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Abstract

We pumerically discuss the ideal paramagnet (N noninteracting localized spins in
the presence of an external maguetic field} within the recently generalized statistical
mechanics framework (canonical ensemble). Both specific heat (generalized Schottky
anomaly) and isothermal magnetic susceptibility (generalized Curie law) are calculated,
in particular, close to the thermodynamic limit (N > 1). Evidence for the existence of
such limit is provided for the first time within the generalized statistics. In addition to

this, within a molecular-field approximation, we have generalized the Curie-Weiss law.

Keywords: Generalized Entropy; Nonextensive Thermodynarmics; ldeal Paramagnet;
Curie-Weiss Law.
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1. Introduction

Since more than one decade, the need for alternative {ponextensive) thermodynamics
is intensively developing in Physics. This is notorious in the areas of Cosmology and Grav-
itation (e.g., black holes, superstrings [1,2]), Astropbysics (d = 3 gravitational N-body
problem [3]), Levy random walks [4], vortex problems [5] and, more generally speaking, in
systems which involve long-ranged interactions (e.g., stability of a sandpile). Along this
line, two (formal) constructions are (up to now indepeadently) growing in the literature,
namely Quantum Groups, and the Generalized Statistical Mechanics to which the present
work is devoted.

Quantum Groups are generalized standard Lie groups and algebras {6-19], which con-
stitute the formal basis for generalized mechanics. Although finite-temperature discus-
sions are available (see [19] and references therein), the emphasis is put on mechanical

(and not thermodynamical) grounds. They have found applications in the inverse scatter-

ing method, vertex models, anisotropic spin chain Hamiltonians, kaot theory, conformed
field theory, heuristic phenomenology of deformed molecules and nuclei, non-commutative
approach to quantum gravity and anyons, and the discussion of the existence of dark mat-
ter. Within Quantum Groups, nonextensivity appears through the introduction of a (real
or complex) parameter gg (we shall use here ¢g, instead of the traditional notation g, to
avoid confusion with the g-parameter we shall soon introduce in the entropy) which yields
gc-deformations, gg-oscillators, gg-rotators, gg-calculcus, etc. The standard extensive cal-
culus is recovered in the gz — 1 limit. Also, Quantum Groups might be connected, for
real gg > 1, {13] to theé possible existence of a discrete space-time, the minimal space step
being proportional to (¢g — 1) and the minima! time step being proportional to (g — 1)%.
Along this line, Quantum Groups might be relevant to the alrcady vast literature explor-
ing discontinuous (or continuous but not differentiable} space-time, discrete (classical,
quantum, relativistic) mechanics and related matters [20-33].

Similar conpections might exist with the other nonextensive formalism mentioned
above, namely the Generalized Statistical Mechanics and Thermodynamics. Inspired by
the fact that powers of the probabilities are relevant quantities for multifractals [34-39],
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one of us proposed [40] a generalized expression for the entropy, namely

R L
S,=k!-—q§:%”’-= i (ge®) Q)

where {p,} are the probabilities associated with the W microscopic configurations that
might occur in the system, and k is a conventional positive constaat. Eq. (1) recovers,
for ¢ — 1, the well-known Shannon expression, §; = ~kp ¥, psInp,. Next, we briefly

review the main properties that S, satisfies.
(1) Sq 20 ’ Vq ’ V{Pa}

(ii) Equiprobability (ie., p, = 1/W , Vs) extremizes S, , Vg {maximal for ¢ > 0,

minimal for ¢ < 0, and constant for ¢ = 0).

(iii) S, is expansible for ¢ > 0, i.e,

Sq(phph' "aPW'.lo) = Sq(phph“'pr) . (2)

(iv) S, is concave (convex) for all {p,} if ¢ > 0 (g < 0), a fact which garantees

thermodynamic stability for the system.

(v) H-theorem: under quite general conditions [41-43], dSy/dt 2 0, = 0 and < 0,
if ¢ >0, =0 and < 0, respectively (t being the time).

(vi) I £ and I’ are two independent systems (i.e., pzur’ = pzfr, Where j denotes the

density operator, whose eigenvalues are the {p.}), S, is pseudo-additive, i.e.,

SEUE' ST ST’ ST 52‘
Se  _ Y .2 Lq_ee
e T 0 3)

Consequently, the entropy is generically extensive if and only if ¢ = 1. Forg <1 we

have Sf"’z' > Sf + S;:', i.e., the entropy is superadditive, as desired in black hole

and superstring problems [1,2].
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(vii) Microcanonical ensemble: if p, = 1/W, Vs, we have [40]

wi-e -

— (4)

S,=k

In the ¢ — 1 limit, this expression recovers the celebrated Boltzmann expression,
S, =kghhW.

(viii) Canonical ensemble: the optimization of S; under the constraints, Trp = 1 and
Te(p9H) = (M), = U, [44], yields, for ¢ < 1 and B % 0, the generalized equilibrium
distribution [40,44]

[ n-sa-gHe-0yz,, i 1-B(1-qH>0,
p= _ (5a)
e, otherwise ,
with
Z,=Te[1 - (1 - QH]/O 0, (5b)

where 8 = 1/kT is a Lagrange parameter. In the ¢ — 1 limit, this expression
recovers the Boltzmann-Gibbs distribution g = exp(—H)/2,. f ¢>1and 20,
Eq. {5a) is replaced by

p= (5¢)

[1-A(1—-HMNO-9/Z,, i 1-p(1-q)E >0,
Si./91 otherwise ,

where E; is the lowest eigenvalue of H, gi is the associated degeneracy, and §,, equals

unity if state s has eigenvalue E; and equals zero otherwise. Ifg>1and 8 <0, Eq.

(5a) becomes
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5o { - B0 - ROz, W 1=BU=DE>0,

Snalgn otherwise ,

where E, is the highest eigenvalue of ¥, g» is the associated degeneracy, and &,
equals unity if state s has eigcnvalue E, and equals zero otherwise. Excepling
for extremely pathological cases (which are out of the scope of the present work)
the pegative (positive) temperature region is pbysically accessible only if Ex (E1)
is finite, i.e., if the energy spectrum {E,} has an upper (lower) bound. It can be
shown [44] that, in general,

1 _ 85,
T au, ° ©)
9 211
U= -3 M
‘and
1211 '
F" = Uq - TS' = —E-—'i—:;-‘ . (8)

Besides the above properties, the present generalized statistics has been shown to: (i)
leave form-invariant, for all values of ¢, the Ehrenfest theorem [45] and the von Neumano
equation [46]; (ii) satisfy Jaynes Information Theory duality relations [45) (necessary for
the corresponding entropy to be considered as a measure of the (lack of ) information); (iii)
yield generalized Bogolyubov inequality [47], Langevin and Fokker-Planck equations (48],
single-site Callen identity {49}, quantum statistics [50], fluctuation-dissipation theorem
[51], and a criterion for consistent nonparametric testing [52]. In addition to these prop-

erties, Plastino and Plastino have pointed [53] that ¢ # 1 Thermodynamics overcomes
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the Boltzmann-Gibbs inability to provide finite mass for astrophysical systems within the
polytropic model (studied by Chandrasekbar and others). An interesting connection has
been recently established {54] between ¢ and the fractal dimension of a d-dimensional
Levy distribution. Also, through the generalization of the black-body radiation Planck
law, & quantitative test for the nature of space-time has been recently suggested [55]. The
possxble relevance of this Generalized Statistical Mechanics for systems whose (linear)
size is smaller than the range of the involved interactions has been discussed recently [56};
also it has the possibility of cancellation of a gg-source of nonexiensivity by a g-source
of nonextensivity, thus providing extensive mean values [57). Finally, the discussion of
a variety of relatively simple systems is available: two-level system [40,58], free particle
[59], Larmor precession [46], d = 1 Ising ferromagnet [60,61], d = 2 Ising ferromagnet
(49,62,63].

However, none of these works has focused in detail the problem of the thermodynamic
limit (N — oo)of a many-body problem. This is the central aim of the present paper, in
which we discuss the ideal paramagnet (Section 2), and, as a straightforward consequence,

we obtain the generalized Curie-Weiss law (Section 3).

2. Localized-Spins Ideal Paramagnet
2.1 — Model and Formalism
Let us consider the Hamiltonian

H=—pH(§:Sg—B) . (Si=41) (9)

=1

with uH > 0 (p being the elementary magneton, and H the external magnetic field) and

B an arbitrary number (positive, negative or zero). The spectrum of this Hamiltonian is

given by
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en=—-pH(N-2n-B) ; (r=0,1,2,-+-,N) . (10)
- and the associated degeneracy by
' ,
M . 1)

In = SN —n)!

Consequently, the partition function is given (using Eq. (5b)) by

3/(1-q)

N. N H |
2,=% m[n%fu-q)w-zn-s)] . ()

where 2' runs only over the terms satisfying the conditions appearing in Eqs. (5). It
is clear that Z,(N,kT/pH,B) = Z,(N,~kT/uH,—B). This property propagates to all
thermodynamical quantities. In particular, the specific heat C, satisfies

kT kT
C, (N, p—H, B) = C' (N, —ﬁ, -"B) ’ (13&)
hence
kT kT

Also the (vanishing-field) isothermal magnetic susceptibilily x, satisfies

Xc(Nn T,B)= _XQ(N: -T,-B) (143)

hence

Xq(N: T,O) = -XG(N! =T, 0) . (l4b)
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Witbout loss of generality we shall herein discuss the T 2 0 region.
The probabilities of states {n} are given (using Egs. (5)) by

= 1+ (uH/ET)(1 - )(N - 20 = B)0)Z, . (13) |

!

For ¢ < 1, the region T € [0, Tror] is thermally forbidden (physically inaccessible), |

the region T € (TFort, TFros) is thermally frozen (vanishing specific heat), and the region
T > Tevo. is thermally active; kT g/ pH = sup{(l — ¢)(B — N),0} and kTr,o/uH =

sup{(1 — q)(B + 2 — N),0}. For g > 1, the region T € [0,Tfv,,] is thermally frozen |
(vanishing specific heat), and the region T > Tpy,: is thermally active; kTr,../uH =

sup{(g — 1)(N — B),0}.

To calculate C, we use the following fluctuation-form expression ([59]; see also [51,57))

C_9Z4 ¥
k= (kTY

Z gnPn %

€n € 2 .
{1 -8 -gen );, 9P T7B(1 — q)e,]} , (16)

where g, and ¢, are given by Eqgs. (10) and (11) respectively. Eq. (16) can be rewritten

as

: T'=“T{Lz} P T (1—q)€a]

N, . N, €a :
- go gnpnen] § nPn 1 —ﬁ(l _ Q)Sn]} H (17)

which is quite convenient for numerical calculations. This expression can be rewritten as

follows,

2
k

(82) A (n22) w
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where the dimensionless quantity fy is defined as

(N - 2n - B)
b (N’ kT’ ) ,?,:_:o"‘”" % (sH/KT)0 - q)(N - 2n - B)

N-2n-B
Z gnPh (N=2n- B)] [-z 9nPn 1+ (pH/kT)(l —¢)(N-2n- B)] (190)

- le(v57 B {é’"" " [1 TR =R B)]

¥ N 2n -
= |2 %P TXGRHED —q)(N “on- B)] } (196)
In the limit pH/kT — 0, we have p. = 1/2% (¥n), hence
fo(N,0,B) = 20"9VN (vB) . (20)

The magnetic fluctuation-dissipation theorem ([56}; see also [51]) yields, for ¢ < 1, the
following vanishing-field isothermal magnetic susceptibility,

2
xo=3 H(N0.B) (21)

hence (using Eq. (20)),

_ qp: 2(1-Q)NN
Xq - kT H

(22)

which generalizes the well-known Curie's law, x3 = N #2/kT. The discussion is somewhat
more complex for g > 1, and we are not addressing here the details.

At high temperatures (kT/uH » 1), Egs. (18) and (20) imply

C, pHN® ya-an =,C£: .
Cong(t)po-mn=r 5 VB (23)
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Let us now introduce the dimensionless quantity,

_ G __ G (&Y

which will come up to be very appropriate for the discussion which follows. Indeed, A,
is universal (i.e., independent of ¢ and B) for kT/pH > 1, whereas for kT/uH <1,it
strongly depends on both ¢ and B.

2.2 - ¢=1 (Boltzmann-Gibbs) Specific Heat

- Eqgs. (18) and (19) imply, for ¢ =1, the well-known result (Schottky anomaly)

represented in Fig. 1.

2.3 — q < 1 Specific Heat

The results we have obtained are represented in Figs. 2 and 3 for B =10, in Figs. 4
and 5 for B = N and in Figs. 6 and 7 for B= —-N.

a) B = 0: Fig. 2 illustrates (through the numerical data collapse) very clearly,
that a well-defined thermodynamic limit (N —+ oo) does exist. One observes that: (i) the

convergence to the thermodynamic limit is very rapid, such that N = 40 is already a
very good realization of an infinite system (see Fig. 2(a)); (ii) the oscillations which
appear for decreasing ¢ tend to be washed away as N increases (sec Figs. 2(b),{c)).
This is the first time such a limit is exhibited within the generalized statistical mechanics
(¢ #1). As mentioned before, the quantity A, defined in Eq. (24), presents two distinct
regimes, namely one in which all values of ¢ approach the ¢ = 1 limit, and the other
in which different values of ¢ lead to distinct behaviour (see Figs. 3(a),(b)). Let us
also comment on the role of N by discussing Fig. 3 in further detail. We define t =
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kT/uH VN, as well as t*, by imposing 8,(t*) = 1/2. We have represented * as a
function of ¢ < 1 in Fig. 3(c). I{ t > t*(g), the ¢ = 1 description is satisfactory (exiensive
thermodynamics; EXT) and there is no need to generalize Boltzmann-Gibbs statistics.
On the contrary, if ¢ < 1*, a crossover occurs and the results &e sensibly g-dependent
(nonextensive thermodynamics; NEXT). Consequently, if we had a physical system which
would behave as assumed in Hamiltonian (9) “all the way long”™, the convenient region
for searching for possible departures from Boltzmann-Gibbs behavior would be ¥ »
(kT/uH1*(q)F, i.e., large systems (which precisely is the case suggested in [18}, as well as
the Ny, — oo case of [56]).

b) B = N: In Fig. 4, one observes a divergence in the scaled specific heat, character-
istic of a phase transition. By following the position of the peak, for several values of ¢ and
N (up to N = 900}, we conjecture the critical temperature as limy oo (kT /uHN) = 1—g.
Such cooperative effect, present in a system defined by an independent-spins Hamiltonian,
is introduced by the statistics, similarly to what happens in the Bose-Einstein condensa-
tion for the ideal gas. In Fig. 5 we plot A, for several values of ¢ (including ¢ > 1); with
t = kT/uHN, one can define pow t* (by imposing A (1*) = 2) such as to represent the
crossover between the extensive and nonextensive regimes in Fig. 11.

¢) B=~N: In Fig. 6 we present thermodynamic limits which resemble those
shown in Fig. 2 (B = 0), but with some differences: (i) the curves are always smooth
(no oscillations in the specific heat) for any values of ¢ and N; (i) there is a value q*
which splits distinct approachings to thermodynamic limit, namely the convergence to
the maximum from below (g > ¢*) as shown in Figs. 6(a),(b), and from above (¢ < ¢*)
as in Fig. 6(d), with increasing N. The crossover between these two tendencies happens
for ¢* ~ 0.4 (see Fig 6(c)). (iii} The position of the maximum occurs at kT o, /uH N =
(1 —¢)/2. In Fig. 7(a) we plot A, for several values of ¢ (including ¢ > 1). Similarly to
what was done for the case B = 0, one can define t = kT/uH N, as well as t* (through
A,(t*) = 1/2), such as to represent {* as a function of ¢ £ 1 (see Fig. 7(b)).
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2.4 - g¢g> ] Specific Heat

The results we have obtained are represented in Figs. 8 and 9 for B = 0, Figs. 10, 5
and 11 for B = N and in Figs. 12 and 7(a) for B = —-N.

a) B =0: One now has a “Frozen region” for 0 £ T € Trvo, (kTFros/uHN = ¢~1).
In Fig. 8 we present plots showing that a thermodynamic limit is reached in which the
scaled specific heat touches the Frozen frontier (vertical dashed line) with a finite value.
In Fig. 9 we plot A,, showing again the two regimes discussed previously. As before, one
may define t = kT/uH N and t* (such that A (t*) = 2); one sees from Fig. 9 that there
is no solution for t* in the Active-temperature region, and consequently, no crossover in
Fig. 3(c) for ¢ > 1.

b) B= N: In Fig. 10 we show thermodynamic limits which are qualitatively similar
to those presented in Fig. 6 (¢ < 1, B = —N) in the sense that: (i) the curves are
always smooth; (ii) the maximum is located at kT../sHN 2 (¢ — 1)/2. Some basic
differences with respect to the previous cases should be pointed out: (iii) the convergence
to the thermodynamic limit is much slower in this case; in fact, small values of N lead
to an unstable peak which collapses with the T = 0 axis (see Fig. 10(d})); only when N
is sufficiently large (e.g., N 2 40), is that a stable curve can be visualized; a reasonable
good realization of the thermodynamic limit is only reached for a much higher value of
N (N ~ 320); (iv) the convergence is always from above, for increasing N (like in the
cases ¢ < ¢*; B = —N), as shown in Figs. 10(a)-(c). The quantity A, is shown in Fig. 5
for both ¢ < 1 and g > 1; as before, one can define * (A(t*) = 1/2) and plot t* versus
q (see Fig. 11). One should notice that the straight line separating the EXT and NEXT
regions for B = N and ¢ > 1 (Fig. 11) is a reflection with respect to ¢ = 1 of the one
obtained for B = —N and ¢ <1 (Fig. 7(b)}).

c) B = —N: The plots shown in Fig. 12 are qualitatively analogous to those
for the case ¢ > 1, B = 0, discussed before; the Frozen region now is delimited by
kTF,or/uH N = 2(q—1). In Fig. 7(a) the quantity A, is plotted for both cases ¢ > 1 and
g < 1. Again, by taking A (t*) = 2 one gets the straight line shown if Fig. 7(b), which
is a reflection with respect to ¢ = 1 of the one found for B= N and ¢ < 1.
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3. Generalized Curie-Weiss Law

With the notation S = }:fi, Si, the magnetization, M, = p(S‘,,,.;), = pTrﬁ'.‘;'m.; .
is given, for H — 0, by '

M, ~ x H . (26)

Within a mean-field approach, above the critica} temperature, we can now interpret i as

given by

H=He+ M, 27)

where H,., is the external field applied on the system and AM,, the mean value coming
from z (= coordination number) neighboring spins interacting through a coupling constant

J. Replacing Eq. (27) into Eq. (26), implies

M, ~ H.. . (28)

X
1-2x

Consequently, the effective susceptibility ¥, = limpo{M,/H.;:) is given by,

%= Xs _ (29)
Hence (using Eq. (22)),

T>T) ., (30)
with

kT, = Aqp® 20-9FN | (31)
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But it is now known [49] that, within the mean-field framework, kT,./J = ¢z. Replacing
this into Eq. (30) yields

o _ qut 209NN

Xe = W (T > Jq:) y | (32)

wl;:dc.h generalizes, for arbitrary ¢, the well-known Curie-Weiss law, §; = p? N/k(T — Jz2).

4. Conclusion

We have discussed, within the recently generalized formalism for statistical mechanics
of a canonical ensemble, the specific heat and susceptibility of an ideal paramagnet of N
locahized spins (spins 1/2), thus extending, to arbitrary values of ¢, the Schottky anomaly,
Curie law and Curie-Weiss law, The existence of a well-defined N — oo thermodynamic

limit is, for the first time, {(numerically) established for arbitrary values of g. A variety of

nonextensive effects are exhibited, and a crossover is pointed, which connects, on one side,
a regime where Boltzmann-Gibbs (¢ = 1) statistics is satisfactory, with, on the other side,
a regime where sensibly g-dependent effects are shown. The most striking nonextensive
effect is the possibility of existence (for ¢ < 1 and B = N) of a finite (scaled) temperature
phase transition in spite of the fact {hat we are dealing with an jdeal paramagnet. This
fact obviously reminds the existence (for high enough dimensionality) of the Bose-Einstein
condensation in an jdeal bosonic gas. In both cases, the singularity is due to the statistics

and not to the (energy) interactions.
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Figure Captions

1: Boltzmann-Gibbs (¢ = 1) specific heat for an ideal paramagnet of N localized

spins.

2: Conveniently scaled C, versus T for B = 0: (a) ¢ = 0.8 (N = 1,2,4,8,20,40,80,
160, 320,640); (b)¢=06 (N =1,2,4,640); (c)g=0.5 (N =1,2,4,640).

3: (a) and (b): Scaled T-dependence of A, for B = 0 and typical values of ¢ < 1;
for ¢ = 0.7 we present a data collapse by plotting &, for several values of N (N =
40, 80, 160, 320, 640), whereas for the other values of ¢ we represent A, for N = 640
only; (c) crossover between extensive (EXT) and nonextensive (NEXT) behaviors
(A, (1*) = 1/2, for ¢ < 1); the solid curve was drawn by smoothly joining the points
for t*(q), whereas the dashed part is purely speculative. The symmetric definition
of 1*(g) for ¢ > 1, i.e., A (t*) = 2, presents no solution in the Active-temperature

region, and so, within such proposal, no crossover exists for all ¢ > 1 (see Fig. 9).

4: Conveniently scaled C, versus T for B = N: (a) ¢ = 0.8 (N = 2,4,10,20,40,80);
(b) ¢ = 0.6 (N = 2,4,10,20,40); (c) g = 0.5 (N = 4,10,40).

5: Scaled T-dependence of A, for B = N and typical values of ¢ < 1 (¢ =
0.5,0.7,0.9; curves above A; = 1) and of ¢ > 1 (¢ = 1.1,1.2,1.5,2.0; curves be-
low A; = 1). For ¢ = 2.0, A, is plotted for N = 160,320, 640,900, whereas for the
other values of g, A, is represented for N = 640 only.

6: Conveniently scaled C, versus T for B = —N: (a) ¢ = 0.8 (N = 1,2,4,10, 20,40,
80, 160, 320,640); (b) ¢ =0.5 (N = 1,2,4,10,20,40,80,160,320,640); (c) ¢= 0.4
(N = 1,4,10,20,40,80,160,320,640); (d} ¢ =0.2 (N = 2,4,10,20,40, 80,160, 320,
640).
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7: (a) Scaled T-dependence of A, for B = ~N and typical valuesof ¢ < 1 (¢ =
0.4,0.6,0.8,0.95; curves below A, = 1) and of ¢ > 1 (¢ = 1.05,1.2,1.5,2.0; curves
above A, = 1); for ¢ = 0.4, A, is plotied for N = 160,320,640,900, whereas for
the other values of ¢, A, is represented for N = 640 only; (b) crossover between

extensive and nonextensive behaviors.

8: Conveniently scaled C, versus T for B = 0: (a) ¢ = 1.2 (N = 4,10, 20, 40,80, 160,

320,640); (b) ¢ = 1.5 (N = 2,4,20,40, 80,160, 320,640); (c) ¢ = 2.0 (N = 2,10,20,
40,80,160,320,640). In each case, the dashed vertical line indicates the frontier
between the Active (T > T¥,,.) and Frozen (T < TF,,,) regions.

9: Scaled T-dependence of A, for B = 0 and typical values of ¢ > 1 (¢ =

1.01,1.2,1.5,2.0); in each case, A, is non-zero only in Active-temperature region

(T > TFru)-

10: Conveniently scaled C, versus T for B = N: (a) ¢ = 1.2 (N = 60, 80, 160, 320,
640,900); (b) ¢ = 1.5 (N = 40,80, 160, 320, 640,900); (c} ¢ = 2.0 (N = 40,80, 160,
320,640,900); (d) ¢ =2.0 (N = 2,4,8,12,16,20,24,28).

11: Crossover between extensive and nonextensive behaviors for B = N; by com-
paring with Fig. 7(b), one sees clearly that these two figures are related to one
another by a reflection with respect to ¢ = 1.

12: Conveniently scaled C, versus T for B = ~N: (a) ¢ = 1.2 (N = 4,10, 20,40, 80,
160,320, 640); (b) ¢ = 1.4 (N = 2,4,10,20, 40, 80, 160, 320,640); (c) ¢ = 1.5 (N =
2,.4,10, 20, 40, 80,160, 320,640). In each case, the dashed vertical line indicates the
frontier between the Active (T' > Tr,,,) and Frozen (T < Tp,,,) regions.
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