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Abstract

We study the SU(2) Skyrme model with the pion mass term, and discuss its
physics content. We show that the addition of the pion mass term, through it
means a repulsive contribution, makes the baryonic solutions to shrink in space,
in a way proportional to the value of the pion mass. Similarly to the simpler case
(S5U(2) Skyrme model without the pion mass term), the baryonic solutions have
a minimum, as a function of the Skyrme parameter, e for the quantum energy.
The energies, for all values of e, are consistently larger than those of the simpler
model. We show also, at the minimum, the results for the physical properties of
the B=1 states. Interestingly, they seem to indicate, for the magnetic moments,
a bekhaviour like the one for charged and neutral point particles, though the
eletromagnetic radii are finite.

Key-words: Skyrme model; Chiral solitons; Explicitly broken chiral

symmetry.
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1 Introduction

The simplest, and most natural, addition to the lagrangian of the SU(2) Skyrme
model [1], is well known to be the mass term for the pion [2]. It settles at the classical
level the scenery for a situation where the original chiral symmetry is explicitly broken
to the isospin (vector) conservation.

The pion mass term contribution is repulsive, and it would, naively, help to spread
the mass distribution for the baryons contained in the model as solitons, resulting
in increased (eletromagnetic) radii, for instance. The price to be paid should be an
expected increase for the masses of the baryons.

It is currently stated, instead, that the introduction of this contribution does not
change significantly the values for the physical properties of the nucleon state, which
is described by a soliton with baryon number one, and spin and isospin one half.
Let us point that this needs a sizeable reduction (by near 20%) in the value of the
pion decay constant, f,, to almost 60% of its experimental value. Nonetheless, it is
claimed that the overall picture shows a satisfactory consistency.

We think that several aspects of the Skyrme model including the pion mass term,
have not been thoroughly considered. In particular, the physical picture coming
from it and its distinction with the simpler version of the model, has received little
attention.

Let us recall the main characteristics of the simpler Skyrme model [3]. In order
to make the text lighter, we shall use the abbreviation SM, to refer to the Skyrme
model including only in its lagﬁmgia,n the terms of the non-linear sigma model and
Skyrme’s stabilizing term, and SM, will indicate the model.as before which has in
addition a pion mass term contribution.

The Skyrme model has solutions of integer baryon number B=1,2,3, - - - and inte-
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ger and half-integer spins (and isospins) in its hedgehog approximation for the unitary

chiral field:
U(Z) = exp(s7 - ZF(r)) ,

where the spherical symmetric function F(r) is the “chiral angle”, 7 is a vector having
as components the three spin Pauli matrices, and Z is the unit vector in the direction
of T.

For the baryon states, the chiral angle is regular at the origin and at infinity, and
the corresponding series expansions contain a classically undetermined dimensional
parameter. The baryon solutions are in one to one correspondence with special
values of a dimensionicss parameter ¢ = Fy/efr, where Fy = dF(r)/dr|,_, and ¢ is
the dimensionless Skyrme parameter. Moreover, the regular solutions have a scale
invariance, provided e is allowed to vary in a way that compensates the variation
of Fi. The pion decay constant (f) is taken as fixed parameter that comes from
physical information outside the model. As a result, the classical mass for the baryon
is undetermined.

The quantum energy that is obtained after introducing (and quantizing) collective
coordinates that rotate the static soliton, is a function of the Skyrme parameter, has a
(different) minimum for each baryon state, and diverges for e = 0, oo. The minimum
cor.responding to the nucleon curve (e = 7.67) corresponds to a narrow object, with
mass which corresponds to the observed one for f, = 0.143GeV. In order to fit the
observed masses for the nucleon (N(939)) and A(1232) [4] one has to move to e = 5.45
and fix f, = 0.129GeV (70% of its physical value).

An important feature is that the only free, dimensional, quantity at each baryon
number trajectory, the pion decay constant, provides a natural unit for all dimensional

physical properties. As a result, when changing e from the minimum of the nucleon to
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the values fitting the masses, the radii increase (a decrease of e brings F; to decrease,
to keep ¢ at its B=1 value, and since the curve grows towards e = 0, f, must decrease
also).

So much for SM,. In this work we show the results for SM,.

We consider that the pion decay constant and the pion mass valu€ have to be
taken as constant parameters, since they are extracted from a framework foreign to
the description of baryons by solitons. At most, they could be taken as a kind of con-
sistency parameters, in the sense of being determined from a large phen(;menological
analysis within the chiral theory (see in detail what we mean in our discussion {3]).

We will present the regular solutions, at the origin and at the asymptotic region.
We will show that taking the pion mass (m,) as a fixed quantity breaks the scale
invariance possible for SM,. The asymptotic solution displays a larger departure
from the one for SM,, an exponential decay for m, # 0 and a non-analytic behaviour
for my — 0. The exponential decay brings as a consequence that the baryons are
narrower for SM, than for SM,, contrary to the expectation that repulsion would
make them broader.

Besides, the solutions for the chiral angle miss the freedom for displacements by
an integer multiple of 7 at the extremes of the real axis. This is because (regular)
finite energy solutions, with the pion mass term, can only have even multiples of =
as asymptotic values.

We apply the arguments by Derrick and Hobart [5], and find, as it should be
expected, that the stability of the soliton in SM, demands an increase in the con-
tribution for the stabilizing term proposed by Skyrme. This is an unwanted feature,
since lower order chiral calculations fix the form for the non-linear sigma model term,

but the Skyrme term is one of the several of its kind that may result in chiral pertu-
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bation theory at the one loop level [6].

Sum rules obtained from the Euler-Lagrange equations of SM, a la Iwasaki and
Ohyama [7] allow to confirm another consequence of the lack of the scale invariance
present in SMy : the value of ¢ for a given baryon number changes with the value
of the Skyrme parameter in a way that determines uniquely F; for each value of e.
That is, F; is now classically determined.

The classical values for the mass of the soliton are larger in SM,, in agreement
with expectation. This indicates that the pion mass term increases the dt;nsity of the
“nuclear matter” for each solution (which, remember, are narrower than in SMy).

Notwithstanding these changes, the quantum energy obtained after introducing
(and quantizing) collective coordinates which rotate the solitons, resembles the one of
SMj, as a function of the Skyrme parameter. Each baryonic state is a single minimum,
which is (naturally) higher than for the SMy case. This allows to understand why
the value of f, for the fitting of the masses of the nucleon and A(1232) is so much
lower.

On evaluating the physical constants for the nucleon, one notices that, at the min-
imum, the values for the magnetic moments of the two isopin states, as m, increases,
tend to the values for a point Dirac particle (charged and neutral), while preserving
a spatial structure. This is an intriguing property, and open new possibilities for the
model to represent particle states, which deserve further study.

The text is organized as follows: in section II we present the regular solutions and
discuss their features . In section III we face the issue of stability for the chiral solitons
of SM, and discuss the results, including the possibility of looking to an alternate
model having no non-linear sigma model term in its lagrangian. In the following we

present the sum rules which are obtained from the Euler-Lagrange equations, which



" CBPF-NF-002/93
~5-

are a slight formal modification from the ones for SMy, but are more cumbersome
to use. Section IV is devoted to the discussion of the energy after quantization with
collective coordiantes. The physical parameters for the candidate soliton to represent
the nucleon are presented and analyzed. Finally, in section V we discuss the results
obtained in the previous sections, consider alternative improvements of the model as

an approximation to the description of the baryons and other possibilities for it.

2 Classical regular solutions

The static lagrangian of the model is:

L= —11—6 f2Tr [LoL¥] - {{Ls, LI} - %m: FT(U - 2), (1)
where
L = vl @)
U(Z) = exp[it- ZF(r)] (3)
F = Ifl (4)
ro= |Z}, (5)

and 7 is a vector with components (04,03, 03), the 2 x 2 Pauli matrices.

The corresponding Euler-Lagrange equation gives, for the chiral angle, F(r):

dQF(") sdF(r) 2
dr2 + 2r = rsin [2F (1))

d2F(r) [ dF(r)

+ 8r%sin® F(r) — 4r%sin [2F ()] ] — 4sin® F(r)sin [2F(r))

e f,r
— mirfsinF(r)=0. (6)
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This is a convenient form to study the behaviour of the chiral angle at the origin,
since the equation has a singularity in this point, coming from the first two terms in
the lagrangian.

The behaviour at infinity is best understood by studying the equation after the

change of variable: R = 1/r. One obtains:

K(R)
R ~JRi R sin [2K(R)] )
t ap {SR“ sin? K(R)dQ:Igf ) 1 1683 sin? K(R)—5— dI:“(QR)
+ 4R? gin [2K(R)] [_dﬁd(j%}_i_)} — 4R*sin® K(R)sin [2K(R)] }
-;;mmm (7)

Let us first consider the regular solutions at the origin. The regular solutions are
not changed at the lowest powers by the pion mass term. A power series solution,

regular at the origin, is of the form:

F(r)=Fy+ FRr + B+ Fyr® 4o 4 F2N+1r2‘v+l +--e, (8)

where the lower coefficients are:

Fo = nNo7 (no'Odd) (9)
4 14242 — 3"2
_ 24 5 N(4,8)
B = 75 D8 )

448

Nwﬁ)=1+%w+%¢+5¢6
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104 71
+ ﬂz(—-—87ﬁ—¢’)+ﬂ‘(8¢4 -5?), (12)
D(¢,8) = 1+ 246>+ 192¢* + 5124° . ’ (13)

In general, the terms are of the form:

Foner = Conn FFN Ry (14)

with Conx41 a numerical coefficient, the same as in the pure non-linear sigma model
expansion at the origin. The quantity Ryn4; is a rational function of ¢, which
include some contribution from the pion mass term. The dimensional coefficient F}
is undetermined from the differential equation.

When 3 = 0, one could play with the values of F| and e, which are not fixed a
priori in the model, while keeping fixed the value of ¢. Since ¢ is a kind of control
parameter for the solutions of the model, this is, in principle, allowed. Objections
arise from considering ¢ a fixed parameter, like any coupling constant. But since the
lagrangian for SM, (or even SM,) is a kind of “efective” lagrangian, which should
result in some approximate limit of the fundamental theory, QCD, one should by the
same expect that for different sectors of the set of internal quantum numbers, the
Skyrme coefficient should be modified, casting doubts about taking it as a coupling
of the theory, fixed once for ever.

The regular solutions, when F} and e are changed arbitrarily, have an interesting
scaling invariance. Most quantities in the theory are expressed as integrals, which can
be translated entirely into dimensionless variables of integration and scale invariant
functions, leaving any dimensional parameter as a coefficient in the integrals.

The inclusion of the pion mass term modifies this. Although the dimensionless
parameter § determines ¢, we are not allowed to play with the value of the mass

any longer. The variation of ¢ with e, for fixed pion mass and baryon number, is
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represented in Fig. 1. The more important deviations are found at small e, in the
more classical regime, where J increases with decreasing e. The increase in the value
of ¢ indicates that in the region of small e the slope at the origin of the chiral angle is
larger than in the m, = 0 case, giving a somewhat more tight baryon. In short. for a
fixed value of the pion mass different from zero, ¢ varies for a given baryon number,

and so does Fj.
Let us now consider the asymptotic solutions. They are of the following form,

when written in terms of the dimensionless parameter R = 1/F = R/efy:

K(I}) = N, T + exp [—-}%] GI(R) + exp [—%} Gs(R) IR

(2N +1)8

+ exp [‘ 7 ]G2N+1(R)+"' - (15)

The functions G¢(R) have power expansions which, for the lower indices, are:

SR+ 5, (16)

Gy(R) = —K? [——53R3+

3! 26
+ 617(360/32 + 1

G:i(R)

285
B R+ 5,(30[3’ + AR
4725 ]

4! 25

—)R° + 7'(2835[3 (17)

As we shall see, the integer n,, should be even for a regular solution. The second
term, the dominant asymptotic contribution, shows already a strong exponential
decay, that increases with the pion mass. Its m, = 0 limit is rather simple, being
just the non-linear sigma model behaviour.

Differently from the Skyrme model, the parameter K, is now fixed, at fixed pion
mass, for each fixed set of # and e, in complete analogy with what happens with F}

at the origin.
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The limit for negligible pion mass is cumbersome, as wits the inverse powers of 3
appearing in the functions Gx(k > 1). This shows that one should expect a departure
from SM,; what is now missing is the freedom to choose any integer multiple of 7
for the chiral angle at infinity. Before, only the relative difference with respect to the
value at the origin mattered.

We have not made the analytic continuation on both regular solutions to an
overlap region. We have performed this carefully with the numerical solutions.

Numerically, the behaviour of the solutions looks like an amplified k.)ehaviour in
SM,. Regular odd baryon number solutions are those that start at the origin with an
odd multiple of = and finish, asymptotically, at even multiples of 7. These solutions
correspond to isolated values of ¢ for given values of m, (or, better, of 3) and e.
Between a couple of these values this kind of solutions (starting from odd integer
values of 7) goes asymptotically to an odd multiple of 7, oscillating with increasing
wavelength as the control parameter approachs the value corresponding to an allowed

baryon state, until they stick to an asymptotic even multiple of =,

B = 1IF(r - o0) = F(r - 0)] (18)

= New—no=135- . (19)

Soniething analogous is seen starting from even multiples of 7 at the origin. First, as
¢ increases from zero, the solutions oscillate around the next higher odd multiple of
7. The solution has larger amplitude and wavelength as the value of ¢ corresponding
to an even baryon number is approached, and, at precisely this value, the solution

sticks to the asymptotic, even multiple of ,

B =ny,—ny=2,4,6,--- . (20)
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In fact, we notice that the values of ¢ are, in general, larger, for a given baryon
number, than the corresponding value of ¢ for SM,. This means a larger slope at the
origin for the chiral angle, i.e, a more concentrated object. Besides, the exponential
decay for the asymptotic region means also that one has a more tight baryon when
the pion mass term (which is repulsive!) is added.

As we shall see, the resulting masses for the baryon states are larger than the
corresponding ones for the SM,. This suggests, as a short statement about the effect
of the addition of the pion mass term, that it shrinks the baryons and i.x.lcreases the

density of the “nuclear matter” described by the soliton.

3 Stability of the classical soliton solution and sum

rules

For SM,, applying the argument advanced by Derrick [5], it is found that the
classical mass is inversely proportional to the value of the Skyrme parameter. Pro-
vided one keeps ¢ fixed for a given baryon number, the parameter F; and e could
be changed arbitrarily, and, in principle, the soliton could have an arbitrarily large
mass, for an infinitely extended object (F; — 0), or could have an infinitesimal mass
for-a point object.

Now, we are not more able to change parameters at will, taking the pion mass as
an external, fixed parameter. The baryon number is not uniquely related to a single
value of ¢. Moreover, in a lagrangian sense, the pion mass contribution is a repulsive
one, so the question of the stability is interesting.

Let us begin by writing the classical energy of the soliton:
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Ecl = Ea + ESI: + E1r 3 (21)

with

a=% f2/ dr {[r%f'r)] +2sin2F(r)} , . (22)

being the contribution from the non-linear sigma model term,;

Eg = 7rf _f:/ dr { [smF(f')dF(r)] +[ SmF(")] } (23)

the contribution from the stabilizing term proposed by Skyrme; and, finally,

E, = %wf,f - 2m? /w dr r*[1 — cos F(r)] , (24)
0

the contribution from the pion mass term. Notice that the latter diverges for values
of the chiral angle corresponding, asymptotically, to odd multiples of 7. The Skyrme
term will grow to infinity for an irregular solution at the origin (F(r — 0) ~ (2N +
1)x/2).

Performing a dilatation in the variable of integration

r—=Ar (A=1), (25)

one gets

iE,. (26)

EK’ = -—E + AEg; + )

A

For the classical energy to be stable under this change,

dE§
dA A=1

=0, (27)
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one must have

Esi = E, +3E, s (28)
E¢ = 2E, +4E,
= Q(ESk - E,r)

2
= g(Ea + QESk) . (29)

The inclusion of the pion mass term changes the relation between the other two
terms; for SM, both should be equal. Now, the Skyrme term must compensate in
addition the repulsive contribution from the new term and this is an unwanted result.
This will increase the mass of the baryon states, but there is no special reason to have
such a large Skyrme term, unbalancing the non-linear sigma model contribution.

The condition of stability, besides, require a positive second derivative near A = 1,

which gives

E,+6E,>0. (30)

By the way, from the set of Eqs.(28) and (30), one notices that the pion term and
the sigma model term behave alike. It would be interesting to investigate a model
wheére the non-linear sigma model is absent, though it looks quite heretical. The only
justification would be that the sigma model contribution is expected to be important
for the lowest energy part of the chiral systems with B=0, and, looking for the B > 1
sector, one considers a completely different regime.

Notice that for the SM,, the classical energy was undetermined as a function of
the Skyrme parameter at fixed ¢ (or §), because of the scale invariance of the solution

for the chiral angle. This is no longer valid after the introduction of the pion mass,
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the value of the integral changes under a change in the Skyrme parameter.
We may write the integrals in terms of the dimensionless variable ¥ = ef,r. In
particular, the Euler-Lagrange equations may be handled, in terms of 7, by the way
introduced originally by Iwasaki and Ohyama [7} for the non-linear sigma model.

Multiplying Eq.(6) by #*dF()/dF, and after several integrations by parts, one has

{2""“ {dFdEr)] + 472 sin® F(F) [dF(r) ™ sin* F(F)

+25in? F(F) + B+ cos F(F)}

1

+ / df¥ —--—ﬂ"""'3 [dF(r)] —4(n +2)F“+lsm F(F) [dF(r)]

+ (n+ 2)1r""'+1 sin? F(F) + 2nF*"tsin' F(F) - §%(n + 4)i"*? cosF(i‘)} =0 (31)

With the usual assumptions on the values for the chiral angle at the origin and

asymptotically [3], we have, for instance, for n = -2,

ar (") — 47~ sin F(7)

sin F(f » 00) = B} Jim [r’cosF(r)] +/ d"{ [

- Zﬂzf‘cosF(i‘)} =0. (32)

‘Whereas for the pure non-linear sigma model (# = 0, e — oo} the sum rule is
not satisfied, for SM, (8 = 0), it is acceptable for the irregular solutions (| sin F(F —
o0) | = 1), and satisfied exactly for the isolated points of ¢ corresponding to baryon
states (sin F( — oo) = 0). For the present case, the irregular solutions have also
sin F(F — o) = 0, but the right hand side is not zero. The sum rule is satisfied
only for the values of ¢ and e, at a given value of m,, that correspond to the allowed

baryon numbers (1,2,3,4,...}. As for # = 0, the sum rule allows a precisel value for
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the parameters (¢, ¢) determining the baryon state.

The sum rule for n = —4 is:

o .y 2
%¢2—2¢4+232 - ./0 ar {%Sin‘F(F)-}-f—aSinzF(F) |:1—4[d}:£:) :!
2 [dF(#)]?
- 350 } (%)

and provides a consistency check for the parameters of the system.

4 Quantization and some numerical results of in-

terest

The quantization of the system is made appealing to cciilective coordinates, A(?),
which are unitary matrices in SU(2), that rotate the soliton. The states of the quan-
tum hamiltonian for the SU(2) hedgehog should be labelled ‘by the same eigenvalue
of the angular momentum, J?, and isospin, I?. The final results for the energy are

like the ones for SM,,

. L
E=E'+ 3, (34)

but E9 is as in Eq.(29), and

e3f? dr

has no direct contribution from the pion mass term.

6= g—wf,f j;w dr r?sin? F(r) {1 + 2 I:[dF_(r)r + Eﬁr—fﬂ]} (35)

The quantum energy has no explicit dependence on the Skyrme parameter, due

to the fact that we have not anymore a scale invariance. Nonetheless, the states
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for given baryon number, when represented against the Skyrme parameter, display a
minimum for some value of e, which in general very much approximates the one for
the case m, = 0. The masses at the minimum are, however, larger; to obtain a good
value for the masses of the nucleon and A(1232) resonance {2] it was necessary to go
to even lower values of fr (~ 0.108GeV) than in the preceding case. In Fig. 2a, b, ¢,
and d we sketch this for the case where B=1, I=J=1/2 and 3/2; B=2, I=J=1; and
B=3, I=J=1/2 and 3/2. These curves are drawn for some values of m,.

We remark that these curves E vs e are shown here for the first time fo‘r the model.
They are interesting in their own. They show, for instance, that for reasonable values
of the Skyrme parameter, the state with the quantum numbers of the nucleon is the
absolute minimum, which speaks favourably of the model.

The minima represent states whose rotation contributes 1/4 to the total energy
[3]. This is, physically, not very good, since the rotation contribution is larger than
the energy to emit one pion.

One can divide roughly the domain in Fig. 2 in two regions: the semiclassical
one, going from e = { up to the minimum “nucleon” energy; the results coming from
fitting the masses of N(938) and A(1232) are found in this region. The other, where
the rotation from collective coordinates dominate, is of no physical interest.

In table I we represent, for the values at the minima, the results for the masses
and the parameters of the theory, when the pion mass is varied. The discrepancies
for the values of the B=2, 3 states with 8 = 0 as compared with those quoted in
Ref. [3] follows a more careful integration procedure in the present work, especially
at values of F(r) in the vicinity of integer multiples of =.

In table II we compare the results for the nucleon state at the minimum with

those coming from adjusting the parameters to fit the masses of the nucleon and the
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A(1232) ([2], [4])-

As advanced in preceding section, it is most remarkable that the nucleon state
at the minimum shrinks with increasing values for the pion mass, while its mass
increases, showing that there is a consequent sizeable increase in the density of “nu-
clear matter”. This goes against what one would expect, the addition of feﬁulsion
suggesting that states should stretch.

The shrinking is particularly important for the isovector contributions, the iso-
scalar quantities being rather indifferent when the pion mass contributi(;n 1s added.

It might be interesting to comment on the results for the radii resulting from the
fitting of the B = 1 states N(939) and A{1232). We called the attention to the fact
ﬁhat the addition of the pion mass term shrinks the particle, and, superficially, the
values of the radii are larger from the fit of the masses. The point is that the value
of the pion decay constant must be lowered by 20% to attain this result. Since f,
is a kind of natural unit for energies and lengths, it is its reduction to 60% of its
experimental value which brings larger radii.

A point to be made regards the values for the magnetic moment at the minimum
for the nucleon representative. Curiously, the tendency is towards the values for
a pointwise, structureless Dirac particle (g=2 for the charged state, g=0 for the
neutral one) though the eletromagnetic radii are finite. This may open possibilities
for application of the model outside the realm of strong interaction dynamies.

Another remarkable feature is the increase of both g4 and g,y for the states at

the minimum, by 10% and 30% respectively.
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5 Discussion of the results and conclusions

In this work we have studied the Skyrme model with the pion mass term added
to the lagrangian. We have shown that the resulting theory describes heavier and
narrower baryons, the more the pion mass increases. We have been able to understand
the known results at the semiclassical level, fitting the masses of the nucleon and
A(1232) resonance in a larger framewbrk.

The main shortcoming of the model at this stage is the increasing importance of
the Skyrme’s stabilizing term in comparison to the non-linear sigma model contribu-
tion. In a chiral simmetry theory compatible [6] the stabilizing term is one among
several that appear at the one-loop of the effective lagrangian. It would be expected
to be a correction to the “tree contribution”, but may be we are applying the right
argument to the wrong hadron scale. |

By the way, this seems to be the principal difficulty to deal with the nucleon
in chiral perturbation theory {9,10], since apparently two different scales have to be
considered.

In broa.def terms, contrary to the current opinion, we think that the inclusion
of the pion mass term contribution in the lagrangian of the Skyrme model does not
help to consider the Skyrme model as the right starting point for the descﬁption
of l.)a.ryons in the low energy regime. Maybe the correct addition of 7-mesons, as
a quantized field, would contribute to improve the description. A “pion cloud”,
using the old terminology, might contribute to the spreading of charge (and mass).
The apparent robustness of the original Skyrme model, specially after quantization
through collective coordinates, may indicate that the addition of the pion degrees of
freedon will not alter its most salient features.

This work opens also two avenues for eventual progress in the application of the
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model. One is represented by the possibility of producing a stable classical baryon
without the non-linear sigma model term. This may suit a pertubation-like scheme
where the current algebra is important for corrections quite neighbouring the mass-
shell of a baryon; this may be applicable even for the inclusion of quantized pion
degrees of freedom.

The second interesting alternative is the one obtained from the numerical results
for the nucleon: maybe the model, without any reference to strong interaction physics
as a by-product of the colour gauge theory, may be useful to describla composite
particles quite approximate to a Dirac fermion. In this case, the meaning of the
coefficients appearing for each term in the lagrangean should be reinterpreted.

In any case, while considering the Skyrme model a good candidate to describe
nucleons by chiral solitons is rather premature, it can only benefit from further de-

velopments that profit from its features and correct its shortcomings.
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Figure Captions

Fig. 1a - Characteristic curves for baryonic number B=1. C1 — m, = 0.0GeV, C2
— my = 0.05GeV, C3 — m, = 0.10GeV and C4 — m, = 0.139GeV.
Fig. 1b - Characteristic curves for baryonic number B=2. C1 — m, = 0.0GeV, C2
— m, = 0.05GeV, C3 — m, =0.10GeV and C4 — m, = 0.139GeV.
Fig. 1c - Characteristic curves for baryonic number B=3. C1 — m, = 0.0GeV, C2
— m, =0.05GeV, C3 = m, = 0.139GeV.
Fig. 2a - Quantum energy curves for baryonic number B=1, J=1/2. Curves from
botton to top corresponds to: m,=0.0, 0.05, 0.10 and 0.139GeV.
Fig. 2b - Quantum energy curves for baryonic number B=1. C1 — m, = 0.0GeV,
J=1/2; C2 —m, = 0.0GeV, J=3/2; C3 — m, = 0.139GeV, J=1/2; C4 — m, =
0.139GeV, J=3/2.
Fig. 2c¢ - Quantum energy curves for baryonic number B=2, J=1. Curves from
botton to top corresponds to: m,=0.0, 0.05, 0.10 and 0.139GeV.
Fig. 2d - Quantum energy curves for baryonic number B=3. C1 — m, = 0.0GeV,
J=1/2; C2 —m, = 0.0GeV, J=3/2; C3 — m, = 0.139GeV, J=1/2; C4 > m, =

0.139GeV, J=3/2.
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" £, = 0.186(GeV)

m.(GeV c-z) B J € ¢ Kg(c’ GCV-Q) M(GeV c'z)

0.0 1 1/2 7.67 1.0037... —17.2771... 1.18
0.05 1 1/2 7.58 1.0080... -17.1735.. . 1.21
0.10 1 1/2 7.51 1.0196... —16.9228... 1.24
0.139 1 1/2 7.45 1.0324... —16.6735... 1.26
0.0 "1 3/2 5.12 1.0037... -17.2771...  1.76
0.05 1 3/2 5.09 1.0129... —17.0657... 1.82
010 1 3/2 5.06 1.0353... —16.6194... 1.90
0.139 1 3/2 5.04 1.0583... —16.2330... 1.96
0.0 2 1 11.33 1.9653... —51.6729... 2.38
005 2 1 11.15 1.9708... —51.1783... 2.45
0.10 2 1 10.96 1.9853... —49.9962... 2.53
0.139 2 1 10.82 2.0012... —48.8500... 2.60
0.0 3 1/2 21.84 2.8886... —103.8239... 2.47
005 3 1/2 21.57 2.8915... —103.1914... 2.52
0.10 3 1/2 21.26 2.8097... —101.6226... 2.59
0.139 3 1/2 21.04 2.9090... —99.9578... 2.65
0.0 3 3/2 14.60 2.8886... —103.8239... 3.69
0.05 3 3/2 14.35 2.8950... —102.5250... 3.82
0.10 3 3/2 14.06 2.9118... —99.4807... 3.98
0.139 3 3/2 13.85 2.9298... —96.6008... 412

Table 1: Results for B=1, 2 and 3 at their minimum quantum energy
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Quantity Ref.[4] Ref.[2] This work This work Experiment
F+(GeV) 0.129° 0.108*  0.186 0.186 0.186
M,(GeV ¢™?) 0.0 0139 0.0 0.139 0.139
Mn(GeV ¢7?) input input 1.18 1.26 0.939
Ma(GeVc™?)  input  input 2.36 2,62 1.272
M, (GeV c?) 0.0 input 0 input 0.139
e 545"  4.84° 7.67 745 ———
g 00  0.264° 0.0 0.10 -
<r?>f%  (fm)  0.59 0.68 0.29 0.29 0.72
<> (fm) oo 1.05 00 0.63 0.88
<r?>¥h_ (fm) 092 0.96 0.45 0.43 0.82
<r?>yE_ (fm) oo 1.05 00 0.63 0.80
Iy 1.87 1.97 0.84 0.87 2.79
fin ~131 -123  -016 -0.05 -1.91
| 140/ tin | 1.43 1.60 5.32 16.19 1.46
gi=0 111 1.48 1.36 1.64 1.76
i1 6.38 6.4 1.99 1.86 9.4
ga 0.61 0.65 0.31 0.31 1.23
IxNN 89 11.9 3.98 10.26 13.5
GxND 13.2 17.9 5.97 15.38 20.3
BND 2.3 2.27 0.71 0.66 3.3
Fi(GeV/c) 07057 0.5915 14319  1.4306 - ——
Ky(c* GeV™?) 17277 -15.810 -17.277 -—16.673 -

Table 2: Results for the Nucleon Physical Parameters

* Obtained by fitiing
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