 0, (48b)
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takes the place of U1 when (B2/2) − iη = −m. Notice that Up
1 was obtained from the Barber-

Hassé expansion (34a) by substituting (−ω,−η) for (ω, η). Furthermore, even if (B2/2)− iη = −m,
by means of the transformation rules we can find two-sided series expansions in terms of regular
confluent hypergeometric functions.

Now we consider the one-sided series solutions. From the recurrence relations (43b) and (43c)
we see that for truncating the three solutions on the left at n = 0 the only choice of ν common to
the three solutions is ν = 0 – see Eq. (27). We rewrite these one-sided series solutions as

U1(z) = e−iωz
∞∑

n=0

(−1)nc
(1)
n

Γ(n+B2)
Φ

(
B2

2
− iη, n+B2; 2iωz

)
,

U∞1 (z) = e−iωz
∞∑

n=0

b(1)n Ψ
(
B2

2
− iη, n+B2; 2iωz

)
,

Ū∞1 (z) = eiωz
∞∑

n=0

c(1)n Ψ
(
n+ iη +

B2

2
, n+B2;−2iωz

)
, (49a)

where the recurrence relations are
(
b
(1)
−1 = c

(1)
−1 = 0

)
:

(n+ 1)
(
n+ iη +

B2

2

)
b
(1)
n+1 + β(1)

n b(1)n + 2iωz0

(
n+B2 +

B1

z0
− 1

)
b
(1)
n−1 = 0, (49b)

(n+ 1)c(1)
n+1 + β(1)

n c(1)
n + 2iωz0

(
n+B2 +

B1

z0
− 1

) (
n+ iη +

B2

2
− 1

)
c
(1)
n−1 = 0, (49c)

in which

β(1)
n = n(n+B2 − 1 + 2iωz0) +B3 + iωz0

(
B2 +

B1

z0

)
.

According to the previous subsection, if iη + (B2/2) = −l (l = 0, 1, 2, · · · ), the series in U1 and
Ū∞1 break off on the right and these solutions reduce to Heun polynomials (0 ≤ n ≤ l), while the
solution U∞1 truncates on the left (n ≥ l + 1). However, there is no need of considering these Heun
polynomials since the Barber-Hassé solution (34a) also suplies finite-series solutions with the same
characteristic equation.

The preceding remarks suggest that the one-sided solutions become useful only when the three
solutions are given by infinite series and each solution of a fixed set can be expressed as a superposition
of the others. For the solutions (49a) the series are infinite, with n running from 0 to infinity, if

B2 +
B1

z0
and iη +

B2

2
are not zero or negative integers, (50a)

as we see from the recurrence relations (49b) and (49c). The solutions can be connected by means
of Eq. (32) if

B2,
B2

2
− iη and iη +

B2

2
are not zero or negative integers, (50b)

as we see from conditions (33). Then, the relation c
(1)
n = Γ

(
n+ iη + B2

2

)
b
(1)
n is well defined and

Heun polynomials are excluded from (49a). The one-sided infinite series solutions, together with the
Baber-Hassé solutions, are used in Sec. II.D.
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II.C. Convergence of the third solution

For one-sided infinite series the convergence of Ū∞1 have already been established in Ref. [17].
Next we show that the two-sided infinite series converges in both directions, that is, when n → ∞
and when n→ −∞. First we write the solution as

Ū
(∞)
1 (z) = eiωz

∞∑
n=−∞

c(1)
n y1−B2−n−νΨn(y), Ψn(y) = Ψ

(
1 + iη − B2

2
, 2− n− ν −B2; y

)
, (51)

where y = −2iωz. To determine the convergence of the series, we have to find the ratios

lim
n→∞

c
(1)
n+1 Ψn+1(y)

c
(1)
n y Ψn(y)

, lim
n→−∞

c
(1)
n−1 y Ψn−1(y)

c
(1)
n Ψn(y)

. (52)

For this, in the first place we divide the recurrence relations (43c) by nc(1)
n and retain only the leading

terms, that is, (
n+

ν + 1
n

)
c
(1)
n+1

c
(1)
n

+
[
n+ 2ν +B2 − 1 + 2iωz0 +O

(
1
n

)]

+2iωz0

[
n+ 2ν +

3
2
B2 +

B1

z0
+ iη − 2 +O

(
1
n

)]
c
(1)
n−1

c
(1)
n

= 0.

The minimal solutions for this equation are

lim
n→+∞

c
(1)
n+1

c
(1)
n

= −2iωz0

[
1 +

1
n

(
iη − 1 +

B1

z0
+
B2

2

)]
, (53a)

lim
n→−∞

c
(1)
n−1

c
(1)
n

= − 1
n

[
1− B2 + ν − 3

n

]
. (53b)

On the other hand, by applying Eq. (B6) to the function Ψn(y), we get

−
(
n+ ν + iη +

B2

2

)
Ψn+1(y) +

(
n+ ν +B2 − 1− y

)
Ψn(y) + yΨn−1(y) = 0.

Dividing this equation by nΨn, we obtain

−
[
1 +

1
n

(
ν + iη +

B2

2

)]
Ψn+1

Ψn
+

[
1 +

ν +B2 − 1− y
n

]
+
y

n

Ψn−1

Ψn
= 0.

Then we can verify that

lim
n→+∞

Ψn+1

Ψn
= 1− 1

n

(
1 + iη − B2

2

)
, lim

n→−∞

Ψn−1

Ψn
= −1

y
(n+ ν +B2 − 1) . (54)

In fact there are other possibilities, but the preceding are the only ones compatible with Eq. (B7).
Hence, since y = −2iωz, we find

lim
n→∞

c
(1)
n+1 Ψn+1(y)

c
(1)
n y Ψn(y)

=
z0
z

[
1 +

1
n

(
B1

z0
− 2

)]
, (55a)

lim
n→−∞

c
(1)
n−1 y Ψn−1(y)

c
(1)
n Ψn(y)

= 1 +
2
n
. (55b)

Therefore, by the ratio test the series in Eq. (51) converges in the region |z| > |z0.
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II.D. Schrödinger equation for the symmetric double-Morse potential

For C = 0, the potential (16) given by Ulyanov and Zaslavskii is

V (u) =
B2

4
sinh2 u−B

(
s+

1
2

)
coshu, s = 0,

1
2
, 1,

3
2
, 2, · · ·

where B is a positive constant and u ∈ (−∞,∞). Then, the Schrödinger equation reads

d2ψ

du2
+

[
E− B2

4
sinh2 u+B

(
s+

1
2

)
coshu

]
ψ = 0, (56)

By transforming this equation into a CHE, we will find even and odd solutions for each value of
s. First, we use the four Barber-Hassé solutions to find bounded states given by Heun polynomials
associated to a finite number of real energy levels. Second, we consider the solutions given by one-
sided infinite series in terms of confluent hypergeometric functions and find that only one expansion
in irregular functions vanishes at infinity (u = ±∞). This constitutes an example in which the Leaver
expansion in regular confluent hypergeometric functions is not bounded at infinity and, therefore, is
not appropriate for the entire range of the independent variable. Finally we regard other solutions
and, in particular, the finite-series solutions for which there is no guarantee that the eigenvalues are
real for all values of s.

The substitutions

ψ(u) = U(z), z = cosh2
(u

2

)
, (z ≥ 1) (57)

convert Eq. (56) into

z(z − 1)
d2U

dz2
+

(
z − 1

2

)
dU

dz
+

[
E +B

(
s+

1
2

)
+ 2B

(
s+

1
2

)
(z − 1)−B2z(z − 1)

]
U = 0,

which is a CHE (in fact, a Whittaker-Hill equation) with the parameters

z0 = 1, B1 = −1
2
, B2 = 1, B3 = E +B

(
s+

1
2

)
,

iω = −B, iη = −s− 1
2

or iω = B, iη = s+
1
2
. (58)

Finite-series solutions. For the present case, we redefine the coefficients of the Barber-Hassé
solutions given at the end of Sec. II.A according to

a(1)
n =

(−1)np
(1)
n

n!Γ[n+ (1/2)]
, a(2)

n =
(−1)np

(2)
n

n!Γ[n+ (1/2)]
, a(3)

n =
(−1)np

(3)
n

n!Γ[n+ (3/2)]
, a(4)

n =
(−1)np

(4)
n

n!Γ[n+ (3/2)]
.

Then, if s is a integer the solutions (34a) and (36a) in conjunction with Eqs. (57) and (58) give the
finite-series expansions

ψbarber
1 (u) = e−B cosh2 u

2

s∑
n=0

(−1)np
(1)
n

n!Γ[n+ (1/2)]
sinh2n

(u
2

)
, s = 0, 1, 2, · · · , (59a)

ψbarber
3 (u) = sinhu e−B cosh2 u

2

s−1∑
n=0

(−1)np
(3)
n

n!Γ[n+ (3/2)]
sinh2n

(u
2

)
, s = 1, 2, 3, · · · , (59b)

which are even and odd solutions, respectively. The recurrence relations for the coefficients are
(p(1)
−1 = p

(3)
−1 = 0)

p
(1)
n+1 =

[
E +Bs+ n(n− 2B)

]
p(1)

n + 2Bn
(
n− 1

2

) (
n− s− 1

)
p
(1)
n−1, (59c)
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p
(3)
n+1 =

[
E +Bs−B + 1 + n(n+ 2− 2B)

]
p(3)

n + 2Bn
(
n+

1
2

) (
n− s

)
p
(3)
n−1, (59d)

If s is a half-integer, the solutions (35a) and (37a) yield even and odd finite-series solutions, respec-
tively,

ψbarber
2 (u) = cosh

(u
2

)
e−B cosh2(u

2 )
s−1/2∑
n=0

(−1)np
(2)
n

n!Γ[n+ (1/2)]
sinh2n

(u
2

)
, s =

1
2
,
3
2
, · · · , (60a)

ψbarber
4 (u) = sinh

(u
2

)
e−B cosh2(u

2 )
s−1/2∑
n=0

(−1)np
(4)
n

n!Γ[n+ (3/2)]
sinh2n

(u
2

)
, s =

1
2
,
3
2
, · · · , (60b)

where the coefficients satisfy (p(2)
−1 = p

(4)
−1 = 0)

p
(2)
n+1 = [E +Bs+ (1/4) + n(n+ 1− 2B)] p(2)

n + 2Bn [n− (1/2)] [n− s− (1/2)] p(2)
n−1, (60c)

p
(4)
n+1 =

[
E +Bs−B + n(n+ 1− 2B)

]
p(4)

n + 2Bn [n+ (1/2)] [n− s− (1/2)] p(4)
n−1. (60d)

The previous solutions are bounded for any u ∈ (−∞,∞) owing to the exponential factor. On
the other hand, the energies are real because the coefficients of the recurrence relations are real and
satisfy the relations (22) since B > 0. These eigenvalues can be computed by equating to zero the
determinant of the matrices associated to the recurrence relations. However, there is a procedure due
to Bender and Dunne [5] that, in addition to the energies, also gives the coefficients pn as polynomials
of degree n in the energy. As an example we consider the first solution. Taking p(1)

0 = 1 as initial
condition and using the recurrence relations (p(1)

−1 = 0), we obtain

p
(1)
0 = 1, p

(1)
1 = Es, p

(1)
2 = [Es]

2 + (1− 2B)Es −Bs,

p
(1)
3 = [Es]

3 + (5− 6B) [Es]
2 +

(
8B2 + 4− 6B − 7Bs

)
Es − 4B(1−B)s,

and so on, where Es = E + Bs. Thence, since the summation terminates at n = s, the eigenvalues
are obtained by requiring that p(1)

s+1 = 0. Thus, if s = 1 the equation p(1)
2 = 0 implies that

E±1 = B − 1
2
±

√
B2 +

1
4
⇔ E± = −1

2
±

√
B2 +

1
4
,

which correspond to the eigenfunctions

ψ±1 (u) = e−B cosh2 u
2

[
1− E±1

Γ(3/2)
sinh2 u

2

]
.

Infinite-series solutions. The Barber-Hassé solutions which are given by finite series when s
is integer (half-integer) become solutions given by infinite series when s is half-integer (integer).
However these infinite-series expansions are not convergent at u = ±∞ (z = ∞), just at the point
where V (u) → ∞. For this reason, we consider the sets of one-sided infinite expansions in series of
confluent hypergeometric functions. We will find no single solution bounded for any u but, in a given
set, the solution in series of regular hypergeometric functions is bounded in the vicinity of z = 1
(u = 0), other solution vanishes at z =∞ and the remaining solution (which is a linear combination
of the others) is bounded in the intermediate domain (z 6= 1, z 6= ∞). Due to Eq. (24), these
solutions lead to the same energies as the Barber-Hassé infinite-series solutions, that is, there is a
correspondence among the energies of the following infinite-series solutions

ψbarber
i ↔ (ψi, ψ

∞
i , ψ̄

∞
i ). (61)
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From the solutions (49a), if s is half-integer, we obtain the following set of even infinite-series
solutions

ψ1(u) = eB cosh2 u
2

∞∑
n=0

(−1)nb(1)
n Φ̃

(
s+ 1, n+ 1;−2B cosh2 u

2

)
,

ψ∞1 (u) = eB cosh2 u
2

∞∑
n=0

(−1)nb(1)
n Ψ

(
s+ 1, n+ 1;−2B cosh2 u

2

)
,

ψ̄∞1 (u) = e−B cosh2 u
2

∞∑
n=0

c(1)
n Ψ

(
n− s, n+ 1; 2B cosh2 u

2

)
, (62a)

where the b(1)
n satisfy (b(1)

−1 = 0)

(n+ 1)(n− s)b(1)
n+1 + [E +Bs+ n(n− 2B)] b(1)

n − 2B
(
n− 1

2

)
b
(1)
n−1 = 0 (62b)

and c
(1)
n = Γ(n− s)b(1)

n . Since a = s+ 1, c = n+ 1 and c− a = n− s are not negative integers, the
formula (32) can be used to express one solution as a superposition of the others. The solutions ψ∞1
and ψ̄∞1 converge for cosh2(u/2) > 1 and, when u→ ±∞ (z →∞), we find

lim
u→±∞

ψ∞1 (u) ∼ eB cosh2 u
2

[
cosh

u

2

]−2s−2
→∞, lim

u→±∞
ψ̄∞1 (u) ∼ e−B cosh2 u

2

[
cosh

u

2

]2s
→ 0.

Therefore, ψ1 is bounded in the neighborhood z = 1, ψ̄∞1 is bounded near z = ∞, whereas ψ∞1 is
bounded in the intermediate region (z 6= 1, z 6= ∞) . When s is half-integer, a set of odd solutions,
having properties similar to the ones of the above set, is obtained from the third set given in Appendix
C (with ν = 0), namely,

ψ3(u) = eB cosh2 u
2 sinhu

∞∑
n=0

(−1)nb(3)n Φ̃
(
s+ 2, n+ 3;−2B cosh2 u

2

)
,

ψ∞3 (u) = eB cosh2 u
2 sinhu

∞∑
n=0

(−1)nb(3)n Φ
(
s+ 2, n+ 3;−2B cosh2 u

2

)
,

ψ̄∞3 (u) = e−B cosh2 u
2 sinhu

∞∑
n=0

c(3)n Ψ
(
n+ 1− s, n+ 3; 2B cosh2 u

2

)
, (63a)

where the recurrence relations for b(3)
n are (b(3)−1 = 0)

(n+ 1)(n+ 1− s)b(3)
n+1 + [E +Bs−B + 1 + n(n+ 2− 2B)] b(3)n − 2B

(
n+

1
2

)
b
(3)
n−1 = 0 (63b)

and c(3)
n = Γ(n+ 1− s)b(3)

n .
The sets of solutions for integer values of s are obtained from the second and fourth sets given

in Appendix C (with ν = 0). The even solutions, obtained from the second set, are

ψ2(u) = eB cosh2 u
2 cosh

u

2

∞∑
n=0

(−1)nb(2)n Φ̃
(
s+

3
2
, n+ 2;−2B cosh2 u

2

)
,
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ψ∞2 (u) = eB cosh2 u
2 cosh

u

2

∞∑
n=0

(−1)nb(2)n Ψ
(
s+

3
2
, n+ 2;−2B cosh2 u

2

)
,

ψ̄∞2 (u) = e−B cosh2 u
2 cosh

u

2

∞∑
n=0

c(2)n Ψ
(
n+

1
2
− s, n+ 2; 2B cosh2 u

2

)
, (64a)

where the b(2)
n satisfy (b(2)

−1 = 0)

(n+ 1)
(
n− s+

1
2

)
b
(2)
n+1 +

[
E +Bs+

1
4

+ n(n+ 1− 2B)
]
b(2)
n − 2B

(
n− 1

2

)
b
(2)
n−1 = 0 (64b)

and c(2)
n = Γ[n− s+ (1/2)]b(2)

n . The odd solutions (s =integer) are

ψ4(u) = eB cosh2 u
2 sinh

u

2

∞∑
n=0

(−1)nb(4)n Φ̃
(
s+

3
2
, n+ 2;−2B cosh2 u

2

)
,

ψ∞4 (u) = eB cosh2 u
2 sinh

u

2

∞∑
n=0

(−1)nb(4)n Ψ
(
s+

3
2
, n+ 2;−2B cosh2 u

2

)
,

ψ̄∞4 (u) = e−B cosh2 u
2 sinh

u

2

∞∑
n=0

c(4)n Ψ
(
n+

1
2
− s, n+ 2; 2B cosh2 u

2

)
, (65a)

where the b(4)
n satisfy (b(4)

−1 = 0)

(n+ 1)
(
n− s+

1
2

)
b
(4)
n+1 +

[
E +Bs−B +

1
4

+ n(n+ 1− 2B)
]
b(4)n − 2B

(
n+

1
2

)
b
(4)
n−1 = 0,

(65b)

and c(4)
n = Γ[n− s+ (1/2)]b(4)

n .
Other solutions. We have considered only four (sets of) solutions for the CHE, but the transfor-

mation rules given in Appendix C lead to 16 (sets of) solutions. The other solutions are obtained by
using the rules T4 and T3, which for the present problem are equivalent to the operations

T4 : (u,B)→ (u+ iπ,−B), (66a)

T3 : (B, s)→ (−B,−s− 1). (66b)

We can check that these operations leave the Schrödinger equation (56) invariant.
Using the rule T4, we can generate four finite-series solutions that do not satisfy the condition

(22) which assures real energies for an arbitrary s, as noted at the end of Sec. II.A. One example is
the bounded Heun polynomial

ψbarber
5 (u) = T4ψ

barber
1 (u) = e−B sinh2 u

2

s∑
n=0

p
(5)
n

n!Γ[n+ (1/2)]
cosh2n

(u
2

)
, s = 0, 1, 2, · · · , (67a)

where the series coefficients satisfy the recurrence relations

p
(5)
n+1 =

[
E−Bs+ n(n+ 2B)

]
p(5)

n − 2Bn
(
n− 1

2

) (
n− s− 1

)
p
(5)
n−1. (67b)

In addition, T3 and T4 generate new infinite-series solutions when applied to the previous expansions
in series of confluent hypergeometric functions. Probably some of the infinite-series solutions may
be discarded by requiring real energies for any s.
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III. THE WHITTAKER-INCE LIMIT OF THE CHE

In this section we show that for the Whittaker-Ince limit of the CHE, that is, for equation

z(z − z0)
d2U

dz2
+ (B1 +B2z)

dU

dz
+ [B3 + q(z − z0)]U = 0, (q 6= 0), (68)

the solutions of the CHE reduce to expansions in series of Bessel functions. The procedure is the
same used in Ref. [17] for one-sided solutions, but we correct the following systematic error: the
Bessel functions of the first kind Jλ which appear in Ref. [17] must be replaced by (−1)nJλ.

In Sec. III.A we write the first set of solutions for Eq. (68) but, using the transformations
rules T1, T2 and T3 given in Appendix D, we can generate new sets of solutions. This time the
three solutions have exactly the same series coefficients and, in order to write one solution as a
linear combination of the others, no restriction must be imposed on the parameters of Eq. (68). In
Sec. III.B we show how these solutions are obtained from the solutions of the CHE by using the
Whittaker-Ince limit (5). Finally, in Sec. III.C we use solutions of Eq. (68) to solve the Schrödinger
equation for a quasi-exactly solvable potential given by Cho and Ho [8]. As far as we are aware, the
only other example for Eq. (68) is a problem considered by Malmendier [29] and Mignemi [34].

III.A. The first set of solutions

The Whittaker-Ince limit of the fundamental set of solutions given in Eqs. (43a) yields

U1(z) =
∑

n

(−1)nc(1)
n

(√
qz

)−(n+ν+B2−1)
Jn+ν+B2−1

(
2
√
qz

)
, ∀z,

U
(i)
1 (z) =

∑
n

(−1)nc(1)
n

(√
qz

)−(n+ν+B2−1)
H

(i)
n+ν+B2−1

(
2
√
qz

)
, |z| > |z0|, (i = 1, 2) (69a)

where the limits of the recurrence relations (43b) and (43c) are

(n+ ν + 1)c(1)
n+1 +

[
(n+ ν)(n+ ν +B2 − 1) +B3

]
c(1)
n +

qz0

(
n+ ν +B2 +

B1

z0
− 1

)
c
(1)
n−1 = 0. (69b)

In these solutions Jλ(x) denotes Bessel functions of the first kind of order λ, whereas H(1)
λ (x) and

H
(2)
λ (x) denote Hankel functions of first and second kind respectively. The solution U1(z) comes from

the solution U1(z) of the CHE, while the solutions denoted by U (i)
i (z) follow either from U

(∞)
1 (z) or

Ū
(∞)
1 (z).

The Bessel functions which appear in the solutions are all independent since their Wronskians
are [14]

W
(
Jλ(x),H(1)

λ (x)
)

=
2i
πx
, W

(
Jλ(x),H(2)

λ (x)
)

= − 2i
πx
, W

(
H

(1)
λ (x),H(2)

λ (x)
)

= − 4i
πx
.

Then, the relation

Jλ(x) =
1
2
[
H

(1)
λ (x) +H

(2)
λ (x)

]
, (70)

can be used to write each solution as a linear combination of the others in a region where the three
solutions are valid.

On the other hand, for a fixed λ the asymptotic behaviors of the Bessel functions as |x| → ∞ are
[14]

Jλ(x) ∼
√

2
πx

cos
(
x− 1

2
λπ − 1

4
π

)
, | arg x| < π;
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H
(1)
λ (x) ∼

√
2
πx

ei(x−
1
2
λπ− 1

4
π), −π < arg x < 2π;

H
(2)
λ (x) ∼

√
2
πx

e−i(x− 1
2
λπ− 1

4
π), −2π < arg x < π. (71)

Thus, for the solutions U (i)
1 we find

lim
z→∞

U
(1)
1 (z) ∼ e2i

√
qz z(1/4)−(B2/2)−(ν/2), lim

z→∞
U

(2)
1 (z) ∼ e−2i

√
qz z(1/4)−(B2/2)−(ν/2).

The behavior of U1 when z →∞ is a linear combination of these due to Eq. (70).
Notice that, by setting

w(u) = U(z), z = cos2(σu), (σ = 1, i),

z0 = 1, B1 = −1
2
, B2 = 1, B3 =

k2

2
− a

4
, (72)

in Eq. (68), we obtain the Mathieu equation (12). Then, from the solutions (69a) and (69b) we get
the following even solutions for the Mathieu equation

w1(u) =
∑

n

(−1)nc(1)
n

[
k cos(σu)

]−n−ν
Jn+ν

(
2k cos(σu)

)
, ∀u,

w
(i)
1 (u) =

∑
n

(−1)nc(1)
n

[
k cos(σu)

]−n−ν
H

(i)
n+ν

(
2k cos(σu)

)
, | cos(σu)| > 1, (73a)

where the coefficients c(1)
n satisfy

(n+ ν + 1)c(1)
n+1 +

[
(n+ ν)2 + (k2/2)− (a/4)

]
c(1)n + k2

[
n+ ν − (1/2)

]
c
(1)
n−1 = 0. (73b)

In this set of two-sided infinity series solutions, the first solution converges for any u, in contrast
with the usual two-sided solutions for the Mathieu equation which converge, all of them, only for
| cos(σu)| > 1 [1, 33].

One-sided infinite series are obtained by putting ν = 0 in the two-sided series solutions.

III.B. Derivation of the solutions

To compute the Whittaker-Ince limits, first we rewrite the solutions of the CHE in a form
convenient for using the formulas (B8) and (B9). Thus, we rewrite the solutions (43a) as (q =
−2ηω)

U1(z) = e−iωz
∑

n

(−1)nc
(1)
n

Γ(n+ ν +B2)
Φ

(
B2

2
− iη, n+ ν +B2;

qz

iη

)
, (74a)

U∞1 (z) = e−iωz
∑

n

DnΓ
(

1− iη − n− ν − B2

2

)
Ψ

(
B2

2
− iη, n+ ν +B2;

qz

iη

)
, (74b)

Ū∞1 (z) = eiωz
∑

n

En(−qz)1−n−ν−B2Γ
(
iη + n+ ν +

B2

2

)
×

Ψ
(

1 + iη − B2

2
, 2− n− ν −B2;−

qz

iη

)
, (74c)
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where the new coefficients are defined by

Dn =
(−1)nb

(1)
n

Γ
(
1− n− ν − iη − B2

2

) , En =
(iη)n+νc

(1)
n

Γ
(
iη + n+ ν + B2

2

) .
Inserting these relations into Eqs. (43b) and (43c) we find

(n+ ν + 1)Dn+1 + β
(1)
n Dn + 2iωz0

(
n+ ν + iη + B2

2 − 1
) (
n+ ν +B2 + B1

z0
− 1

)
Dn−1 = 0,

(n+ ν + 1)
[

n+ν+iη+(B2/2)
iη

]
En+1 + β

(1)
n En − 2ηωz0

(
n+ ν +B2 + B1

z0
− 1

)
En−1 = 0,

where

β(1)
n = (n+ ν) (n+ ν +B2 − 1 + 2iωz0) +B3 + iωz0

(
B2 +

B1

z0

)
.

Thence, we find that the Whittaker-Ince limits of these relations are identical since

lim c(1)
n = limDn = limEn, (ω → 0, η →∞, 2ηω = −q).

Denoting by c(1)
n the above limits, we obtain the recurrence relations (69b).

Now, by letting (−iη)→∞ and using Eq. (B8) we find

Φ
(
B2

2
− iη, n+ ν +B2;

qz

iη

)
→ Γ(n+ ν +B2)

(√
qz

)1−n−ν−B2Jn+ν+B2−1

(
2
√
qz

)
.

Thus the limit of Eq. (74a) is the solution U1(z) written in Eqs. (69a). On the other hand, to obtain
the limit of the solution (74b) we define L1(z) by

L1(z) := Γ
(

1− iη − n− ν − B2

2

)
Ψ

(
B2

2
− iη, n+ ν +B2;

qz

iη

)
.

Then, when (−iη)→∞ the relation (B9) gives

L1(z)→ 2
(
± i√qz

)1−n−ν−B2Kn+ν+B2−1

(
± 2i
√
qz

)
=


−iπeiπ(1−n−ν−B2)

(√
qz

)1−n−ν−B2H
(2)
n+ν+B2−1

(
2
√
qz

)
,

iπe−iπ(1−n−ν−B2)
(√
qz

)1−n−ν−B2H
(1)
n+ν+B2−1

(
2
√
qz

)
,

where in last step we have used the relations among the functions Kλ and H(i)
λ given in Eq. (B11).

Inserting these into the limit of the solution (74b) and supressing multiplicative factors, we find the
solutions U (i)

1 (z) given in (69a). The same solutions follow from the limit of the solution (74c). Notice
that these are formal derivations which involve some tricks. However, we may check the resulting
solutions by inserting them into Eq. (68).

III.C. Schrödinger equation for the volcano-type potential

For the potential (17) given by Cho and Ho [8] the Schrödinger equation (15) is

d2ψ

du2
+

[
E +

b2

4
sinh2 u+

[
(`+ 1)2 − (1/4)

]
cosh2 u

]
ψ = 0 (75)

where b > 0 is a real constant. We transform this into the Whittaker-Ince limit (68) of the CHE
and find bounded finite-series eigenstates corresponding to discrete energies, as in Cho and Ho. In
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fact, we prove that there are pairs of (even and odd) degenerate eigenfunctions for any value of the
parameter `. This degeneracy was first pointed out by Kar and Parwani [24], and by Koley and Kar
[25] who have not provided a general proof for such degeneracy. We also find bounded infinite-series
solutions.

In fact, the substitutions

ψ(u) =
[
coshu

]−`− 1
2U(z), z = − sinh2 u (76)

bring Eq. (75) to the form

z(z − 1)
d2U

dz2
+

[
−1

2
+

(
1
2
− `

)
z

]
dU

dz
+

[
E

4
− b2

16
+

(
1
4

+
`

2

)2

− b2

16
(z − 1)

]
U = 0,

which is a particular case of Eq. (68), with the following set of parameters

z0 = 1, B1 = −1
2
, B2 =

1
2
− `, B3 =

E

4
− b2

16
+

(
1
4

+
`

2

)2

, q = − b
2

16
. (77)

Thus, if we denote by ~ψj = (ψj , ψ
(1)
j , ψ̄

(2)
j ) the solutions of the Schrödinger equation corresponding

to the each set of solutions ~Uj = (Uj , U
(1)
j , U

(2)
j ) of Eq. (68), we have

~ψj(u) =
[
coshu

]−`− 1
2 ~Uj(z), z = − sinh2 u, (78)

where on right-hand side we must use the parameters given in Eq. (77). In the present case it is
sufficient to regard only the solutions ψj in series of Bessel functions of the first kind. First we study
the solutions given by finite series and then the ones given by infinite series.

Finite-series solutions. The first and the second sets of solutions, given in Eqs. (69a) and (D4),
afford solutions in finite series if ν = 0. We redefine the series coefficients as

c(1)
n =

(−1)nPn

n!
, c(2)n =

(−1)nQn

n!
.

Thence from the first set (69a) we obtain the even solutions

ψ1(u) =
[
coshu

]−`− 1
2
∑̀
n=0

Pn

n!

(
b

4
sinhu

)−(n−`− 1
2
)

Jn−`− 1
2

(
b

2
sinhu

)
, (even) (79a)

where the recurrence relations for Pn are

P1 = E` P0, E` :=
E

4
− b2

16
+

(
1
4

+
`

2

)2

,

Pn+1 =
[
E` + n

(
n− `− 1

2

)]
Pn +

b2

16
n(n− `− 1)Pn−1, (n ≥ 1). (79b)

The second set (D4) yields the odd finite-series solutions

ψ2(u) = sinhu
[
coshu

]−`− 1
2
∑̀
n=0

Qn

n!

(
b

4
sinhu

)−(n−`+ 1
2
)

Jn−`+ 1
2

(
b

2
sinhu

)
, (odd) (80a)

where the Qn satisfy the recurrence relations

Q1 =
[
E` −

`

2

]
Q0, Qn+1 =

[
E` + (n− `)

(
n+

1
2

)]
Qn +

b2

16
n(n− `− 1)Qn−1, (n ≥ 1). (80b)
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These solutions are Heun polynomials because the coefficients of Pn−1 and Qn−1 vanish for n = `+1
and, consequently, the series terminate at n = `. Further, ψ1(u) represents even solutions because
the relations (B12) give

Jn−`− 1
2
(−x) = (−1)`−n− 1

2Jn−`− 1
2
(x)

and this implies that ψ1(−u) = ψ1(u). Analogously we may show that ψ2(u) represents odd solutions.
On the other hand, using the fact that Jλ(x) ∼ (x/2)λ when x → 0, and the first of Eqs. (71)

we find

lim
u→0

ψ1(u) ∼
[
coshu

]−`− 1
2 , lim

u→±∞
ψ1(u) ∼

[tanhu]`√
coshu

[
k1 e

i b
2

sinh u + k2 e
−i b

2
sinh u

]
→ 0,

where k1 and k2 are constants. Thus ψ1(u) is bounded for any u. The same holds for ψ2(u).
Notice that the coefficients (α(i)

n , β
(i)
n , γ

(i)
n ) (i = 1, 2) corresponding to (Pn+1, Pn, Pn−1) and

(Qn+1, Qn, Qn−1) are real and that

α(i)
n γ

(i)
n+1 =

b2

16
(n+ 1)(`− n) > 0, 0 ≤ n ≤ `− 1, (81)

where in the present case α(i)
n = 1. Thus, the condition (22) is satisfied and consequently there are

`+ 1 real and distinct eigenvalues.
Now we show that there are an even and an odd state corresponding to each energy eigenvalue,

that is, the solutions are degenerate. First we rewrite the relations (79b) and (80b) as

Pn+1 + βn Pn + γn Pn−1 = 0, Qn+1 + β̃n Qn + γn Qn−1 = 0, (P−1 = Q−1 = 0) (82a)

where

βn = −
[
E` + n

(
n− `− 1

2

)]
, β̃n = −

[
E` + (n− `)

(
n+

1
2

)]
, γn = − b

2

16
n(n− `− 1). (82b)

The (`+ 1)-by-(`+ 1) tridiagonal matrix P corresponding to the first system of equations is

P =



β0 1 0
γ1 β1 1

γ2 β2 .
.

γ`−1 β`−1 1
0 γ` β`

 . (83a)

Since β̃0 = β`, β̃1 = β`−1, β̃2 = β`−2, · · · , β̃` = β0, the matrix Q of the second system is

Q =



β` 1 0
γ1 β`−1 1

γ2 β`−2 .
.

γ`−1 β1 1
0 γ` β0

 =



β` 1 0
γ` β`−1 1

γ`−1 β`−2 .
.

γ2 β1 1
0 γ1 β0

 , (83b)

where the last equality results from the fact that γ1 = γ`, γ2 = γ`−1 and so forth, as inferred from
the definition of γn. To prove the degeneracy, it is necessary to show that both matrices possess the
same roots, that is, det P = det Q. For this, use the (`+ 1)-by-(`+ 1) antidiagonal matrix A having
1’s on the antidiagonal as the only nonzero elements, that is,

A = A−1 =

 1
.

1

 . (84a)
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Then, using the last form given in Eq. (83b) for Q, we find the similarity relation

P = A−1QT A = AQT A, (84b)

where QT is the transpose of Q. From the properties of the determinants, it follows that det P = det Q
and, therefore, the solutions are degenerate.

To determine the eigenvalues we can apply the procedure of Bender and Dunne [5]. For this
we take P0 = Q0 = 1 as initial conditions and use the recurrence relations to generate the other
coefficients. For a fixed ` the eigenvalues are obtained by imposing that P`+1 = 0 or Q`+1 = 0, since
the series terminate at n = `. For example, the recurrence relations (79b) for Pn give

P0 = 1, P1 = E`, P2 = E2
` +

(
1
2
− `

)
E` −

b2

16
`,

P3 = E3
` +

(
7
2
− 3`

)
E2

` +
[
b2

16
(2− 3`) + (3− 2`)

(
1
2
− `

)]
E` +

b2

16
(2`− 3),

and so on. The recurrence relations for Qn yield

Q0 = 1, Q1 = E` −
`

2
, Q2 = E2

` +
(

3
2
− 2`

)
E` +

3
4
`(`− 1)− b2

16
`,

Q3 = E3
` +

1
2

(13− 9`)E2
` +

[
b2

16
(2− 3`) +

3
4
`(`− 1) +

5
2
(`− 2)

(
2`− 3

2

)]
E`+

b2

16
`

(
7`
2
− 6

)
− 15

8
`(`− 1)(`− 2).

Thus, for ` = 0 the energy that follows from the condition P1 = Q1 = 0 is

E0 = 0 ⇒ E =
1
4

[
b2 − 1

]
, (85a)

corresponding to the degenerate pair of eigenfunctions

ψ1(u, ` = 0) =
2c(1)

0√
πb coshu

cos
(
b

2
sinhu

)
, ψ2(u, ` = 0) =

2c(2)0√
πb coshu

sin
(
b

2
sinhu

)
, (85b)

where the expressions (B15) for the Bessel functions have been used. For ` = 1 the condition
P2 = Q2 = 0 leads to the energies

E±1 =
1
4

[
1±

√
1 + b2

]
⇒ E± =

1
4

[
b2 − 5

]
±

√
1 + b2 (86a)

which correspond to the parity-paired degenerate wave functions

ψ±1 (u, ` = 1) = [coshu]−
3
2

[
− b

4
(sinhu) sin

(
b

2
sinhu

)
+

(
E±1 −

1
2

)
cos

(
b

2
sinhu

)]
,

ψ±2 (u, ` = 1) = [coshu]−
3
2

[
b

4
(sinhu) cos

(
b

2
sinhu

)
+

(
E±1 −

1
2

)
sin

(
b

2
sinhu

)]
, (86b)

where normalization factors have been omitted.
The solutions found by Cho and Ho [8], for ` = 0 and ` = 1, have no definite parity and can be

obtained from the expansions in series of Hankel functions. The solutions ψ(i)
1 associated with ψ1

are

ψ
(i)
1 (u) =

[
coshu

]−`− 1
2
∑̀
n=0

Pn

n!

(
b

4
sinhu

)−(n−`− 1
2
)

H
(i)

n−`− 1
2

(
b

2
sinhu

)
, (i = 1, 2). (87a)
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Notice that ψ1 is a superposition of ψ(1)
1 and ψ(2)

1 due to Eq. (70). Likewise, the solution ψ2 can be
obtained as a combination of the solutions ψ(1)

2 and ψ(2)
2 , given by

ψ
(i)
2 (u) = sinhu

[
coshu

]−`− 1
2
∑̀
n=0

Qn

n!

(
b

4
sinhu

)−(n−`+ 1
2
)

H
(i)

n−`+ 1
2

(
b

2
sinhu

)
(i = 1, 2). (87b)

Infinite-series solutions. Supposing again that ` is a non-negative integer and using the third set
of solutions (D6) with ν = 0, we obtain the odd infinite-series solutions [odd due to Eq. (B12)]

ψ3(u) = sinhu
[
coshu

]`+ 3
2

∞∑
n=0

(−1)nc(3)n

(
b

4
sinhu

)−n−`− 5
2

Jn+`+ 5
2

(
b

2
sinhu

)
, ∀u, (88a)

where the c(3)
n satisfy the recurrence relations (c(3)−1 = 0)

(n+ 1)c(3)
n+1 +

[
E` +

`+ 1
2

+ (n+ `+ 2)
(
n+

1
2

)]
c(3)n −

b2

16
(n+ `+ 1)c(3)

n−1 = 0, (88b)

being E` defined in Eq. (79b). From Eqs. (71) it follows that

ψ3(u) ∼
k3 e

i b
2

sinh u + k4 e
−i b

2
sinh u

√
sinhu

→ 0, (u→ ±∞),

where k3 and k4 are constants. Then, in addition of being bounded in the neighborhood of u = 0,
this solution is bounded also at infinity. An even infinite-series solution, also regular for any u, is
obtained by replacing Uj(z) in Eq. (78) by the U4(z) given in Eqs. (D8) and (D9) with ν = 0. We
find

ψ4(u) =
[
coshu

]`+ 3
2

∞∑
n=0

(−1)nc(4)
n

(
b

4
sinhu

)−n−`− 3
2

Jn+`+ 3
2

(
b

2
sinhu

)
, (89a)

where the c(4)
n satisfy the recurrence relations

(n+ 1)c(4)
n+1 +

[
E` +

`+ 1
2

+ n

(
n+ `+

3
2

)]
c(4)
n −

b2

16
(n+ `+ 1)c(4)n−1 = 0. (89b)

The solution ψ3 can also be obtained by changing ` by (−` − 2) in the solutions ψ2(u) given in
Eqs. (80a) and (80b) and allowing that the summation runs from zero to positive infinity, whereas
ψ4 is obtained by the substitution `→ (−`− 2) in the solution ψ1(u) given in Eq. (79a).

Other infinite-series solutions are obtained by using the solutions U(z) which result from the four
(sets of) solutions given in Sect. II.A and in Appendix D by means of the transformation T3 given in
Eq. (D3). That transformation changes the independent variable z = − sinh2 u into 1− z = cosh2 u
and also changes the parameters in accordance with Eq. (D3). Then, instead of Eq. (78), we can
use

~ψj+4(u) =
[
coshu

]−`− 1
2 ~Uj(z), z = cosh2 u, (j = 1, · · · , 4) (90a)

to construct the four additional solutions. Now, on the right-hand side, the parameters are

z0 = 1, B1 = `, B2 =
1
2
− `, B3 =

E

4
+

(
1
4

+
`

2

)2

, q =
b2

16
. (90b)

Again we use only the expansions in Bessel functions of the first kind, Jλ, with ν = 0.
Thus, the solution U1 given in Eq. (69a) yields the even infinite-series solution

ψ5(u) =
∞∑

n=0

(−1)nc(5)n

(
b

4
coshu

)−n

Jn−`− 1
2

(
b

2
coshu

)
, (91a)



CBPF-NF-003/08 25

where the c(5)
n satisfy the recurrence relations

(n+ 1)c(5)
n+1 +

[
n

(
n− `− 1

2

)
+

E

4
+

(
1
4

+
`

2

)2
]
c(5)n +

b2

16

(
n− 1

2

)
c
(5)
n−1 = 0. (91b)

The solution ψ6(u) obtained from the U2 given in Eqs. (D4) is also even and reads

ψ6(u) =
∞∑

n=0

(−1)nc(6)n

(
b

4
coshu

)−n

Jn+`+ 3
2

(
b

2
coshu

)
, (92a)

where the coefficients satisfy the relations

(n+ 1)c(6)
n+1 +

[
n

(
n+ `+

3
2

)
+

E

4
+

(
1
4

+
`

2

)2

+
`+ 1

2

]
c(6)n +

b2

16

(
n− 1

2

)
c
(6)
n−1 = 0. (92b)

The solutions ψ5 and ψ6 are connected by the change ` → −`− 2.
On the other hand, the solutions U3 and U4 given in Eqs. (D6) and (D8), respectively, lead to

odd wave functions, namely,

ψ7(u) = tanhu
∞∑

n=0

(−1)nc(7)n

(
b

4
coshu

)−n

Jn+`+ 5
2

(
b

2
coshu

)
, (93a)

where the recurrence relations for c(7)
n are

(n+ 1)c(7)
n+1 +

[
n

(
n+ `+

5
2

)
+

E

4
+

(
1
4

+
`

2

)2

+ `+
3
2

]
c(7)n +

b2

16

(
n+

1
2

)
c
(7)
n−1 = 0, (93b)

and the solution

ψ8(u) = tanhu
∞∑

n=0

(−1)nc(8)n

(
b

4
coshu

)−n

Jn−`+ 1
2

(
b

2
coshu

)
, (94a)

where the c(8)
n satisfy

(n+ 1)c(8)
n+1 +

[
n

(
n− `+

1
2

)
+

E

4
+

(
1
4

+
`

2

)2

− `

2

]
c(8)n +

b2

16

(
n+

1
2

)
c
(8)
n−1 = 0, (94b)

The solution ψ6 can also be obtained by replacing ` by (−`− 2) in ψ5 .
Notice that in the characteristic relations (20) for the solutions ψ3 and ψ4 the product αiγi+1 is

negative, while for the other infinite-series solutions it is positive. We do not know if this fact implies
some significant difference to the energy spectra which results in each case.

IV. THE DOUBLE-CONFLUENT HEUN EQUATION

In Sec. IV.A we obtain sets of solutions for the double-confluent Heun equation (3) by applying
the Leaver limit (z0 → 0) to solutions of the CHE. The expansions in series of regular hypergeometric
functions converge for any z, whereas the expansions in series of irregular functions converge for
|z| > 0. We also give the conditions to express one solution in terms of the others and obtain
one-sided series solutions by truncating the two-sided series on the left.

In Sec. IV.B we use the solutions of the DCHE to solve the Schrödinger equation with the quasi-
exactly solvable potentials given in Eq. (16) when C > 0 and Eq. (18). Finally, in Sec. IV.C we
write the solutions for Eq. (7), that is, for the Whittaker-Ince limit of the DCHE.
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IV.A. Solutions for the general case

For z0 → 0 the solutions (43a) are not affected formally, but their recurrence relations change.
We find

U1(z) = e−iωz
∑

n

(−1)nb(1)n Φ̃
(
B2

2
− iη, n+ ν +B2; 2iωz

)

U∞1 (z) = e−iωz
∑

n

(−1)nb(1)n Ψ
(
B2

2
− iη, n+ ν +B2; 2iωz

)
,

Ū∞1 (z) = eiωz
∑

n

c(1)
n Ψ

(
n+ ν + iη +

B2

2
, n+ ν +B2;−2iωz

)
. (95a)

The recurrence relations for the c(1)
n are

(n+ ν + 1)c(1)
n+1 +

[
(n+ ν) (n+ ν +B2 − 1) + iωB1 +B3

]
c(1)n +

2iωB1

(
n+ ν + iη +

B2

2
− 1

)
c
(1)
n−1 = 0, (95b)

wherefrom we get relations for b(1)
n by means of

c(1)
n = Γ

(
n+ ν + iη +

B2

2

)
b(1)
n .

The behavior given in Eq. (46) for the CHE is also valid for the present solutions.
These three solutions are given by doubly infinite series if

ν and ν + iη +
B2

2
are not integers. (96a)

If, besides this,

ν +B2 is not integer and
B2

2
− iη is not zero or negative integer, (96b)

then any of these solutions can be written as a linear combination of the others by using Eq. (32).
Again, as in the CHE, only the restriction on (B2/2)− iη cannot be satisfied by an suitable choice of
ν. In addition, if (B2/2) − iη = −m (m = 0, 1, 2, · · · ), the expansion U1 becomes meaningless. For
this case, instead of U1, we can use

Up
1 (z) = e−iωz

∞∑
n=0

d(1)
n

(
z

B1

)n

, (|z| = finite) (97a)

where recurrence relations for the coefficients are (d(1)
−1 = 0)

(n+ 1)d(1)
n+1 + [n (n+B2 − 1)− iωB1 +B3] d(1)

n − 2iωB1

(
n− iη +

B2

2
− 1

)
d

(1)
n−1 = 0. (97b)

This Up
1 , which reduces to a Heun polynomial when (B2/2) − iη = −m, was obtained by letting

z0 → 0 in Eq. (48a).
A second set follows from the solutions (C10) and the corresponding recurrence relations (C11).

Using the L’Hospital rule we find that

z
1+

B1
z0 (z − z0)

1−B2−B1
z0 = z(z − z0)1−B2

(
1− z0

z

)−B1
z0 → z2−B2eB1/z, (z0 → 0) (98)



CBPF-NF-003/08 27

and, hence, we obtain the solutions

U2(z) = z2−B2e−iωz+
B1
z

∑
n

(−1)nb(2)
n Φ̃

(
2− iη − B2

2
, n+ ν + 4−B2; 2iωz

)
,

U∞2 (z) = z2−B2e−iωz+
B1
z

∑
n

(−1)nb(2)n Ψ
(

2− iη − B2

2
, n+ ν + 4−B2; 2iωz

)
,

Ū∞2 (z) = z2−B2eiωz+
B1
z

∑
n

c(2)
n Ψ

(
n+ ν + 2 + iη − B2

2
, n+ ν + 4−B2;−2iωz

)
, (99a)

where the coefficients c(2)
n obey

(n+ ν + 1)c(2)
n+1 +

[
(n+ ν) (n+ ν + 3−B2) +B3 + 2−B2 − iωB1

]
c(2)n −

2iωB1

(
n+ ν + iη + 1− B2

2

)
c
(2)
n−1 = 0. (99b)

The recurrence relations for the b(2)
n are derived from these via the relation

c(2)
n = Γ

(
n+ ν + iη + 2− B2

2

)
b(2)n .

Now the conditions to assure that the three solutions are given by doubly infinite series are

ν and ν + iη − B2

2
cannot be integers, (100a)

and if, besides this,

ν +B2 is not integer and iη +
B2

2
is not zero or negative integer, (100b)

then Eq. (32) can be used to express one solution in terms of the others. If iη + (B2/2) = 2, 3, · · · ,
instead of U2 we can use the solution obtained from (104) by the substitution (η, ω)→ (−η,−ω).

One-sided series solutions are obtained by putting ν = 0 in the two-sided solutions, in the same
way as in Sect. II.B. We write only the first set together with the limit of the Barber-Hassé solution
(34a), since this last will be used next.

U1(z) = e−iωz
∞∑

n=0

(−1)nc
(1)
n

Γ(n+B2)
Φ

(
B2

2
− iη, n+B2; 2iωz

)
,

U∞1 (z) = e−iωz
∞∑

n=0

(−1)nb(1)n Ψ
(
B2

2
− iη, n+B2; 2iωz

)
,

Ū∞1 (z) = eiωz
∞∑

n=0

c(1)n Ψ
(
n+ iη +

B2

2
, n+B2;−2iωz

)
,

Ubarber
1 (z) = eiωz

∞∑
n=0

c(1)
n

(
z

B1

)n

, (101a)
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where the recurrence relations for b(1)
n and c(1)n are (b(1)

−1 = c
(1)
−1 = 0)

(n+ 1)
(
n+ iη +

B2

2

)
b
(1)
n+1 +

[
n (n+B2 − 1) + iωB1 +B3

]
b(1)n + 2iωB1 b

(1)
n−1 = 0, (101b)

(n+ 1)c(1)
n+1 + [n (n+B2 − 1) + iωB1 +B3] c(1)

n + 2iωB1

(
n+ iη +

B2

2
− 1

)
c
(1)
n−1 = 0. (101c)

Notice that the solution U∞1 (z) does not admit finite-series solutions, while the other solutions do.
However, for finite-series it is sufficient to consider only Barber-Hassé solution. On the other hand,
the condition in order that the three expansions in series of confluent hypergeometric functions are
given by infinite series (n ≥ 0) is

iη +
B2

2
is not zero or negative integer, (102)

since in this case the series do not truncate on the left or on right. In addition, if

B2 and
B2

2
− iη are not zero or negative integer, (103)

then Eq. (32) can be used to connect the three one-sided infinite-series solutions.
The Barber-Hassé solution of the second set, obtained from solution (36a), is

Ubarber
2 (z) = eiωz+(B1/z)z2−B2

∞∑
n=0

c(2)n

(
− z

B1

)n

, (104)

where the recurrence relations for c(2)
n are obtained by putting ν = 0 in Eq. (99b). The corresponding

solutions in series of hypergeometric functions can be obtained by taking ν = 0 in the solutions (99a).

IV.B. Applications to the Schrödinger equation

First we consider the QES potential (18) related to quasinormal modes and, after this, the
asymmetric double-Morse potential (16). In addition to the finite-series solutions, once more we look
for infinite-series solutions. We find that for the first case it is sufficient to use one-sided infinite series
and in the second case it is necessary to use two-sided infinite series in order to get infinite-series
solutions bounded for all values of u.

The potential of Cho and Ho. Inserting the potential (18) into Schrödinger equation (15) we find

d2ψ

du2
+

[
E +

b2

4
e2u + (`+ 1)de−u − d2

4
e−2u

]
ψ = 0.

We will show that for d > 0 complex energies corresponding to bounded finite-series solutions are
obtained by treating this equation as a DCHE; in this case infinite-series solutions are not regular at
u = ±∞. However, if d < 0 we find bounded infinite-series solutions given by expansions in regular
hypergeometric functions; in this case the finite-series solutions are unbounded.

The substitutions

z = eu, ψ(u) = e−d/(2z) z−(`+ 1
2
) U(z), z ∈ [0,∞) (105)

transform this equation into a particular case of the DCHE (3), namely,

z2d
2U

dz2
+ [d− 2`z]

dU

dz
+

[
E +

(
1
2

+ `

)2

+
b2

4
z2

]
U = 0,

and then we choose the following set of parameters for the DCHE

B1 = d, B2 = −2`, B3 = E +
(

1
2

+ `

)2

, ω =
b

2
, η = 0 (106)
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(If we take ω = −b/2 the solutions are obtained by changing b by −b in the following ones). Hence,
from Eq. (105) the solutions ψ(u) can be constructed by writing

ψ(u) = exp
[
−d

2
e−u −

(
`+

1
2

)
u

]
U(z = eu), (107)

where U(z) are solutions of the DCHE with the parameters specified in Eq. (106). To get finite-series
solutions we take the Barber-Hassé solution given in Eq. (101a). This yields

ψbarber
1 (u) = exp

[
i
b

2
eu − d

2
e−u −

(
`+

1
2

)
u

] ∑̀
n=0

(−1)nPn

n!

(
eu

d

)n

, d > 0, (108a)

where the recurrence relations for Pn are

P1 = E`P0, E` := E +
(

1
2

+ `

)2

+
i

2
bd,

Pn+1 = [E` + n(n− 2`− 1)]Pn − ibd n(n− `− 1)Pn−1, (n ≥ 1). (108b)

Only if d > 0 this wave function is bounded for any u and, in particular, at u = −∞ where
V (u) → −∞. As the coefficients of these recurrence relations involve imaginary terms, there no
guarantee of real eigenvalues. In effect, taking P0 = 1 as initial condition, we find

P0 = 1, P1 = E`, P2 = E2
` − 2`E` + ibd`,

P3 = E3
` + (2− 6`)E2

` +
[
4`(2`− 1)− ibd(2− 3`)

]
E` − 2ibd`(2`− 1),

and so on. Then, by requiring that P1 = 0 for ` = 0 we obtain

E = −1
4
− i

2
bd ⇒ ψbarber

1 (u) = exp
[
i
b

2
eu − d

2
e−u − 1

2
u

]
, (109a)

and requiring that P2 = 0 for ` = 1 we find

E± = −5
4
− i

2
bd±

√
1− ibd ⇒ ψ±1 (u) =

[
1− 1±

√
1− ibd
d

eu
]

exp
[
i
b

2
eu − d

2
e−u − 3

2
u

]
. (109b)

For d > 0, solutions given by infinite series are discarded because they are not bounded for all values
of u. In fact, we have found no solution regular at u = −∞ (z = 0) where the potential tends to
positive infinity.

In the following we show that, if d < 0, the two-sided solutions (99a) for DCHE with ν = 0 lead
to solutions bounded for all values of u (the solution ψ1 is not valid for this problem). For this, we
insert the solutions (99a) into Eq. (107). This yields

ψ2

(
u
)

= exp
[
−i b

2
eu +

d

2
e−u +

(
`+

3
2

)
u

] ∞∑
n=0

(−1)nb(2)n Φ̃ (`+ 2, n+ 2`+ 4; ibeu) ,

ψ∞2
(
u
)

= exp
[
−i b

2
eu +

d

2
e−u +

(
`+

3
2

)
u

] ∞∑
n=0

(−1)nb(2)n Ψ(`+ 2, n+ 2`+ 4; ibeu) ,

ψ̄∞2
(
u
)

= exp
[
i
b

2
eu +

d

2
e−u +

(
`+

3
2

)
u

] ∞∑
n=0

c(2)n Ψ(n+ `+ 2, n+ 2`+ 4;−ibeu) , (110a)
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where c(2)
n = Γ(n+ `+ 2)b(2)

n , being the recurrence relations for c(2)n given by

(n+ 1)c(2)
n+1 +

[
n(n+ 3 + 2`) + E +

(
`+

1
2

)2

+ 2(`+ 1)− i

2
bd

]
c(2)
n − ibd(n+ `+ 1)c(2)n−1 = 0.

(110b)

In the function Φ̃(a, c; y) the parameters a = `+ 2, c = n+ 2`+ 4 and c− a = n+ `+ 2 are not zero
or negative integers. For this reason, in a region where the three solutions are valid, one solution
can be written as a linear combination of the others by means of Eq. (32). On the other hand, the
solutions ψ2(u) converges for any u and from Φ(a, c; 0) = 1 we find

lim
u→−∞

ψ2(u) ∼ exp
[
−i b

2
eu +

d

2
e−u +

(
`+

3
2

)
u

]
→ 0.

The solutions ψ∞2 (u) and ψ̄∞2 (u) converge only for eu > 0. From Eq. (B2) we find

lim
u→∞

ψ∞2 (u) ∼ exp
[
−i b

2
eu +

d

2
e−u − 1

2
u

]
→ 0, lim

u→∞
ψ̄∞2 (u) ∼ exp

[
i
b

2
eu +

d

2
e−u − 1

2
u

]
→ 0.

Thus, ψ2 vanishes for u → ∞ too, since it can be written as a linear combination of ψ∞2 and ψ̄∞2 .
Therefore, we have found a case where the solution ψ2(u) in series of regular hypergeometric functions
is convergent and bounded for any u provided that the energies satisfy the characteristic equation
which follows from the recurrence relations.

The asymmetric double-Morse potential. For the asymmetric double-Morse potential (16) the
Schrödinger equation becomes

d2ψ

du2
+

[
E− C2

4
+
B2

8
− B2

16
e−2u − B

2

(
C

2
− 1

2
− s

)
e−u +

B

2

(
C

2
+

1
2

+ s

)
eu − B2

16
e2u

]
ψ = 0.

The substitutions [16, 28]

ψ(u) = e−B/(4z)z(C/2)−sU(z), z = eu, z ∈ [0,∞) (111)

transform the previous equation into the DCHE

z2d
2U

dz2
+

[
B

2
+ (1 + C − 2s)z

]
dU

dz
+

[
E +

B2

8
+ s2 − Cs+

B

2

(
C

2
+

1
2

+ s

)
z − B2

16
z2

]
U = 0,

and then we can choose the following set of parameters

B1 =
B

2
, B2 = 1 + C − 2s, B3 = E +

B2

8
+ s2 − sC, iω = −B

4
, iη = −C

2
− 1

2
− s. (112)

Hence, ψ(u) is constructed by inserting into Eq. (111) the solutions of the DCHE with the
parameters specified in Eq. (112) and demanding that these eigenfunctions are bounded for all values
of z. Finite-series solutions are obtained from the Barber-Hasseé expansions as in the previous case.
However, in order to get infinite-series solutions bounded for any value of u, now we have to use at
least two expansions given by two-sided infinite series, in opposition to the previous case.

The first Baber-Hassé solution, given in Eqs. (101a), yields the bounded finite-series solution

ψbarber
1 (u) = e−

B
2

cosh u+(C
2
−s)u

2s∑
n=0

p
(1)
n

n!

(
− 2
B
eu

)n

, (113a)

whose recurrence relations for p(1)
n are ( p

(1)
−1 = 0)

p
(1)
n+1 =

[
E + s2 − sC + n (n+ C − 2s)

]
p(1)

n +
B2

4
(n− 2s− 1) p(1)

n−1. (113b)
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The other Barber-Hassé solution gives an infinite series which is not convergent for u =∞.
On the other hand, in each set of expansions in series of hypergeometric confluent functions,

there are two solutions which allow to cover the entire range of u. Thus, from the solutions (95a) we
obtain

ψ1

(
u
)

= e
B
2

sinh u+(C
2
−s)u

∑
n

(−1)nb(1)n Φ̃
(

1 + C, n+ ν + C − 2s;−B
2
eu

)
,

ψ∞1
(
u
)

= e
B
2

sinh u+(C
2
−s)u

∑
n

(−1)nb(1)
n Ψ

(
1 + C, n+ ν + C − 2s;−B

2
eu

)
,

ψ̄∞1
(
u
)

= e−
B
2

cosh u+(C
2
−s)u

∑
n

c(1)n Ψ
(
n+ ν − 2s, n+ ν + 1 + C − 2s;

B

2
eu

)
, (114a)

where the c(1)
n satisfy the recurrence relations

(n+ ν + 1)c(1)
n+1 +

[
(n+ ν)(n+ ν + C − 2s) + s2 − sC + E

]
c(1)n −

B2

4
(n+ ν − 1− 2s)c(2)

n−1 = 0, (114b)

being c(1)
n = Γ(n + ν − 2s)b(1)

n . These solutions can be connected through Eq. (32) if ν and ν + C
are not integer; such conditions also assure that the series are two-sided infinite series. In addition,
the solution ψ1 is bounded at u = −∞ (z = 0), whereas for u→∞ (z =∞) we find

lim
u→∞

ψ∞1 (u) ∼ e
B
2

sinh u−(C
2

+s−1)u →∞, lim
u→∞

ψ̄∞1 (u) ∼ e−
B
2

cosh u+(C
2

+s−ν)u → 0.

Therefore, ψ1 and ψ̄∞1 cover the entire range of u. From the solutions (99a), we get

ψ2

(
u
)

= e
B
2

cosh u+(1+s−C
2

)u
∑

n

(−1)nb(2)n Φ̃
(

2 + 2s, n+ ν + 3 + 2s− C;−B
2
eu

)
,

ψ∞2
(
u
)

= e
B
2

cosh u+(1+s−C
2

)u
∑

n

(−1)nb(2)n Ψ
(

2 + 2s, n+ ν + 3 + 2s− C;−B
2
eu

)
,

ψ̄∞2
(
u
)

= e−
B
2

sinh u+(1+s−C
2

)u
∑

n

c(2)
n Ψ

(
n+ ν + 1− C, n+ ν + 3 + 2s− C;

B

2
eu

)
, (115a)

where the c(2)
n satisfy the recurrence relations

(n+ ν + 1)c(2)
n+1 +

[
(n+ ν)(n+ ν + 2 + 2s− C) + E +

B2

4
+ s2 − sC − C + 2s+ 1

]
c(2)
n −

B2

4
(n+ ν − C)c(2)n−1 = 0, (115b)

being b(2)
n given by c(2)

n = Γ(n+ ν + 1− C)b(2)n . This time we find

lim
u→∞

ψ∞2 (u) ∼ e
B
2

cosh u−(C
2

+s+1)u →∞, lim
u→∞

ψ̄∞2 (u) ∼ e−
B
2

sinh u+(C
2

+s−ν)u → 0.

If ν is chosen such that ν and ν − C are not integer, the solutions of this second set are given by
infinite series and can be connected by using Eq. (32).

The solutions obtained by choosing iω = B/4 and iη = (C + 1 + 2s)/2 must be discarded.
Actually, we would find that the first parameter in the regular hypergeometric function given in Eq.
(95a) is a = −2s and, therefore, that solution is not valid. Similarly, the first parameter in the
regular hypergeometric function given in Eq. (99a) is a = 1− C and, so, the solution would not be
valid if C is a non-negative integer.
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IV.C. Solutions for the Whittaker-Ince limit of the DCHE

For the Whittaker-Ince limit (7) of DCHE, namely,

z2d
2U

dz2
+ (B1 +B2z)

dU

dz
+ (B3 + qz)U = 0, (q 6= 0, B1 6= 0),

there is no finite-series solutions. For this reason, the equation is irrelevant for quasi-exactly solvable
problems. However, its solutions may be important for studying the scattering of ions which induce
dipole and quadrupole moments in polarizable targets [16]. Solutions for the above equation can be
found by applying either the Whittaker-Ince limit to the solutions given in Sec. IV.A or the Leaver
limit to the solutions (69a-b) and (D6-7). We use the latter approach because it is the easiest.

In effect the Leaver limit z0 → 0 does not modify the solutions (69a), which again read

U1(z) =
∑

n

(−1)nc(1)
n

(√
qz

)−(n+ν+B2−1)
Jn+ν+B2−1

(
2
√
qz

)
, ∀z,

U
(i)
1 (z) =

∑
n

(−1)nc(1)
n

(√
qz

)−(n+ν+B2−1)
H

(i)
n+ν+B2−1

(
2
√
qz

)
, |z| > 0, (116a)

but changes their recurrence relations to

(n+ ν + 1)c(1)
n+1 +

[
(n+ ν)(n+ ν +B2 − 1) +B3

]
c(1)n + qB1c

(1)
n−1 = 0. (116b)

These three solutions are really doubly infinite if ν is not integer. Furthermore, each solution can be
expressed as a linear combination of the others by means of the relation (70).

On the other side, the only detail to get the Leaver limit of the solutions given in Eqs. (D6) is
the use the limit written in Eq. (98). The results are

U2(z) = eB1/z z2−B2
∑

n

(−1)nc(2)
n

(√
qz

)−n−ν−3+B2 Jn+ν+3−B2

(
2
√
qz

)
, ∀z;

U
(i)
2 (z) = eB1/z z2−B2

∑
n

(−1)nc(2)
n

(√
qz

)−n−ν−3+B2 H
(i)
n+ν+3−B2

(
2
√
qz

)
, |z| > 0; (117a)

(n+ ν + 1)c(2)
n+1 + [(n+ ν)(n+ ν + 3−B2) +B3 + 2−B2] c(2)n − qB1c

(2)
n−1 = 0. (117b)

V. CONCLUSIONS

We have started with a set of solutions for the confluent Heun equation (CHE) given by series
of confluent hypergeometric functions and, by means of Leaver and the Whittaker-Ince limits, we
have derived sets of solutions for all the equations included in the diagram described in the first
section. The Barber-Hassé expansions in power series also admit the both limits and have been used
to provide solutions for the cases in which the solutions in hypergeometric functions are not valid,
as well as to get finite-series solutions for the confluent and double-confluent Heun equations.

In the fundamental set of two-sided solutions (U1, U
∞
1 , Ū∞1 ), the first and the second solutions are,

respectively, Leaver’s expansions in series of regular and irregular confluent hypergeometric functions
for the CHE [27], while Ū∞1 is the two-sided version of the expansion in series of irregular functions
given in Ref. [17]. We have seen that, although the solution U1 is not valid if there is a certain
constraint between two parameters of the equation, we can use the transformation rules to find a
two-sided solution valid for that case. We have also established the conditions to express each of the
three solutions as a linear combination of the others.
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The fact that the expansion U1 in series of regular functions converges for any z distinguishes
the present solutions from the Leaver expansions in series of Coulomb wave functions [27], since the
latter converge only for |z| > |z0|. On the other hand, we have seen that

lim
z→∞

U∞1 (z) ∼ e−iωzziη−B2
2 , lim

z→∞
Ū∞1 (z) ∼ eiωzz−iη−ν−B2

2 ,

where ν is the characteristic parameter of the two-sided series. The behavior of U1 when z → ∞ is
given by a combination of these. This explains why U1 is sometimes inappropriate when the variable
z tends to infinity.

All the solutions for the double-confluent Heun equation (DCHE), obtained from solutions of the
CHE through Leaver limit (z0 → 0), are also given by expansions in series of confluent hypergeometric
functions. Then, the analysis used for the solutions of the CHE has been promptly adapted to the
solutions of the DCHE, including the conditions which allow to write one solution of a fixed set as
a linear combination of the others.

We have found one-sided infinite-series solutions for the CHE and DCHE, by truncating the two-
side infinite series on the left. These one-sided solutions can afford finite-series solutions, but the
latter are also suplied by the Barber-Hassé expansions in power series. Then, the one-sided infinite
series become useful only when we need expansions in infinite series, as illustrated in Sec. II.D.

The Whittakker-Ince limit (5) of the CHE and DCHE have generated expansions in series of
Bessel functions of the first kind and in series of the first and second Hankel functions. In this case,
each solution belonging to fixed set can be written as a linear combination of the others without the
need of imposing restrictions on the parameters of the differential equations.

We have applied solutions of the Heun equations to the one-dimensional Schrödinger equation
with quasi-exactly solvable potentials. In addition to the expected finite-series solutions, we have
sought bounded infinite-series solutions. For the volcano-type potential (17) given by Cho and Ho
[8], in Sec. III.C we have found infinite-series wavefunctions which are bounded for any value of the
independent variable, but we have not solved the eigenvalue equations. We have also proved that
there is a pair of degenerate finite-series eigenstates for any value of the parameter ` responsible for
the quasi-exact solvability.

For the potential (18) associated to quasinormal modes, in Sec. IV.B we have found unbounded
infinite-series solutions and bounded finite-series eigenstates for d > 0, as in Cho and Ho [9]. However,
for d < 0 we have found an opposite result: bounded infinite-series solutions and unbounded finite-
series eigenstates.

For the double-Morse potentials (16) we have found that no single infinite-series wavefunction
is bounded for the entire range of the independent variable. Despite this, in Secs. II.D and IV.B
we have seen that it is possible to get a pair of infinite-series solutions, both solutions possessing
the same eigenvalue equation, which covers all the values of the independent variable. A similar
result has already been reported in the literature [15, 17]. However, now we have found that, in
the intermediate region, there is a third solution which can be expressed as a superposition of the
other solutions. This fact may be relevant to match solutions bounded over different regions. On the
other side, it is necessary to investigate the solutions of the characteristic equations in order to know
if in fact we can determine the remaining part of the energy spectrum by using such infinite-series
solutions.

Finally, we mention that the problem of matching different solutions of the CHE appears also in
relativistic astrophysics, more specifically, in the study of the Teukolsky equations in Kerr spacetimes
[30, 31]. Thus, the solutions of the present paper may be important in this context. Inversely, the
procedures used in astrophysics could be useful for the problems considered here.

APPENDIX A: HEUN EQUATIONS AND QUASI-EXACT SOLVABILITY

We consider the Heun equations in their normal or Schrödinger form,[
d2

dz2
+Q(z)

]
y(z) = 0, (A1)
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that is, in the form where there is no first-order derivative term [11]. The function Q(z) for the
general Heun equation and its confluent cases is given in the following [36], where it is understood
that, in general, there exists some constraint among the parametres A, B, and so on. In each case
we indicate the singular points of the equation.

General Heun equation. Four regular singular points at z = 0, 1, a,∞:

Q(z) =
A

z
+

B

z − 1
+

C

z − a
+
D

z2
+

E

(z − 1)2
+

F

(z − a)2
, (a 6= 0 or 1). (A2)

Confluent Heun equation (or generalized spheroidal wave equation). Two regular points at z = 0, 1
and one irregular at z =∞:

Q(z) = A+
B

z
+

C

z − 1
+
D

z2
+

E

(z − 1)2
. (A3)

Double-confluent Heun equation. Two irregular points at z = 0,∞:

Q(z) = A+
B

z
+
C

z2
+
D

z3
+
E

z4
. (A4)

Biconfluent Heun equation. One regular point at z = 0 and one irregular point at z =∞:

Q(z) = Az2 +Bz + C +
D

z
+
E

z2
. (A5)

Triconfluent Heun equation. One irregular point at z =∞:

Q(z) = Az4 +Bz3 + Cz2 +Dz + E. (A6)

Other normal forms are given in the tables constructed by Lemieux and Bose [28] who, however,
have not considered the triconfluent equation. These tables are helpful to recognize whether a given
equation is of the Heun type.

By using the Lemieux-Bose tables in addition to the normal forms written above, it is straight-
forward to establish relations among the Heun and the Schrödinger equations for some quasi-exactly
solvable potentials. We find: (i) a triconfluent Heun equation for the quartic potential given in Eq.
(5.34) of González-López, Kamran and Olver [18]; (ii) biconfluent Heun equations for the sextic
potential V1z

6 + V2z
4 + V3z

2 + V4 + V5/z
2 given by Turbiner [40] and Ushveridze [43], and for the

potentials II, III and VIII given in Turbiner’s list [40]; (iii) double-confluent Heun equations for the
inverse fourth-power potential V (r) = V1r

−4+V2r
−3+V3r

−2+V4r
−1 [39, 40], and for the asymmetric

double-Morse potential given by Zaslavskii and Ulyanov [46]; (iv) confluent Heun equations for the
trigonometric and hyperbolic potentials given by Ushveridze [42]; (v) general Heun equations in the
Darboux elliptic form [10] for the first and second Ushveridze’s elliptic potentials [42].

APPENDIX B: PROPERTIES OF CONFLUENT HYPERGEOMETRIC FUNCTIONS

The regular and irregular confluent hypergeometric functions, denoted by Φ(a, c; y) and Ψ(a, c; y),
satisfy the Kummer transformations

Φ(a, c; y) = eyΦ(c− a, c;−y), Ψ(a, c; y) = y1−cΨ(1 + a− c, 2− c; y). (B1)

The behavior of of Ψ(a, c; y) and Φ(a, c; y) when y →∞ is given by

lim
y→∞

Ψ(a, c; y) ∼ y−a[1 +O(|y|−1)],
(
−3π

2
< arg y <

3π
2

)
(B2)

lim
y→∞

Φ(a, c; y) =


Γ(c)
Γ(a)

eyya−c[1 +O(|y|−1)], (<y > 0)

Γ(c)
Γ(c− a)

(−y)−a[1 +O(|y|−1)], (<y < 0).

(B3)
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These can be used to get the limits of the series expansions as y → ∞. For <y = 0, the limit of
Φ(a, c; y) is a combination of the limits on the right-hand side of the previous expression [13].

To find the expansions in series of irregular confluent hypergeometric functions for the CHE, in
addition to Eq. (28) we need the relations

y
dΨ(a, c; y)

dy
= (1− c)Ψ(a, c; y) + (c− a− 1)Ψ(a, c− 1; y), (B4)

dΨ(a, c; y)
dy

= Ψ(a, c; y)−Ψ(a, c+ 1; y), (B5)

[c− a− 1]Ψ(a, c− 1; y) + [1− c− y]Ψ(a, c; y) + yΨ(a, c+ 1; y) = 0, (B6)

where the last relation results from the first and second ones. These relations also hold for the
functions Φ̃(a, b; y) defined in Eq. (42). On the other hand, if c → ∞, while a and y remain
bounded, we have [13]

Ψ(a, c; y) = (−c)−a
[
1 +O(|c|−1

]
+
√

2π
Γ(a)

cc−(3/2)y1−cey−c
[
1 +O(|c|−1

]
(B7)

which, in conjunction with Eq. (B6), is useful in the study of the convergence of the series solutions
for the CHE.

The Whittaker-Ince limit of the expansions in series of confluent hypergeometric functions for
the CHE and DCHE yields expansions in series of Bessel functions for Eqs. (6) and (7) by means of
the limits [13]

lim
a→∞

Φ
(
a, c;−y

a

)
= Γ(c) y(1−c)/2Jc−1

(
2
√
y
)
, (B8)

lim
a→∞

[
Γ(a+ 1− c) Ψ

(
a, c;

y

a

)]
= 2y(1−c)/2Kc−1

(
2
√
y
)
, (B9)

lim
a→∞

[
Γ(a+ 1− c) Ψ

(
a, c;−y

a

)]
=


−iπeiπcy(1−c)/2H

(1)
c−1

(
2
√
y
)
, Im y > 0,

iπe−iπcy(1−c)/2H
(2)
c−1

(
2
√
y
)
, Im y < 0,

(B10)

where Jλ denotes the Bessel functions of the first kind of order λ, Kλ are modified Bessel functions of
the third kind, whereas H(1)

λ and H(2)
λ denote the first and second Hankel functions [14], respectively.

Some relations useful for Sec. III.B are

H
(1)
−λ(x) = eiπλH

(1)
λ (x), H

(2)
−λ(x) = e−iπλH

(2)
λ (x),

Kλ(−ix) =
1
2
πie

1
2
πiλH

(1)
λ (x), Kλ(ix) = −1

2
πie−

1
2
πiλH

(2)
λ (x). (B11)

Bessel functions whose order is half of an odd integer reduce to combinations of elementary functions.
The following formulas [14] are used in Sec. III.C (m = 0, 1, 2, · · · ):

Jm+ 1
2
(x) = (−1)m

√
2
πx

xm+1

(
d

xdx

)m sinx
x

, J−m− 1
2
(x) =

√
2
πx

xm+1

(
d

xdx

)m cosx
x

; (B12)

H
(1)

m+ 1
2

(x) = −i(−1)m

√
2
πx

xm+1

(
d

xdx

)m eix

x
, H

(1)

−m− 1
2

(x) = i(−1)mH
(1)

m+ 1
2

(x); (B13)
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H
(2)

m+ 1
2

(x) = i(−1)m

√
2
πx

xm+1

(
d

xdx

)m e−ix

x
, H

(2)

−m− 1
2

(x) = −i(−1)mH
(2)

m+ 1
2

(x). (B14)

Some special cases are

J− 1
2
(x) =

√
2
πx

cosx, H
(1)

− 1
2

(x) =

√
2
πx

eix, H
(2)

− 1
2

(x) =

√
2
πx

e−ix, (B15)

J 1
2
(x) =

√
2
πx

sinx, H
(1)
1
2

(x) = −i
√

2
πx

eix, H
(2)
1
2

(x) = i

√
2
πx

e−ix. (B16)

APPENDIX C: OTHER SOLUTIONS FOR THE CONFLUENT HEUN EQUATION

In order to generate other solutions for the CHE we use the transformations rules resulting from
substitutions of variables which leave the form of the CHE unaltered but change its parameters.
Thus, if U(z) = U(B1, B2, B3; z0, ω, η; z) denotes one solution of the CHE in the Leaver form (3), we
have the rules T1, T2, T3 and T4 which operate as [17]

T1U(z) = z1+B1/z0U(C1, C2, C3; z0, ω, η; z), z0 6= 0, (C1)

T2U(z) = (z − z0)1−B2−B1/z0U(B1, D2, D3; z0, ω, η; z), z0 6= 0, (C2)

T3U(z) = U(B1, B2, B3; z0,−ω,−η; z), ∀z0, (C3)

T4U(z) = U(−B1 −B2z0, B2, B3 + 2ηωz0; z0,−ω, η; z0 − z), ∀z0, (C4)

where

C1 = −B1 − 2z0, C2 = 2 +B2 +
2B1

z0
, C3 = B3 +

(
1 +

B1

z0

) (
B2 +

B1

z0

)
,

D2 = 2−B2 −
2B1

z0
, D3 = B3 +

B1

z0

(
B1

z0
+B2 − 1

)
. (C5)

Applying these rules to the basic set (43a) we may generate a group containing 16 sets of solutions
for the CHE, while for the two-sided expansions in series Coulomb wave functions [27] and in series
of hypergeometric functions [15] we can generate only 8 solutions. We will write only the subgroup
obtained by using the rules T1 and T2 in this order:

(
U1, U

∞
1 , Ū∞1

) T1←→
(
U2, U

∞
2 , Ū∞2

) T2←→
(
U3, U

∞
3 , Ū∞3

) T1←→
(
U4, U

∞
4 , Ū∞4

)
(C6)

where
(
U1, U

∞
1 , Ū∞1

)
denotes the first set of solutions (43a).

In each of the following sets, the conditions for doubly infinite series are obtained by choosing
ν such that the coefficients of c(i)n and c

(i)
n−1 do not vanish in the recurrence relations. Besides

this, one solution can be expressed as a linear combination of the others, if a, c and c − a are not
negative integers, where a and c are respectively the first and the second parameters of the confluent
hypergeometric functions: these conditions lead to some restrictions on the values of ν as well as
on the parameters of the CHE. Despite the notation, it is understood that the parameter ν may be
different in each set of solutions.

The second set of solutions admits the Whittaker-Ince limit but does not admit the Leaver limit.
It reads

U2(z) = e−iωzz
1+

B1
z0

∑
n

(−1)nb(2)
n Φ̃

(
1− iη +

B1

z0
+
B2

2
, n+ ν + 2 +B2 +

2B1

z0
; 2iωz

)
,
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U∞2 (z) = e−iωzz
1+

B1
z0

∑
n

(−1)nb(2)
n Ψ

(
1− iη +

B1

z0
+
B2

2
, n+ ν + 2 +B2 +

2B1

z0
; 2iωz

)
,

Ū∞2 (z) = eiωzz
1+

B1
z0

∑
n

c(2)
n Ψ

(
n+ ν + 1 + iη +

B1

z0
+
B2

2
, n+ ν + 2 +B2 +

2B1

z0
;−2iωz

)
, (C7)

where the recurrence relations for c(2)
n are

(n+ ν + 1)c(2)
n+1 +

[
(n+ ν)

(
n+ ν + 1 + 2iωz0 +B2 +

2B1

z0

)
+B3 +

(
1 +

B1

z0

) (
B2 +

B1

z0

)

+iωz0

(
B2 +

B1

z0

) ]
c(2)
n + 2iωz0

(
n+ ν +B2 +

B1

z0
− 1

) (
n+ ν + iη +

B1

z0
+
B2

2

)
c
(2)
n−1 = 0. (C8)

The recurrence relations for b(2)
n are obtained from the previous ones by

c(2)
n = Γ

(
n+ ν + 1 + iη +

B1

z0
+
B2

2

)
b(2)n . (C9)

The third set of solutions, which admits both the Leaver and Ince-Whittaker limits, is

U3(z) = e−iωz(z − z0)
1−B2−B1

z0 z
1+

B1
z0

∑
n

(−1)nb(3)
n Φ̃

(
2− iη − B2

2
, n+ ν + 4−B2; 2iωz

)
,

U∞3 (z) = e−iωz(z − z0)
1−B2−B1

z0 z
1+

B1
z0

∑
n

(−1)nb(3)n Ψ
(

2− iη − B2

2
, n+ ν + 4−B2; 2iωz

)
,

Ū∞3 (z) = eiωz(z − z0)
1−B2−B1

z0 z
1+

B1
z0

∑
n

c(3)n ×

Ψ
(
n+ ν + 2 + iη − B2

2
, n+ ν + 4−B2;−2iωz

)
, (C10)

where the c(3)
n satisfy

(n+ ν + 1)c(3)
n+1 +

[
(n+ ν) (n+ ν + 3−B2 + 2iωz0) + iωz0

(
2−B2 −

B1

z0

)
+

B3 + 2−B2

]
c(3)
n + 2iωz0

(
n+ ν + 1−B2 −

B1

z0

) (
n+ ν + 1 + iη − B2

2

)
c
(3)
n−1 = 0 (C11)

and the recurrence relations for b(3)
n follow from

c(3)
n = Γ

(
n+ ν + iη + 2− B2

2

)
b(3)n . (C12)

The fourth set of solutions is

U4(z) = f(z) e−iωz
∑

n

(−1)nb(4)
n Φ̃

(
1− iη − B1

z0
− B2

2
, n+ ν + 2−B2 −

2B1

z0
; 2iωz

)
,
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U∞4 (z) = f(z) e−iωz
∑

n

(−1)nb(4)
n Ψ

(
1− iη − B1

z0
− B2

2
, n+ ν + 2−B2 −

2B1

z0
; 2iωz

)
,

Ū∞4 (z) = f(z) eiωz
∑

n

c(4)
n Ψ

(
n+ ν + 1 + iη − B1

z0
− B2

2
, n+ ν + 2−B2 −

2B1

z0
;−2iωz

)
, (C13)

where

f(z) = (z − z0)
1−B2−B1

z0 ;

and the recurrence relations for c(4)
n are

(n+ ν + 1)c(4)
n+1 +

[
(n+ ν)

(
n+ ν + 1−B2 − 2B1

z0
+ 2iωz0

)
+B3 + B1

z0

(
B2 + B1

z0
− 1

)
+

iωz0

(
2−B2 − B1

z0

) ]
c
(4)
n + 2iωz0

(
n+ ν + 1−B2 − B1

z0

) (
n+ ν + iη − B2

2 −
B1
z0

)
c
(4)
n−1 = 0.

(C14)

The b(4)
n and c(4)

n are connected by

c
(4)
n = Γ

(
n+ ν + iη + 1− B2

2 −
B1
z0

)
b
(4)
n . (C15)

APPENDIX D: OTHER SOLUTIONS FOR THE WHITTAKER-INCE LIMIT OF THE CHE

If U(z) = U(B1, B2, B3; z0, q; z) denotes one solution (or set of solutions) for Whittaker-Ince limit
(6) of the CHE, then the rules T1, T2 and T3 given by

T1U(z) = z1+B1/z0U(C1, C2, C3; z0, q; z), z0 6= 0, (D1)

T2U(z) = (z − z0)1−B2−B1/z0U(B1, D2, D3; z0, q; z), z0 6= 0, (D2)

T3U(z) = U(−B1 −B2z0, B2, B3 − qz0; z0,−q; z0 − z), (D3)

can generate a group having 8 solutions. The constants Ci and Di are defined in Eqs. (C5 ). Next
we use only T1 and T2, following the sequence(

U1, U
(i)
1

)
T1←→

(
U2, U

(i)
2

)
T2←→

(
U3, U

(i)
3

)
T1←→

(
U4, U

(i)
4

)
T2←→

(
U1, U

(i)
1

)
,

where (U1, U
(i)
1 ) denotes the set of solutions written in Eqs. (69a) and (69b). The conditions for

having doubly infinite series are obtained by choosing ν such that the coefficients of c(i)n and c(i)n−1 do
not vanish in the recurrence relations, as in the case of the CHE. Besides this, according to Eq. (70)
one solution can be expressed as a linear combination of the other solutions. The solutions for the
Mathieu equation are derived by using Eq. (72).

The second set of solutions resulting from previous procedure is

U2(z) = z
1+

B1
z0

∑
n

(−1)nc(2)
n

(√
qz

)−n−ν−1−B2− 2B1
z0 J

n+ν+1+B2+
2B1
z0

(
2
√
qz

)
, ∀z,

U
(i)
2 (z) = z

1+
B1
z0

∑
n

(−1)nc(2)
n

(√
qz

)−n−ν−1−B2− 2B1
z0 H

(i)

n+ν+1+B2+
2B1
z0

(
2
√
qz

)
, |z| > |z0|; (D4)
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(n+ ν + 1)c(2)
n+1 +

[
(n+ ν)

(
n+ ν +B2 + 1 +

2B1

z0

)
+B3 +

(
1 +

B1

z0

) (
B2 +

B1

z0

)]
c(2)n +

qz0

(
n+ ν +B2 +

B1

z0
− 1

)
c
(2)
n−1 = 0. (D5)

For the Mathieu equation the corresponding solutions are even, as those of the first set, since

w2(u) = cos (σu)
∑

n

(−1)nc(2)
n

[
k cos(σu)

]−n−ν−1
Jn+ν+1

(
2k cos(σu)

)
, ∀u,

w
(i)
2 (u) = cos (σu)

∑
n

(−1)nc(2)
n

[
k cos(σu)

]−n−ν−1
H

(i)
n+ν+1

(
2k cos(σu)

)
, | cos(σu)| > 1;

(n+ ν + 1)c(2)
n+1 +

[
(n+ ν)(n+ ν + 1) +

k2

2
+

1− a
4

]
c(2)n + k2

[
n+ ν − 1

2

]
c
(2)
n−1 = 0.

Third set, which admits the Leaver limit z0 → 0 as the first set, reads

U3(z) = z
1+

B1
z0 (z − z0)

1−B2−B1
z0

∑
n

(−1)nc(3)n

(√
qz

)−n−ν−3+B2 Jn+ν+3−B2

(
2
√
qz

)
, ∀z,

U
(i)
3 (z) = z

1+
B1
z0 (z − z0)

1−B2−B1
z0

∑
n

(−1)nc(3)n

(√
qz

)−n−ν−3+B2 H
(i)
n+ν+3−B2

(
2
√
qz

)
,

|z| > |z0|; (D6)

(n+ ν + 1)c(3)
n+1 + [(n+ ν)(n+ ν + 3−B2) +B3 + 2−B2] c(3)

n +

qz0

(
n+ ν + 1−B2 −

B1

z0

)
c
(3)
n−1 = 0. (D7)

For the Mathieu equation, these give odd solutions:

w3(u) = sin (2σu)
∑

n

(−1)nc(3)
n

[
k cos(σu)

]−n−ν−2
Jn+ν+2

(
2k cos(σu)

)
, ∀u,

w
(i)
3 (u) = sin (2σu)

∑
n

(−1)nc(3)
n

[
k cos(σu)

]−n−ν−2
H

(i)
n+ν+2

(
2k cos(σu)

)
, | cos(σu)| > 1;

(n+ ν + 1)c(3)
n+1 +

[
(n+ ν)(n+ ν + 2) +

k2

2
− a

4
+ 1

]
c(3)n + k2

[
n+ ν +

1
2

]
c
(3)
n−1 = 0.

The fourth set of solutions is

U4(z) = (z − z0)
1−B2−B1

z0

∑
n

(−1)nc(4)
n

(√
qz

)−n−ν−1+B2+
2B1
z0 J

n+ν+1−B2− 2B1
z0

(
2
√
qz

)
, ∀z,

U
(i)
4 (z) = (z − z0)

1−B2−B1
z0

∑
n

(−1)nc(4)n

(√
qz

)−n−ν−1+B2+
2B1
z0 H

(i)

n+ν+1−B2− 2B1
z0

(
2
√
qz

)
,

|z| > |z0|; (D8)
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(n+ ν + 1)c(4)
n+1 +

[
(n+ ν)

(
n+ ν + 1−B2 −

2B1

z0

)
+B3 +

B1

z0

(
B2 +

B1

z0
− 1

)]
c(4)n +

qz0

(
n+ ν + 1−B2 −

B1

z0

)
c
(4)
n−1 = 0. (D9)

For the Mathieu equation, these also give odd solutions:

w4(u) = sin (σu)
∑

n

(−1)nc(4)
n

[
k cos(σu)

]−n−ν−1
Jn+ν+1

(
2k cos(σu)

)
, ∀u,

w
(i)
4 (u) = sin (σu)

∑
n

(−1)nc(4)
n

[
k cos(σu)

]−n−ν−1
H

(i)
n+ν+1

(
2k cos(σu)

)
, | cos(σu)| > 1;

(n+ ν + 1)c(4)
n+1 +

[
(n+ ν)(n+ ν + 1) +

k2

2
− a− 1

4

]
c(4)n + k2

[
n+ ν +

1
2

]
c
(4)
n−1 = 0.
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