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Abstract

The components of a quantum computer are quantum subsystems which have a
complex internal structure. This structure is determined by short-range interactions
which are appropriately described in terms of local gauge fields of the first kind.
Any modification of the subsytems would produce, in general, a local error in the
quantum state of the computer. We propose a general treatement of the local errors
produced by a gauge multiplet in the framework of algebraic quantum field theory.
A recovery operator is constructed from the first principles.
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The quantum computer is operational providing the errors in stocking and manipulat-
ing the information are known and can be controled. Classifying and and correcting the
quantum errors is a crucial problem for practical reasons as well as for defining rigorously
an Universal Quantum Computer. Most of the errors that alter the memory register or
the output of the quantum computation are due to the small scale of the computer sub-
systems and to their sensitivity to the interaction with the environment and with each
other. The decoherence of the quantum state of the computer and the uncertainty in the
unitary evolution of it have been studied for spin 1

2
-systems [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

and higher spin systems [12, 13, 14, 15]. Other effects that can alter the information as
the quantum chaos [16, 17, 18], the self-interaction among various qubits [17, 19] and the
changes in the continuous variables of the system [20, 21, 22, 23] have been considered
and the codes to correct them have been written down. A general observation that can
be drawn from the above studies is that long rage (electromagnetic) and/or non-linear
interactions are responsible for the alterations in quantum states of the processing unit.
This statement resumes the idea that the quantum computers are ”small, sensitive and
easily perturbed”. However, one may ask whether the short-range interactions affect in
any way the precission of quantum computations. While it is common to think that the
”computer parts” (atoms, molecules or nuclei) are ”unchangeble” subsystems (and for
most of practical purposes this true), the fact is that they are not completly stable. Due
to their internal structure, they can change their state (like through spontaneous emis-
sion or decayment) and thus alter the state of the registrer memory. The purpose of this
letter is to put this question into a more formal frame and to discuss the possibility of
constructing recovery operators for this type of errors.

The parts of a quantum computer are complex subsystems hold together by internal
interactions. If we think to nuclei, which form subsystems of any quantum computer
considered up to now, the most important role is played by gauge fields which produce
local interactions and are nonlinear. In general, a modification of the state of the nuclei
would induce a modification of the quantum state of the computer, as, for example, a
spontaneous emission that would carry away spin quantum number. However, from the
point of view of the computer, the change in its state is a local one as long as the long-range
interactions are ignored. Therefore, it is natural to consider that the error is produced
by local field operators and that the state of the computer is assigned to a vector in the
Hilbert space of the field theory. The basic objects of the field theory are the observables
which can be constructed starting from field operators. There are three basic principles
that this theory should obey: the principle of locality, the principle of causality and the
principle of gauge invariance which guarantee that the effects in the quantum computer
are local, that they concearn the subsystems of the computer and that the quantum field
theory we are dealing with is a known one. Formally, the principle of locality states that
to any open and finite extended region of space-time Σ one can associate a *-algebra of
observables O(Σ) and a *-algebra of fields F(Σ). (The involution * is necessary in order
to define the conjugates of fields.) One can define global algebras over the full volume of
the computer or any of its subsystems by considering the norm closed unions

O = ∪O(Σ) , F = ∪F(Σ). (1)

The principle of causality states that for any two space-like separated regions of space-
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time Σ1 and Σ2 the corresponding algebras of observables commute with each other, i.e.
[O(Σ1),O(Σ2)] = 0. The principle of gauge invariance tells us that there is a represen-
tation of a gauge group G (denoted for simplicity with the same letter) that acts on the
algebra of fields F(Σ). The algebra O(±) is gauge invariant and since we assume that
the observables are constructed out of fields, it is the gauge invariant part of the algebra
F(Σ). If we want to describe the effects of short-range interactions we can limit ourselves
to the gauge groups SU(2) or SU(3). However, we can keep the discussion more general
by working with groups having the same property, i.e. compact groups. Therefore, in
what follows G will be a compact gauge group that defines a gauge symmetry of first kind,
i. e. which excludes the long range interactions. Under these assumptions the setting of
the problem is the algebraic field theory [24]. As was shown in [25, 26, 27, 28] the algebra
F is generated by a gauge multimplet {Ψi}, i = 1, 2, . . . , n and O. From the principlest
of locality and causality it follows that the multiplet should generate a Cuntz algebra Od

[29], i.e. it should satisfy the following relations [25, 26]
∑

i

ΨiΨ
†
i = 1

Ψ†
iΨj = δij . (2)

There is a canonical endomorphism of the algebra O which defines the density matrix for
any field A ∈ F

ρ(A) =
∑

i

ΨiAΨ
†
i (3)

and which satisfy the following relation for any Ψ and any A

ΨA = ρ(A)Ψ. (4)

Let us assume that the computer is prepared in the initial pure state |φI〉. The errors
induced by the field are obtained by acting on the initial state with products of the field
operators, i. e. elements of the algebra F . For simplicity, we will consider in what follows
only the action of the generators Ψi of Od. Thus, the system evolves to a state ρF given
by

ρF =
∑

i

ΨiρIΨ
†
i , (5)

where ρI is the density matrix associated to the initial vector state. We remark from (2)
that the set of operators Ψi form a superoperator. Due to this structure, it is apprpriate
to correct the error by the recovery operator method, i.e. to construct a set of operators
{Ra} that projects the wrong state ρF back to the initial state [31]. Note firstly that one
can associate a projector Pi to each field operator Ψi defined by the following relation

Pi = ΨiΨ
†
i , P 2

i = P †
i = Pi, (6)

with the following action on any density matrix

ρ �→ ρP =
∑

i

PiρPi. (7)

The set of projectors {Pi} projects the state ρF to itself and map any other state ρ = ρF

to a different state. To determine the recovery operator we require that the fidelity of the
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state obtained by acting with the recovery operator on ρF be maximum, i.e. equal to the
norm of |φI〉. The fidelity of a state ρ is defined as the sqare of the norm of the element
matrix of it in the inital state

F (φI , ρ) = 〈φI |ρ|φI〉 . (8)

Consider the following linear combinations of the projectors Pi

Ra =
∑

i

αaiPi (9)

where a = 1, 2, . . . , s belongs to a discrete set and αai are complex numbers. {Ra} map
ρF to the state ρR by the usual action of the operators on matrix densities

ρF �→ ρR =
∑
a

RaρFR
†
a. (10)

The initial state is recovered by Ra’s if

F (φI , ρR) = 〈φI |ρI |φI〉 . (11)

Assume for simplicity that the norm of the initial state is one. Then (11) is equivalent to
the following relation ∑

a

∑
i

|αai|2 |ΨiI |2 = 1, (12)

where ΨiI = 〈φI |Ψi|φI〉. The relation (12) represent a constraint on the moduli of the
complex coefficients αai in terms of the known gauge multiplet and the initial state. If a
hole subset C of the Hilbert space is recovered by the operators Ra’s, then (12) should
hold for any |φI〉 from C. Suppose that C form a linear subspace of finite dimension k of
the Hilbert space of the field theory. By picking up a basis {|εA〉} of it, one can determine
the constants αai’s, and consequently the operators Ra’s, up to some phase factors, by
solving the corresponding linear system

∑
a

∑
i

|αai|2 |ΨiA|2 = 1 , A = 1, 2, . . . , k. (13)

The number M of the operators Ra depends on the dimension k of C and one should seek
for its minimum value M = k for which there are sufficient equations in (13) to determine
the moduli of the coefficients αai.

There is one more constraint that can be imposed naturally on the recovery operator
and it comes from the gauge structure of the theory. Firstly, note that the fidelity is gauge
invariant

F (φ′
I , ρ

′
R) = F (φI , ρR), (14)

where the transformations of the states and fields given by the following relations

|ψ〉 �→ |ψ′〉 = g |φI〉 (15)

Ψi �→ Ψ′
i = gΨig

−1 (16)
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for any g ∈ G. Since the norm of the initial state is also gauge invariant, the equations
(12) and (13) are also gauge invariant as they should be. Consider next the following
isometry of the algebra F [30]

S =
1√
d!

∑

q∈P (d)

sign(q)Ψq(1)Ψq(2) . . .Ψq(d), (17)

where P (d) is the permutation group of d elements. S is a gauge invariant object of F
[28, 30] and it acts on the initial state as

ρI �→ ρS = SρIS
†. (18)

Now consider the following transformations: act firstly with a gauge transformation (15)
and (16) and then apply the gauge invariant isometry (17). Since S is an gauge invariant
operator, we would like that the recovery operator R′

a obtained from (16) maximizes the
fidelity on the gauge transformed initial state |ψ′〉

F (φ′
I , ρ

′
RS) = 〈φ′

I |ρ′S|φ′
I〉 . (19)

It is an elementary exercise to show that (19) is equivalent to the same equation for the
untrasformed objects. After a simple algebra we obtain the following relation from (19)

M∑
a=1

∑

q,r∈P (d)

1

d!
sign(q)sign(r)αaq(1)α

∗
ar(1) ×

〈
Ψq(1) · · ·Ψq(d)

〉
I

〈
Ψ†

q(d) · · ·Ψ†
q(1)

〉
I
= 1, (20)

where 〈· · ·〉I is a shorthand notation for 〈φI |· · ·|φI〉. We interpret (20) as a constraint on
the complex coefficients αaI .

The equations (12), (13) and (20) represent the main result of the present work. They
are based on the Ansatz in (9). While (12) and (13) provide the linear equations for
determining the coefficents in the recovery operator R = {Ra} for a = 1, 2, . . . ,M = k up
to some phase factors, the relation (20) is obtained from the gauge symmetry of the field
operators. It states that under an arbitrary gauge transformation and a gauge invariant
transformation the recovery operator continues the remain so. The dimension of the
code space C fixes the number of operators Ra. The equations (12), (13) and (20) were
determined from general principles of the Algebraic Quantum Field Theory and from
the requirement that the fidelity is maximized for any state from the code space. The
interpretation of R is that of the recovery operator for the internal errors produced by
local gauge fields. They alter the state of the computer either by changing the states of
quantum subsystems or by changing locally the general state of memory registrer. The
physics behind the present description is that of modifications in the internal state of the
subsystems of the computer induced by short-distance interactions. Mathematically, we
have been working in the frame of the algebraic quantum field theory.

It remains open the discussion about the errors induced by the algebra of observables
O. On general grounds, we would expect that they produce similar errors as the local
fields. However, the algebra of observables does not have, in general, the structure of
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a Cuntz algebra. Another interesting class of internal error is that produced by non-
linearities in the fields that are responsible for the internal structure of the quantum
components of the computer. We hope clarify these issues somewhere else [37].

I would like to thank J. A. B. de Oliveira for general discussions and to J. A. Heläyel-
Neto for comments and for his warm hospitality at GFT-UCP and DCP-CBPF during
the period of ellaboration of this work. I also acknowledge a FAPESP postdoc fellowship.
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