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ABSTRACT

Breaking down'of (n,y) T (y,n) equilibriun1of the r-pro
cess nucleésynthesig is studied. It is shown that the semi-free
zing stage of.f—process’ié relatively long, suggesting the
necessity of moré'cakefql calcﬁlatién of dynamicél freeZi;%

process to reproduce the correct r-process abundance of elements.

1 - INTRODUCTION

It is widely §ccepted that the r-process ndc]eosynthg
sis is responsible for the origin of .heavy nuclei in the univer-
sel»?, |

Since the work‘of Burbidge et al, many.ca1cu1ati0ns
have been done fn order to reproduce the observed abundance of
r-process elements. Recent progresses in the calculation of
supernova‘explosion enable us to treat the r-process dynam?ca11y3,

and in fact some attempts have been made4’5’6

to couple the
nuciecsynthesis process to the time evolution of density and
temperature of supernova explosion.

It i
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customy assumed that during the r-process, the



nuclear equilibrium between reactions (n,y) aﬁd (y,n) 1is
attained so that the isotopic gbundance of a given Z-family
(Z: atomic number) is calculated from the Saha equation. After
a certain time interval, when the density and the temperatdre
decrease sufficiently, the r-brocess Té cut off artificially
and some after-freezing effecfé (posf—freezjng neutron capture,
delayed neutrons, etc.) are éoﬁsidereﬂ7’8’9;

‘ Although the freezing timé,scaTe is expected to be
very small, the process of non-equilibrium phase might alter
the resultant atomic abundance. Especially if we follow the time
.evolution of superncva explosion and couple it to the r—ﬁrocess
calculation, it.is very importantvto include the effect of
non-equilibrium process.

In this paper; we investigate carefully thé applica-
bility of nuclear equilibrium and derive the condition for tem-
perature and density for which the Saha equation begins to fail,

In the followingvseqtion, we establjsh the criteria
for nuclear equilibrium, then calculate numerically time scales
of (v,n) i (n,y) process and B-decay of all nuclei in concern.
Finally ’we show graphically the region of density and tempe-

rature where non-equilibrium process must be considered.

2 - CONDITION FOR NON—EQUILIBRIUM

2.1 - {y,n) ¥ (n,y) Process Time Scale

Consider a family of isotopes of a given atomic number

Z. When the p-decay rate is very small compared to (y,n) or (n,v)
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reaction rates isotopicabundances n(Z,N) of this family satisfy

the equation

d N i i i+1
qT n(Z,NQ = - (kYn + knY) n(Z,N1) +‘Ayn (Z,N1+])
s N, ) | (2.1)
‘ n >7i-1. _ -

where A;n and A;Y denote rates of‘(y,n) and (n,y) reactions of

i-th isotope, respectively. They are given by respective cross

sections an and OHY as
]n - _jﬁT c °1n(E) E2 e—E/kT dE
Y (hc) Y | - |
0 (2.2)

3/2 C 2 -E/KT , -
an = 43(?§%T) / no ( (v Qva)) vooe ( dv

0

with v = (%?)1/2, where u is the reduced mass for (n,y) reaction,
and ny, the neutron density. For the sake of convenience, we use

the matrix notation and rewrite eq. (2.1) as

e (2.3)

where |n> is a colum vector whose compohents are given by

n(Z,Ni), and A is the matrix of coefficients of the right hand

side of eq. (2.1).
This matrix has an eigenvalue zero which corresponds
to the conservation of the total number of nuclei n = zn(Z,Ni).
i

Al11 other eigenvaluesare positive.

1 ne

The smallest non-zero eigenvalue gives an estimate of



time-scale for attaining equilibrium distribution.
At the equilibrium isdtohk abundances satisfy the

following relation

1-1
n(Z,N.) .
_”£u~“l__ = Iy ) (2.4)
n(Z,N. ) 1
i-1 A
. : yn
If A and)\:‘;1 are related by the detaﬁ]ed.ba1dnce
theorem]’5,
i | o
iYn_r I (__DE__)‘3/2 W(ZN -1) e-—Sn/kTA ' (2.5)
}\1-— nn 2mukT | "Ni - ;
ny .
with S = B(Z,N.) - B(Z,N]._]),v B(Z,N.) the binding energy of

n
isotope (Z;Ni) and W(Z,Ni) thé nuclear partition function,

equation (2.5) together with egq. (2.4) immediately leads to
Sahé equation.

In our case eq. (2.5) is applied more widely than the
Saha equaf{on siﬁce thé thermal eéui]ibrium is attained very
repidly. Thué wé can-estimate the eigénva]ue of tﬁe matrix A
if we know all the (n,y) reaction rates of a giVenVZ—fahi1y.
However in order to obtain the required va]u; of the time scale,
only several nuclei are included in the diagonalization procédure.
Aé we are interested td know the values of temperature and
density for which the nuclear equilibrium begins to fail, it
is gufficient to fnclude several nucTei around the peak of the
equilibrium isotopic distribution.

The timé dependent soi&tioﬁ of eq; (2.2) is given by

"}\-t

! 1

in> = n > +_; [ci> e

(2.6)



where |n0> is the vector of eqhi1i5rium distribution, Ai eigen-
value of A, [c;> constant vector which depends on the inicial
condition. -

Now‘%n the dynamical r-process, there are two factors
which intervene the equilibrium .distribution: the g-decay of
nuclei }n concern and the change of densiiy and temperature dué
to hydrodynamical process.'In order-to judge whethér the Saha
equation is a good approximation or not, we'may compare the
time scale of (y,n) 2 (n;y) equilibrium, Tyn? with those of
nuclear B-decay, TB,_aﬁd the hydrodynamical process, T

The B8-decay time scale, is defined as

when AB is the diagonal matrix whose diagonal elements are the
B-decay rates of correspoﬁding'isotopeé.

If 1 << T and Tt << 1 the Saha equation is a

eq B ‘eq h?
good approximation. For the sake of definiteness, we define the

non-equilibrium condition as

Teq < Q.'l Tg and Teq < 0.1 Ty, -
For Teq = 0,1 g Or 0.1 Ty » the relative accuracy of Saha
equation is expected to he of the order e ' = 0.005%.

2.2 - Reaction and Decay Rates

In order to estimate the (n,y) reaction rate we adopted

the empirical formula of Schramm and BTakeg. The comparison of

10

~ the result with experimental data for'kT = 30 KeV is reasonable.

For (y,n) rates, we used the detailed balance formula



eq. (2.5), and Fa]cu]ate Ayn from an'éf Schramm and
Blake's formula. It may asked thét why the empirical formula of
Ayn based on the giant reéonanée model is not used in spite of
the fact that (y,n) reactions are more extensively studied'énd
well known than (n,y) reactions. However at the temperature we
are interested, the (y,n) reaction is suppressed compared to
(n,vy) reaction by a factor e_S /kT, where Sﬂ is the neutron separa
tion energy, so that if we calculaté the'(n;Y) reaction rate by the
(ysn) reéction fate, errors are enhanced by the factor e+S o
which is very large. Furthermore the giant resonance formula is
) not so accurate at very lower energy than the resonanceAenergy
(= 10 ~ 20 MeV).

The detai1éd balance reiation is necessafy to reproduce
the Saha equation as an equilibrium Tlimit.

For the B-decay rate, we apply the Gross Theory formuy

11

Ta' ', which is expected a good approximation for the nuclei far

off the B-stability ]ines.vThe hydrodynamical time scale is
taken from Schramm's value4, T, = 0.056 seé.
3 - RESULTS AND DISCUSSION

Fig. 1 shows the temperature for which T = 0.1 7

eq h
happens (i.e., the beginning of non equilibrium with respect to

the hydrodynamical process) as a function of Z. The two curves
correspond to different values of neutron density, which is
related to the approximate neutron sepavation energy Sn of the

nuclei at the peak of isotopic abundance a55

Sn = (34.075 - log n,o + 3/2 log Tg)T9/5-04-



€q B
It is clear from Fig. 1 that while isotopic families

The graph fbr T = 0.1 1. is quite similar to this figure.

whose distribution covers neutron magic number (Z ~ 28, 49, 78)
are still in equilibrium, other families already begin to break
down the equf]ibrium. The va]u;s of temperature and density for
whichthe first isotopic family begins to break the equilibrium -
are considerably diferent from those for the last family. To
see this more exp]icit]y, iﬁ Fig. 2 we plotted 3 tontors in
log Ny (neutron density) - T9 diagram. The contor h3/4 shows
sets of temperatures and neutron density for which 3/4 of a]]
the families are in equi]ibrium with respect to fhe ﬁon-equi]i-
brium crﬁtgrion Teqv= 0.1 7y, on hy,, 1/2 of fa@i]ies are
in equilibrium and on h]/4 only 1/4 of families are stiil 1in
equilibrium. |

The contors 63/4, 8]/2 and 61/4 are defined ana]ogou ly
with respect to the condition Teq © 0.1 Tge

The region between two contors h3/4 1/4 or 83/4

and 8]/4 may be consi@pred as a region-of intermediate equilibrium

and h

in the sense thgt some families are still in equilibrium but others
are not. We found that such.a intermediate equilibrium is rela-
tively wide so that the final abundance curve may be altered:
during this semifreezing stage. It is interesting to note that

the two different criteria Teq = 0.1 T and Teq = 0.1 Tq define
almost the similar region of intermediate equilibrium.

Precise calculation of this freezing stage of r-pro

cess combined to the process of supernova explosion is in progress.
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FIGURE CAPTIONS

-

Fig. 1 - Non-e§uilibrium temperature defined by TYn = 0.1 T
plotted as functions of Z. Two curves correspond to
two different values of neutron -~ density, which is

indicated by the neutron separation energy Sn.

Fig. 2 - Contor plot of neutron separation energy Sn (dash-
-~dotted curve).in log n, - T9 plane. The attached
numbers are values of Sn..The intermediate equilibrium
regidn is specified.by éurves B and h . (See the

‘text). . - ' ’ .S
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