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ABSTRACT

We present a simple but complete relativistic model of
a spherical star emitting neutrinos, with basis in the coupled
Einstein-Dirac equations. The interior of the star is assumed to
be a perfect fluid — described by its energy-matter density_ﬁ‘,
pressure P and barion number demsity n -— bounded in space.
Matter is considered transparent for neutrinos and the exterior
region contains only neutrinos and gravitational field . The
question of compatibility of neutrinos with spherically symmetric
gravitational fields is discussed and a redefinition proposed
for the physical energy-momentum tensor which enters the RHS of
Einstein equations. Analytical solutions are obtained and are
shown to correspond to a description of emission of neutrinos
with cooling and contraction of the configuration. The local con
servation laws and the junction and boundary conditions of the
exterior and interior solutions in the surface of the fluid are
studied and allow to characterize two classes of solutions. In
one case the solution describes the stage of neutrinos emission
with consequent contraction of the configuration of the star imme
diately before the fluid is totally contained inside its Schwarzs
child radius, when the emission of neutrinos and the contraction

of the star cease . The other possibility can correspond to a
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quasi-static configuration emitting neutrinos; the relativistic
equation of radiative equilibrium for neutrinos is derived and
permits to define the equivalent of a "radiation pressure” for
neutrinos, whieh has an additive contribution to the gravitatio
nal pressure and is mnot purely relativistic, with an eventual

Newtonian limit.

1. INTRODUCTION

Although the study of the interaction of neutrinos and
gravitational fields has begun with the works of Cartan] and
Infeld and van der Waerden2 on spinors in a Riemannian manifold,
we can consider the paper by Brill and Whee]er3 as a basic refe
rence. To the theoretical motivations these two authors have
given of the importance of considering the physics of neutrinos
in a curved space-time, many substantial arguments have been
added in the last fifteen years. In cosmology, neutrinos are
believed to play an important role in the question of the ener
gy-density of the Universe4’5; also astrophysical processes connec
ted to the emission and absorption of neutrinos have been exten
sively discussed where, in certain cases (advanced stages of
stellar evolution, etc)6 the General Theory of Relativity beco
mes important.

In this vein we present here a simple exact model of
a localized source of neutrinos in the scheme of General Relativity.
Anteriorly Misner7 examined the gravitational colapse of a sphe

rically symmetric perfect fluid with neutrino production, neutri

nos being treated phenomenologically as a null f]uid(*) and matter

(*) That is, with energy-momentum tensor of the fOIﬂI-Eﬁkakp ,k‘kﬁo-



transparent to neutrinos. The paper is limited to the formula-
tion of the basic equations, describing "a simple heat transfer
process in which internal energy is converted into an outward
flux of neutrinos”". Also Vaidya8, with an analogous model, ob-
tained some non-static solutions of Einstein equations for fluid
spheres radiating electromagnetic energy. Since in a general
spherically symmetric space-time the electromagnetic energy-momen
tum tensor can assume the form of a null fluid but with covariant
divergence identically zerog, Vaidya was led to consider the par
tial absorption of the radiation when traversing the medium,
which is an effect of non-gravitational origin and demands fur
ther assumptions. Although both authors use a null fluid descrip
tion for radiation (neutrinos or photons) the essential difference
in the models is: (i) in Vaidya, the energy-momentum tensor of
the null fluid satisfies ;IF?"D =0 identically and one is
then led to consider radiation is partially absorbed by the me-
dium; (ii) in Misner, the energy-momentum tensor is by definition,
one of a null fluid but ;Kr%w=#0 such that the sum of the
energy-momentum tensors of the cooling matter and of the emitted
neutrinos satisfies the local conservation Taw, with matter trans
parent for neutrinos.

We present here a class of analytical solutions corres
ponding to a model which has many similarities with the above
two models: we consider a spherically symmetric bounded distri-
bution of a perfect f]uid(*) with the only assumptions; (i) neu
trinos in interaction with gravitation are described by spinorial
fields in the curved space-time; (ii) once emitted neutrinos have

gravitational interaction only (matter is transparent for neutri

%
( ) for instance, a sphere of a degenerate neutral barion gas
under self-gravity.



nos); (iii) the model is solution of the coupled Einstein-Dirac
equations. We distinguish two regions: I. interior region, cons
tituted of a perfect fluid distribution and neutrinos flowing ra
dially outwards and II. exterior region, only neutrinos in in-
teraction with gravitational field. Einstein equations and junc
tion conditions of the exterior and interior solutions in the
surface of the fluid sphere are sufficient to determine substan
tial properties of the model. The analytical solutions presented
have their properties extensively discussed and some modifica-
tions = as the introduction of a A-term in the field equations —
are made in order to attain to physically relevant situations.
On examining the exterior region, we discuss the question of

the compatibility of neutrinos as source with a spherically sy-
mmetric gravitational field.

For a general review of the formalism of spinors on a
Riemannian space-time, see reference (3). Here we use four-compo
nent spinors from the point of view of tetrad formalism, with
spin transformations generated by the local Lorentz rotations of
the tetrads. It has the advantage of being more operational,
allowing for a simple unification with Cartan calculus of diffe

rential fonr'ms]0

, Wwhich we use in the calculations.
We choose a tetrad field {63)0)5A=q1x,3} such

that locally the 1ine element can be reduced to

dsi= (0" — (0" ~(6%)" ~(O%) (1.1)
where(*)
8 = % dax* (1.2)

(*) Capital Latin indices are tetrad indices and run O to 3; they
are raised lowered with Minkowski metric %*%, Mag = diag (44,-4,-1,-1).
Greek indices run 0 to 3 and are raised and lowered with?"ﬁ, C}xls



(1.1) is invariant under local Lorentz transformations

§h 1, 0 0 (1.3)

LYo, L c®= 7s (1.4)

Such transformations correspond to a rotation in the tetrad basis

~ (A) - A (‘)
e, = Logex) €

Relative to the local Lorentz structure (1.1), (1.4) which exists
independently in each point of the manifold , we define Dirac

spinors as four component objects which under the group (1.3),

(1.4) transform like its correspondents in flat space,

Yix) — HFlx) = SCLX)) Y(x) (1.5a)

and its conjugate correspondent

T = F' )= F) S (Lw) (1.5b)

where S(k)is a 4 x 4 matrix representation of the Lorentz trans
A
formation Lg(x)with the restriction det S=1 . Under general

coordinate transformations x"‘->x"='x"'(x) 4-spinors transform like

scalars.

The constant Dirac matrices(*) XA satisfy

AB Bﬂg AB )

IR AL R AR LI M (1.6)
and constitute a representation of the Clifford algebra associated

to the local Minkowski metric ‘7‘5 . Using the tetrad basis we

can define the field of Dirac matrices

* +
(*) We use a representation such that({‘)= X°Y'X° , with

(¥°Y= -(y*)*= 1, k=123



™ () = el eat? (1.7)
which then satisfy

FFRYON + P 0= 23001 (1.8)

corresponding to a Clifford algebra associated to the metric wrxca.

Under (1.5) the matrices T transform like
wxg = SOYY*(X) s ()

and by (1.3), (1.4) and (1.7) we have
Ba)¥® = S ¥* S (1.9)

In the above formalism

—

Y= Pprye (1.10)

where uo is the constant Dirac matrix. The covariant derivatives

of ¥ and VY (defined such that under (1.5) they transform as

spinors and LﬂAv as scalar) are given by
4&¢HAWR€IT&%Q~ 4&@." w&\c‘....@ﬁk (1.11)

with )
V= %l - TL# -TL ¥+ ¥, T =0

which implies
}

For neutrinos we take A, =0 . R>vn are the Ricci rotation

coefficient defined by

= - < ¢ = -
ﬁan m@::... €8) ¢ (o qmsn (1.13)

The Lagrangean for neutrinos is given uk_

L= gty - U <o v} (1.14)



with an associated energy-momentum tensor

Tew (V)= C4F g, Gy ¥ =V F iy V) (1.15)

The coupled Einstein-Dirac equations for neutrinos as derived from

*
a variational principle are given( )

Rup = & 9up R= =k { Ty 4 (F) + Ty (malter) } (1.16a)
YV, ¥=0 | (1.16b)

where 7;p0?) is expressed by (1.15) and 'Z%(nmtter) is to be
specified for the particular model we are considering. We remark
that in the tetrad basis the Fock-Ivanenko coefficients (1.12)

for neutrinos can be expressed
o 1 AyS
Pc = €p r;=-7 Yosc Y Y (1.17)

and Dirac equation (1.16b)

¥ e‘(‘A) %Y+ 71 Ymuna XAXHXN ¥-0 (1.18)

Equations (1.16) constitute the basis for the study of
the interaction of neutrinos and gravitational fields, a solution
of which — corresponding to a physical situation where this inter

action should be dominant — is the object of the present paper.

2. THE EXTERIOR PROBLEM AND THE COMPATIBILITY OF NEUTRINOS WITH
SPHERICALLY SYMMETRIC GRAVITATIONAL FIELDS

The exterior region is supposed to contain only neutrinos

(*)

Einstein constant ks ¥UG is positive; throughout the paper

we use units such that K=c=1 .



in interaction with the gravitational field. Hence in (1.16b)
7;# (matter) = 0. Since the problem is non-stationary, spheri
cally symmetric and the trace of 7%‘(4}) is null, we take a
metric of the class EWV]z of the Plebansky-Stachel classifi-
cation]], namely the Schwarzschild radiating so1ution]2; in

(u,r,®,¢ ) coordinates, it assumes the form

dst= aidud + 2dudr -2 (d6%t a0 dy*) (2.1)

where &%= 1-2mw)r~? | Here w (-0 W& +P0 ) §s such that
w=comst. defines null hypersurfaces. Light signals propagate

along null lines of constant w , such that dw 1is the proper

16 17

time (or Newtonian Time ') of an observer at rest at infinity.

The vector normal to the hypersurfaces w = consl.

ko= Wix ) ks 8% (2.2)
satisfy
ke k%= 0 , k"”,s k% =0 (2.3)

The null lines with tangent k% constitute a congruence of geo-

desics, parametrized with the affine parameter ¥ (cf. (2.2)).

v disTance
The coordinate x=r* can then be interpreted as a lTuminositylin
the usual sense]3. Along this congruence (u,B,? ) are constant.
For the metric (2.1) we take the tetrad basis R
(o) Q) -1
C °=’ < 1: K
2.4)
- 4 , (
e”,)= ! é‘:=r ¢ g= ranb

where (2.1) assumes the form (1.1). Due to the spherical symme-
try of the problem we restrict ourselves to neutrino fields of

the form



Y= (o‘cfcf) (2.5)

corresponding to a four current

% Fye = g 8, (2.6)

* 3
radially along the 1ight cones of (2.1)( ). ¢ is a 2-spinor to
. +
be determined, 0! is Pauli constant matrix and ¢=2¢" P | The
Ricci rotation coefficients XHNA defined in (1.13) can be cal

culated for (2.4) and the non-null components are

1, o
XO4D= “+‘;‘—:l _ ot
. S5~ r
= = X (2.7)
Jore = L Go
coly
_ % Yusz = r
Yu:" r
where &K'= /[y and = 9“/7.4, . Using (2.7) in (1.17) and the
standard property (1.6) of XA we obtain
1 '
Bo=- (%% %)%y
1 o.( oyt
N = S ¥ (2.8)
N+ % y'y#*
4" 2 r X X
]
M= -2 (5r'y% =hd yip’)

Noting that r; depends on @ , we are then led to take in (2.5),
'-f“f(“,“, 8) . In the present representation of the YA and
with the property of the spinor (2.5),

Y 4 Y'Y (2.9)

Dirac equation (1.18) in the basis (2.4) reduces to

*
(*) This equivalent to assume that all neutrinos move radially
when emitted, or that only neutrinos radially emitted contri

bute to the energy-momentum tensor.
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{
u‘f‘+<'%%-+ %%) ¢ =0

(2.10)
29 L 1 cote b ¢p =0
26 * 3 7 ¥
Equations (2.10) can be immediately integrated, to give
( ) ! A {(w) (2.11)
uyYpg))s ———— .
(f 1 (O(Sl'lneyll‘r

where Ah&)is an arbitrary 2-spinor, corresponding to the most ge
neral spinor (2.5), solution of Dirac equation of the neutrino in
the metric (2.1). The current (2.6) is calculated

jte —1 M) Aw) 5

= 2.12
$imd 2 ( )

Analogously, using (2.8) and (2.10) the non-null components
of the energy-momentum tensor of the neutrino in the basis (2.4)

are ca]cu]ated(*)

- —~ Ye 1 + 3 s

-’;n= ’11 == (oq = R (>‘ A=A )\) (2.13a)
== T, 2 wh®  \tet)

7;3 13 i B 3 o (2.13b)

Expressions (2.12) and (2.13) show clearly why has been widely

stated in the H‘cerature]4

that neutrinos cannot generate a cur
vature compatible with spherical symmetry, or equivalently neu

trinos are not compatible (as source) with spherically symmetric
gravitational fields: the components of the energy-momentum ten
sor (2.13) depend also on & while Ryg depends only on (w,r ).

We now discuss why the angle dependence of (2.12) and (2.13) is

* -
( )Due to the form (2.5) of "I' , the expressions "f)'oqul-'f and
"{’X’Y'Y""‘f‘ are identically null,.
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in fact coordinate dependent and not physically significant, and
can be suitably eliminated.
The O -dependence of (2.13b) is not so drastic because

we could assume

Moy =0 (2.14)

which corresponds to neutrino fields which are not eigenstates
of XJ-. Actually these components (2.13b) should vanish by
Einstein equations for (2.1). The crucial factor is 4/nh9 which
appears not only in the current (2.12) but also in the relevant
components (2.13a). This dependence is suggestive because it is
exactly the factor 4ha¢9 that corrects areas in a spherical co
ordinate system.

Indeed if we consider the measurement of a radial flux
of neutrinos, we can easily see that the number of particles by
unit of time and area meassured in the direction & , for r fixed,

is proportional to

Fa j (8 (2.15)

where j" is given by 7{%3;.X+A(UJ (cf. (2.12)). Hence
the observed flux is independent of the direction of measurement
whether observed locally or globally. Since the current associated
to the neutrino field (2.5), (2.11) corresponds to an isotropic
(or spherically symmetric) emission, the metric (2.1) should have
curvature compatible — through Einstein equations — with this

flux of neutrinos. Analogously we can interpret 7:’~ as a current
density of energy-momentum which depends on © as ‘Vﬁ“p and so
corresponding to an isotropic (or spherically symmetric) flux of

energy. Therefore in a spherically symmetric space-time we are

led to redefine the energy-momentum tensor of the neutrino — which
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shall enter the right hand side of Einstein equations — as

~ 1 -1- 0
’ - e——
oy S ‘u'v d (2.16)

We consider that the spherically symmetric metric (2.1), solution

of Einstein equations

(a4

R,“,:'-K v (2.17)

describes the exterior geometry of a spherically symmetric distri
bution of fluid, emitting neutrinos isotropically.
Condition (2.14) can be discarded as artificial — becau

se in (2.16) we could take the B -integral as the principal value

T g
T ot Sdp PV §doacen T,
T . L
w T 2 “ (2.18)
~ ~
what implies 7;3=‘7:5==0 — and we can eventually have emission

of neutrinos of only one type 4#t)= s (54ﬁ3)

To summarize, once stablished that the factor Vg;eis
merely a correction due to the coordinate system used and has no
physical significance, that all observables quantities construc
ted with (2.5), (2.11) are independent of the direction of measu
rement, and so isotropic, the average over angles (2.16) is legi
timate and the redefined energy-momentum tensor (2.16) (or(2.18))
is the physical energy-momentum tensor of neutrinos, which shall
enter the RHS of Einstein equations in a spherically symmetric
space-time(*).

Redefinition (2.16) (or (2.18)) has two important pro

perties:

*
(*) In an analogous context, Griffiths15 proposed an averaged
energy-momentum tensor for neutrinos in the spherically symme

tric metric (2.1).
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"~

1) The energy-momentum tensor 7;P is still conserved locally in
~
the metric (2.1), 'T,"’,,ﬁ =0 .
2) '7%p has the form of the energy-momentum tensor of a null

fluid which is the usual phenomenological description of neu-

trinos7’8.
Substituting (2.13) in (2.18) we obtain the non-null
components
~ i i .1 + '__X”fA
T;°= I11="-7:1= an_"‘_‘az<)\ A > (2."9)

Xr

Expressing the energy-momentum tensor (2.19) in the coordinate

- (&) (8) i
basis, T.(P=€,‘)e /3 7;5 » With C,(‘A) given by (2.4) we obtain the

=~ R
only non-null component [/ -%‘:(/\"/\-A A)or

"7; = i:_.‘; (NN = XA wg e (2.20)

which shows property (2).

In basis (2.4) the non-null components of Ricci tensor

are given by

Roo = Ryr =- Roq = i R (2.21)

and Einstein equations (2.17) imply

= k;m (XTh- XN) (2.22)

The geometric properties of the Schwarzschild radiating
space-time have been extensively studied by Lindquist, Schwarz

16

and Misner but we have some comments to do here. The total power

emission of the system described by the metric (2.1) was calcu-
lated in reference (16) to be
L“Gi ST TR ™

using the Landau and Lifshitz's energy-momentum pseudo-tensor for
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the gravitational field. Equating with (2.22) we have

Lm_-_- v7t“¢:(,\*,\'—,\'+/\) (2.23)

We call L'Bt the luminosity of neutrinos emitted, as measured by
an observer at rest at infinity (r—>0e ). Result (2.23) could
alternatively be derived by using the following arguments. The
Weyl tensor for the exterior metric (2.1) with neutrinos is for-
mally identical to the Weyl tensor of the Schwarzschild metric.
The null vector field W;x which is a degenerate principal null

d1'v~ect1'on]8

of the space-time defines the null direction along
which neutrinos propagate (cf. (2.12) and (2.20)). Since for

m = const. Wyx dis still a degenerate principal null direction

of the space-time we can conclude that principal null directions

in the Schwarzschild space-time are null directions of propaga-
tions of neutrinos in case of an eventual spherical emission.

This suggests that in the emission of neutrinos as described by
(2.1) and (2.22) there is no simultaneous emission of gravitational
radiation. Indeed,if we examine the curvature tensor R,u., of
the metric (2.1) for r sufficiently large we see that the leading

term (corresponding to the lowest power of r']

R~ =

ABCD ra
The radiative part of the space-time thus comes from m$0 which

) is proportional to

by (2.22) is due to neutrinos only. We then have no gravitational
radiation emission together with neutrinos and the total radiated
power (which is associated to neutrinos only) can be calculated
from the energy-momentum tensor (2.20). If we denote s *r18C’
(corresponding to a local inertial observer) the total luminosity
(neutrino luminosity) as measured by an asymptotic observer at

rest is then given by
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Lt;_ta Com YTyl 7’-“, (neu.Frl'-np) 1",‘1)":-.- 7.7[‘5()-'):")\.1.})
-3 oo

which is the result (2.23).

The hypersurface T=dm(w) for m <0 is space-like and
a light signal emitted in the region r>dm(u)or any material par
ticle following a time-like trajectory starting from a point in
rd2Zwm(w) cannot reach the hypersurface Y=dm@). This led LsM1®
to consider the region Tfivn(u) unphysical. Nevertheless although

this region is not accessible for objects in the exterior region

of a Vaidya metric, it is probable that when matter was assembled

to form the source in this region the metric of the space-time
was not Vaidya. Only after assembled in a spherically symmetric
configuration and eventually radiating, can the space-time be
characterized by the radiating metric (2.1). We here disconsider
the region Yg§ Aw (w) by assuming that the emission takes place
before the fluid source is inside its Schwarzschild radius, the
fluid having a boundary Yg(u)).?-m(u) (the static 1imit corresponds
to the Schwarzschild configuration for *> &m =consT. (cf. section
3)). We exclude the case of the whole mass of the object being
emitted as neutrino before the mass reaches its Schwarzschild
radius (i.e.,+s<-r'n )3 the conditions which eliminate this possi

bility for our solution are examined later (cf. equation (3.103)).

3. THE INTERIOR PROBLEM: A CLASS OF SOLUTIONS

The interior region is constituted of a distribution
of matter and neutrinos flowing outwards. The matter distribution
is a perfect fluid sphere characterized by a total density €

2

pressure P and radius ¥y and which emits neutrinos. Neutrinos
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are supposed to move radially when emitted, or only radial neu-
trinos contribute to the energy-momentum tensor. Matter is trans
parent to neutrinos, i.e., once emitted neutrinos have interaction
with gravitation only, being not scattered or absorbed by the
adjacent matter. The above model is to be solution of the coupled
Einstein-Dirac equations, joined to the exterior solution of sec
tion 2 on the surface of the fluid sphere.

For the interior problem our choice of coordinates is
=(w,r,0,p) , —oosUEP, 0KV Do , with the following pro
perties: (i) the hypersurfaces Ww=cemsC ., are null hypersurfaces
tangent in each point to the local light cone; (ii) r is an affine
parameter along the null curves with tangent k% 7“”!.(.,,5 defining
a luminosity distance; (iii) the scalars € and ? are constant
along the null curves in (ii). In this coordinate system, a sphe

rically symmetric line element can always be expressed
24,3 A%+ 50470 a)
ds?= x%du’+dudy -8 30 dyp (3.1)

where & and ﬁ are functions of W and Y . We choose a tetrad

(A)
basis ¢x with non-null components
c“;)= X e"’: = o(“1
(3.2)
W _ -1 () _ () _a wud

such that accordilng to (1.2) the metric (3.1) assumes the form
(1.1). The Ricci coefficients X};c calculated for (3.2) have
non-null components
i . *
Toto . / Y12z ﬂ//“" + £
Yogq = - %/x?
Yoaz = ﬁ&sx
< !
= - «/
- b Yas= = Phat r
Yass= ol /(5 r r

Yoss = /?'//sx
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With (3.3) the Fock-Ivanenko coefficients (1.17) are calculated

: (3.4)

Since only radial neutrinos are considered, we are res

tricted to spinorial fields of the form

R (”’fYJ (3.5)

where <f is a 2-spinor and 5‘1 the constant Pauli matrix,with the

associated current

J*=(¢,8,0,0) (3.6)

—
radially along the local light cones. Because ,5 depends on &
we take in (3.5) f f%c&f‘e) . With the properties of the cons

tant Dirac matrices Y and of the spinor (3.5), Dirac equation

(1.18) reduces to

wpl+(£+ EL) g0

(3.7)
_fﬂ-{-——— coge ‘f =0
which can be immediately integrated to give
1 A
Plu,r, 8) = (w) (3.8)

. 1
(of 3u8) 2 8
where/\hO is an arbitrary 2-spinor, which corresponds to the most
general solution (3.5) of Dirac equation in the metric (3.1). We

remark that in the present coordinate system Dirac equation is
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immediately integrated as (3.8) and whose functional dependence
in (w,v, 8 ) reflects in the current (3.6) and in the energy-momen
tum tensor, allowing a simple interpretation as we shall see.
This is the strongest reason for the choice of the present coor

dinates. In the current (3.6) the solution (3.8) yields

g= —— X AMOAW (3.9)
$un O «xp
whose 8 -dependence is identical as in (2.12). Using (3.4), (3.5)
and (3.7) we obtain the non-null components 7;5 of the energy-

-momentum tensor of the neutrino field (3.5) in the basis (3.2):

- Y 1 + 2 '+
74;0: 7:1-1=— /01= For b % (/\ /\'—/\A) (3.10a)
_ R el & +
fos == Tps = P LY ATEIN (3.10b)

with a © -dependence as in (2.13). As for the exterior solution,
the angle dependence of (3.10b) is not so drastic because we

could consider neutrino fields satisfying
Aty 1AW =0 (3.11)

which are not eigenstates of ysﬂ In an analysis analogous to

the exterior case, we can show that the factor ﬁ@g‘e in (3.9) and
(3.10a) is simply a correction due to the spherical coordinate
system used, such that all observable quantities constructed with
(3.9) and (3.10a) are independent of the direction & of measure-
ment,corresponding to an isotropic (or spherically symmetric)
emission of neutrinos. Hence as in (2.16) we redefine the ener-

gy-momentum tensor of the neutrino, which shall enter the RHS
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of Einstein equations, as

ad 1 _
[ = — dfL (3.12)
P

The spherically symmetric metric (3.1), solution of Einstein equa

tions

R,“,--‘—:- Fpor R =k{7;,(f,p)+7;,,(murzim)} C(3.13)

is then considered to describe the interior geometry of a fluid
sphere emitting neutrinos isotropically, eigenstates or not of

75 (*X The redefinition (3.12) has two important properties:

e
(i) the energy-momentum tensor 72# is still conserved locally,
that is ~ 4
Ts ne =%

in the metric (3.1); (i) ‘7}ﬁ has the form of the energy-momentum
tensor of a null fluid, which is the usual phenomenological des
cription of neutrinos in General Re]ativity7’8.

Substituting (3.10) in (3.12) we have

~ i ~ .1 » 2+t
T = = - = —_— APA ~
00'17;1' 7;1 o xﬁ&‘(n A /\/«>
~ ~ (3.14)
,03 = Iﬂ = ~ ~
X . T (4) (3)
In the coordinate basis, the energy-momentum tensor v = ,;39 /nc

T AT +
has only one non-null component , = ‘CA A) and we can write

N I T
/,,J= —I;;b(A‘*A—A A) u.|tk u"\)
with W= 8;

(3.15)

a radial null vector tangent to the 1oca1 light
. ‘l “+e 0+
cone, what shows property (ii). The factor 11‘-5‘;(/\/\‘/\ /\) can be

conveniently interpreted as the energy-density of neutrinos as

*
(*) in (3.12) the 9~—in£egral is also taken as the principal value,
that implies = =0 -
P Tos = T,3=0
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. -1 om
measured locally by the observer with four-velocity « 5',
For the energy-momentum tensor of the perfect fluid we

assume that an observer comoving with matter has four velocity
A_ §* Ve =80
VA= °, A< (3.16)

in the local inertial frame determined by (3.2). This corresponds

to a matter velocity field given by

M
V": C'(:) VA= €¢o0)

We denote respectively by @ and P the density of mass-energy
and the pressure of the fluid, as measured locally by the observer
(3.16). Thus in the local inertial frame defined by (3.2) the

energy-momentum tensor of the fluid has the form

7.-45"'(5’*?)5: 8p - P'7A5 (3.17)

which is the expression of the energy-momentum tensor of a perfect
fluid in Special Re]ativitylg.

The total energy-momentum tensor for the interior pro-
blem shall be the sum of the energy-momentum tensors of the neu-

trino and of the fluid, which in the local basis (3.2) is ex-

pressed
T (GGl = (¢ +P) 84 85 =P Muast iﬂ_‘i)_k,,k (3.18)
AB =7 A s 74 PP 5
where K, =(1,-1,0,0)  and
L) Ti ( ATA-ATA) (3.19)

The non-null components RA, of the Ricci tensor in the Tlocal basis

(3.2) are calculated to be
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xn'rs’ _ Y x/!’

4
Ryo= —2xa"~ -2ot'“2+"”s +"':?3<' R

Roy=-9 L8 + 48" _yan, 4p
Axr A AX A

wf

R, = e’ 1 20! 4 9_& - ?_é. - ‘//3" + ‘//t“
X

11 ,‘x‘z

+ YA 4 ""_ﬁ.
% y:

i
A +Z/3'_0(_z+‘/“£'£ - 3-;!-

w= K== L+ s

Y44 L 2 p K2
/32

Einstein equations in the Tocal basis are given by

R,B"f"‘?qs R=k Tas (L)

(3.20)

Here we take k<o . Using (3.18) we can write the independent

equations
Lw)
4
R,,—IR Z K ‘(2/62 t+ Kf
(;4- 2k 5232
«p3
Lw)

The Ricci scalar R is given by R=Xoo~

from (3.20) we obtain

R=z— Yaux’-— ‘/o("?.. 716 xp('ﬁ'és + 16/5.’//5_

+ Z‘ + 9/51"4,-:-. ‘//e"d‘//,z

R11 = k.z.z" /?33

g ﬂ”ﬁ’%

(3.21)

and

(3.22)



-22-

The field equations (3.21) can be rewritten

Ro= 26 28y poy 12 (3.232)
Roq = —2K vﬁ/(::) (3.23b)
Ryz = kp--‘zik (3.23c)
Ryg + Rog— Kag =9 (3.23d)

Equation (3.23d) is obtained from the relation 7; ‘-GRfJZ}O, which
holds for the total energy-momentum tensor (3.18) and it is equi
valent to a linear combination of the three last equations (3.21).

Also from (3.21) we can see

Roo+ Regt 2 Roq = K (g1p) (3.24)

and an explicit calculation of the LHS of (3.24) yields the impor
tant relation

"'_/fl_‘ «?= K (j’ﬂ’) (3.25)
)

Since for physically reasonable equations of state,g+P>O and
since K<o we must have F25<0 in all points of the interior region.
Also the existence of matter in the interior region described by
the metric (3.1) depends essentially on (323 being non-zero.

A inspection of (3.20) and (3.23) can convince us of
the difficulty of finding on explicit solution of the field
equations (3.23). We try a separation of variables solution for

the present case of matter without opacity for neutrinos. We take

— 3.26
e Ry ) T, (w) (3.26)
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Using (3.20) and (3.26) in the field equation (3.23d) we have

{k,k;’-}-/?;‘z R‘R (R‘,k’,)}_’. 17“2 +-Z- 2, (3.27)

R T
We make the choice
-5 -2
a2 3T, (3.28)
R
that implies
[/ /
12 , R pR Ry kg \2
R RI+ Ry + 2 RS- (2
171 7 R (k,z ) 2 1 (3.29,30)
1 : =7 =" Far3
-_— R 12T,
T +-‘ZZ l/k} 1 /2

where 3 and ‘7 are arbitrary separation constants. Equations

(3.28) to (3.30) can be rewritten

) -1
=3 T (3.28)
— R 1
Iy 73‘-‘"77 (3.29)
] '2 R R R
fre At SR (e )

Let us examine now equation (3.23b). Using (3.26) and (3.28), it

can be reduced to

IR T, T, + AR Ry RET,AT, T,= &L (3.31)

- -3
By (3.28) Q==-52‘7; which together with (3.28) and (3.29) re

duces (3.31) to

2
--ZR:Z‘Z-I- 2R, R, Rf—775-‘—?-= kL T,0= X (3.32)

where ﬂi is a separation constant. Equation (3.32) yields
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L= T'i‘_ Ta (3.33)

4

R
2Ry R

(3.34)

2
Ry = —g—-(%+ 12‘&“)

From (3.33) we see that the functional (3.19) of the arbitrary spi
norial field /\(uJof the neutrino can be described by the metric
function 7: or vice-versa. Also, fof?c]ass of junction conditions
of the exterior and interior solutions, the relation (3.33) will

be useful in relating the sign of m and the sign of X

Taking the derivative of (3.34) results

R” _—_,-.7-72—_;;_(%.’.12-?,? )

o R, ,e,," (3.35)

-2 (x+2 2R%
and substituting (3.34) and (3.35) in (3.30) we obtain after a

long calculation

—

R:{ ) 1 _z_ Rz (3.36)
( 1) RE +‘/§'7 )

(3.34) and (3.36) constitute a pair of coupled differential equa

tions for the two metric functions ‘? and ﬁ} . Once we have a

solution ( XK, KR, ), g+P is determined by (3.25), ¢+pP=
ank%k -Tz and assuming an equation of state for the fluid,

7=)\f » the total matter density ¢ s determined

§= — {sz%f"’;‘=

Ry ) — =2
k1 22 /
KCT4)) { R } 2 (3.37)

k(1+A)7‘

In (3.37) 7_2' is a solution of (3.28).

Nevertheless it is to be verified if the solutions given

by (3.28), (3.29), (3.34) and (3.36) are compatible with the re
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maining field equations (3.23 a,c). To this end we initially show
that equation (3.23c), £;2= *}’“‘1—1/( , can be obtaine‘,dﬁy convenient
linear combination of (3.23a), (3.23d), (3.23b) and (3.24): subs
tituting (3.23d) in (3.24) results Koo+ R2a +Keg =4Cp+p) and using
(3.23b) we obtain &°+R_,,,-k:+ """’C

+ kP , which by (3.23a)
reproduces (3.23c). We note that equation (3.24) does not impose
further restrictions on the solutions Ry, 77, Ky, 7, but defines
only the additional variable §+P in terms of the metric functions.
Thus the only remaining condition to be satisfied by solutions

(3.28), (3.29), (3.34) and (3.36) is the equation

R . 2xL
(1] ,("ﬂ'?

Using anterior expressions we can see that (3.23a) is equivalent to

+ k§'+';1 R (3.23a)

Raz = -;f- (3-P) (3.38)
or, from (3.20), (3.26), (3.28), (3.29)
Fs- = T2 “+ 2 K5 R 4 K iR, ‘-7 o (3.39)

Rz Ry R,
+ 42X )]'t;“z

"
K(s49) = 4 25 R{ T (3.25)
<

Now (3.39) together with

determine uniquely the equation of state F=P(§). Substituting

. v

(3.25) above in (3.39) and using expression (3.36) for Ra | the
R

matter density f is given 2

_ 2 Ra R3 Ry R <
k§= 3[ ¥37 "’" x: RyR t2 (e ') —:;;‘ 7, (3.40)
[ 4

Similarly using (3.40) and (3.36) in (3.25) above, we have
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§39R X3 R} R (3.41)
“P= [?7-;5 2(“) kw—”*kf ] 7"
From (3.40) and (3.41) we have the relation P/f=~:.;!- or
P”‘j"f (3.42)

The equation of state (3.42), though satisfying energy-condi -
tions20 implies the existence of negative scalar pressures,what
is not physically satisfactory. To circunvent this, we later in
troduce in the field equations (or, equivalently in the total
energy-momentum tensor) a term which describes the cooling of the

fluid by emission of neutrinos.

Let us examine now the local conservation law
v
TF w (Gl ) =0 (3.43)

of the total energy-momentum tensor (3.18). An explicit calcula-

tion of (3.43) gives

§- (1N g (X - :;A;)“ (3.44a)
‘g'_x'zs’_(%)‘_)o(f(x"fﬁ):o (3.44b)

where we used p=/\_§, A= consT . We note that the components of
the energy-momentum tensor of neutrino do not contribute in (3.44)
since by construction (1.15) has null covariant divergence and
redefinition (3.12) does not alter this property. Using expression
(3.37) for g(u,r) ,» equation (3.44a) reads

-

fen g - caN R T (T - o ARV
R, ‘r" A’,T”' k(lf)) R.z
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which implies

. . 2 d
T = (1) (T 7 =27 B Yo (3.45)
3

From (3.28) Ta__ Ty and (3.45) results

BT
{2-3¢1e0)} 1,7, =0
or
-1
A3

what is consistent with (3.42), without no new restriction on the
4
solution. We now examine equation (3.44b). Using A:-E- and the

expression for ¢ ,

4 2R3 2
= RS 22 YT
we can rewrite (3.44b) as

‘/k“k") R (RARINTH b o !
(S - o O ) s ) T

4

Using (3.28) and (3.29), (3.46) yields after some calculations

P} v
-939% (4 %")— k,z(k,‘z %>l+.2 R, R;(ﬂf%’ >=o (3.47)
2

and by a further simplification in (3.47)
R\ 2 p=2, R! (3.48)
('{') + 377K, (4)=0
R R

Hence the interior solution given by (3.26), (3.28), (3.29),(3.34)
and (3.36) satisfies Einstein field equations and the Tocal conser
vation law of the total energy-momentum tensor for an equation of

state P='f% Ly and provided (3.48) holds. That is, the functions



-28-

ﬁ;(r) and R&(f) must satisfy simultaneously the Three equations

= 22 <3%R;
2 (x+ <3 ZR,Rz (3.34)
e Y (3.36)
g 4&:_”, 2 R Ra
(3.48)

k! ! 2 RZ
(};)*‘ 37 "’1 ((5E)-o

A straightforward but very long calculation shows us that (3.36)
is a first integral of (3.48) provided (3.34) holds. Thus the above
equations for R, and R, are consistent and indeed it remains only
two independent coupled equations which determine R} and ﬁ}
We can interpret this solution as describing the interior metric
(gravitational field) of a perfect fluid, in interaction with neu
trinos as described by the energy-momentum tensor (3.15) but com
pletely decoupled for the equation of state P=—J~’f

From equation (3.48) we can study the behaviour of ¢

with v . By (3.37) we have ¢(r,u)= g(r) 7;2 where

_ £ A RpZ
g(r) = % ;‘: 1
Using (3.34) and (3.48) we obtain
de(r) R 1
S e 2 x T 3} (3.49)

4’
and since g(f')>o » the sign of dg/dr is given by(? ‘k—z“??).
instance, for the density ¢ decreasing with ¥ we have the ine

quality

- .22 Rj<o (3.50)

NS

which is verified for the following cases: (i) X >0 » 3270,

,___ >Rz(r)>/ 5 ;CiE) X0, 3<0 / <R(r)</ 5 (i)
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X<0, 350 for any value of R;(T); X<o0, 3<o is incompatible with
(3.50). Each possibility for § decreasing with ¥ is restricted
by the signs of X and Z, which shall describe emission or ab-
sorption‘of neutrinos, contraction or expansion of the fluid confi
guration, as discussed in the junction of the present interior so
Tution with the exterior solution. For the density increasing with

Y we must have

é; - ‘Zéaﬁﬁ >0 (3.51)

which is verified for the following cases: (i') % >0 23>0,
[ % [x g0 _/x I~ .
- 2?4&(")( ,1_3-2 ,(H.)Z>o’é<0, 2?:>'e2(r)> 232 (iii")

¢40,3<o, for any value of R,z(r); /’Clol 220 1is incompatible with
(3.51). If in some point Y=V, corresponding to the interior of
the star, the function K,(r) assumes the value f,(":,..)-:\/ﬂ/zz‘? and
the density € of star has an extremum on the 2-spheres with
radius Rg(fm) . For the two regions 0<r¢ v, and Yau<r<Ts , where

Ts is the value of ¥y corresponding to the radius of the star,
compatible choices of (i) - (iii) and (i') - (iii') can be made.
As the junction of the choices atrar,, must hold for any w , both
choices must have Z with the same sign — this excludes the possi
bility of %<0 with the density § having an extremum in the inte
rior of the star; for %<0 the density € must be awmonotonous
function of ¥

We now interpret the parameter 3 . The congruence of

observers comoving with the fluid is defined by the velocity field
(cf. (3.16))

AN T

~_ -
Vi= € oy =

(3.52)
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For our choice of observers in the interior of the future 1light

cones we have the condition

250 (3.53)

(*)

For the congruence determined by (3.52), the expansion parameter

/4
is defined by 9:\/"},,;.:3(,)",.» or, using (1.13),
o=-%, " a (3.54)

The volume of the fluid expands if >0 or contracts if ©<0 , the
contraction or expansion due to the physical processes that occur
along its world-1ine. Using (3.3) in (3.54) results
6= ‘le//sx - ;‘/o("‘
or, by (3.26), (3.28) and (3.29),
3

= — _ _—a 3.55
6= 2 2T, T2 (3.55)

Since >0 the sign of O is determined by the sign of 3 i.e.,

the fluid is contracting for §<o or expanding for 2>0

Reinterpretation of the Equation of State

We have presented a complete analytic solution for the
interior problem but the field equations and the local conserva
tion of the energy-momentum tensor imply the equation of state
P=-%-g , involving thus negative scalar pressure. We can con

sider this solution, with the above equation of state, as an

effective description of a more complicated solution

describing the cooling of the fluid by emission of neutrinos.

(*)

In the local inertial frame of an observer determined by (3.52),
© measures the relative variation of an infinitesimal spheri
cal volume of the fluid, centered in the origin of this iner-
tial frame, along its world-line defined by (3.52).
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To this end we write Einstein equation with a /A -term, namely,

R,‘,-ziyﬂ,,k—/\(x)y,.o=k 7;.9 (554) (3.56)

or, in the local basis (3.2),
1
Using the form (3.18) for _Z;(total) we have

¢ T (Bll) + Ay, = k[(?w‘?) 5 8;-;3"7u]+/\7“ + 1, (neutrim) (3 57)

where §' and ;' are the real density of energy and pressure of the
fluid, as measured in the local inertial frame of an observer co
moving with the fluid. The RHS of (3.57) can be rewritten
"_,;a(um>+/\'7u =k[(§'+% +?— %>3A°X; —6;’— ':_:-)74‘]
_ (3.58)
+ X /“ (wcuEém)

and has the form (3.18) for density € and pressure p defined by

¢= ’§'+ N (3.59a)
P‘?’ /\/,< (3.59b)

If we take (3, p ) as (3.40) and (3.41) corresponding to the ana
lytical solution (3.26), (3.28), (3.29), (3.34) and (3.36), and
which satisfy ,7:-3i € , it results that g and F correspond
to the same metric solution for Einstein equations (3.56), with

the A -term satisfying

~

LA 2 AN
Pt3S= 3 (3.60)

From (3.56) Bianchi's identities imply the conservation law



-32-

e‘rf‘",,,,(zaa.c) == N (3.61)

The RHS of (3.61) permit to describe the heat output (input) rate
by specific volume of the system and which can be interpreted as
the rate of cooling (heating) of the fluid due to the emission
(absorption) of neutrinos. To this let us write (3.61) in the Tocal

basis (3.2). A straightforward calculation gives

K €y {(?H?").x"C:) “(§4F) Gy Yo % ~(§4F)6nYe "6
(3.62)

Ao ~ l"°
—PS;* ‘P'S,:} € (a) A

We note that for A=0 we have equation (3.61) described in the rest

F
frame of the fluid since by (3.16) V¥ = €y :

K[E-(FFNE - 2Ly --A (3.63)

Denoting by ™ the barion number density as measured locally by

observer (3.16), matter conservation is expressed

(ﬂe(,, )"I" (3.64)
or, by (3.2) and (3.3),
n-n( -2 ﬁ o (3.64")
(4-24)-
Defining an specific internal energy € by
= M (M +8) (3.65)

where Mo is the rest mass of the barion, and using (3.64') and

(3.65) in (3.63) results

3>

* ~ 1 * 1
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Equation (3.66) is the expression in the rest frame of the
f]uid(*) of the first law of thermodynamics, wherelAﬁn is pro-
portional to the heat output (input) rate per barion of the fluid.

For A = 1, (3.62) yields
~ ~ ~ - ~ ~{ A _ !
G ep Wy Pt =t A A (3.67)

Using (3.63) in the RHS of (3.67), and also (3.3) we

"02

Be (50 R) 2= & Gep)e s B (GE -S04 % (e

which substitutes the usual equation for static distributions

~' ~ ~ Nl . . . _
P +(~9*P)I§' - 0 . Equation (3.68) is the equation of hydro
dynamic equilibrium for the star configuration. We now consider
quasi-static distributions. Since by (3.55) the expansion or

contraction is determined by 3 , we define quasi-static configu

rations for values of 3 such that
32¢< 12 (3.69)

An immediate integration of (3.28) and (3.29) gives

TZ =2%u+?, (3.70)

2 _ {
(23w +2,)

where %o is a constant of integration. For (3.69) and finite va

(3.71)

lues of Y.  the functions (3.70) and (3.71) have approximately
(*)

We note, for instance, & = & E,)LV"’
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An explicit determination of the form of A(ra) will
be done for a class of junction (and boundary) conditions with
the exterior solution, and consequently the determination of ¢

and F’

Junction. (and Boundary) Conditions of the Interior and Exterior

Solutions.

Here we denote the coordinate system of the interior so
lTution (3.1) and the exterior solution (2.1) respectively by
x;=(7f;k, 9,?) and A}:(u,f}e,?’) . For the exterior solution
the coordinates X;; are admissible in the region of the space-
-time restricted by ¥>dm(u) . For the interior solution we see
by (3.34), (3.36) and (3.48) that the coordinate R is admissible
in all its domain, excluded the points such that Rz(R)==O (which
are improbable since R;l is proportional to the curvature of the
'Uj R = const. spheres, and which is always assumed to be finite).

The coordinate Y must be restricted by (cf. (3.70))

U¢- 2° , 3<o0
oF
consequence of '5(‘U‘)>0 and 7;(1’) finite in the admissible do

main of U~ . 1In the following analysis we are considering only
the region of the space-time of the solutions covered by the above
coordinates.
Let us now consider the 3-dim hypersurface‘Z: of junc

tion of the two solutions and D a finite neighbourhood of >~

D and 7~ are chosen such that x§; and Xé[ are simultaneously
admissible in D . Following Lichnerowicz22 we assume reasonable
conditions on the continuity of the metric and its partial deri-
vatives onD such that in the present admissible coordinate sys
tems we have the continuity of the metric through 2 and the Junction

conditionszz’z3



-36-

v
Gf. (PN = continuous through 2 (3.74)

where the equation of Zf is given by ¢==O . We also suppose that
on D the transformation functions )(;: X;; have continuous
first order partial derivatives and piecewise continuous second-
-order partial derivatives (fhat is, the second order partial
derivatives may have finite different limits on each side of 2_ )
and thus the junction conditions (3.74) are preserved under these
transformations. Using Einstein equations in (3.74) we have the

0'Brien-Synge junction conditions24

v
lf" 4"9 = continuous through2_ (3.75)

which express the continuity of the fiux of four-momentum through
2 . Although the metric shall be continuous through 2: » (3.75)
implies that the first order partial derivatives of. the metric are
discontinuous through 2_ if the energy-momentum tensor is dis-
continuous through Z: .

We take as junction hypersurface a sphere with % -depen

dent radius, described in exterior coordinates by
2 r=rp(w) (3.76)

In interior coordinates x; , we note that R is a comoving co-

ordinate because
M 2R

e —u =9
x @  9xf
and then 2_ is described by

R: RS= C«D’MST. (3'77)

The metric 1nduced(n1z:by the exterior metric can be calculated:
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on Z we take the coordinates )\°=(a,9, ‘f) and the extrinsec co
ordinates of points on Z parametrized by A are given by
X‘I(z\")=<u,¥;(u-), e, C(). The metric induced on 2— by the exterior

metric (2.1) results

(dsz)z= (7- "%{% +2 %) de? - 0 A (3.78)
S

Analogously, the metric induced on 2: by the interior metric is
~y¢
calculated: on 2. we take the coordinates A = (7, 9,‘/) and

N .
the extrinsec coordinates of points on 2 parametrized by Af

are given by X;()“)=(vl K‘;:m‘[,’gl ({’) It results

(dS")Z = “a(ks,v)d'lf'z-ﬁ*(&,"ﬁd.flz (3.79)

The first junction condition can be expressed by the equality of

(3.78) and (3.79), and results

R, V)= vi(w) (3.80)
a(‘(ksl‘lf)d‘lf‘z= (1- i’“L“_)..;.c?x‘s)d,w? (3.81)
s (w)

This equality of the first fundamental forms ot Z:, (3.78) and
(3.79))guarantee the continuity of the components of the metric
through Z . Equation (3.81) relates the proper time (or Newto-
nian time) interval di& of an observer at rest at infinity and
the interval dU” of an observer on the surface Z , and (3.8)

is an expression for the boundary radius of the surface 2 of the
fluid. We remark that if ;}=<> by equation (3.81) we could take

V= w and prolongate the exterior coordinate naturally to the
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interior R<13 , corresponding to a complete solution of the
Schwarzschild problem for a static fluid sphere. For“%#vthe iden
tification xiﬁEX} makes (3.80) and (3.81) incompatible with
the continuity of the metric components through 2. . For the two
metrics (2.1) and (3.1) let us examine the coordinate transforma
tions )(_-(;“> Xi given by

u= F(U R) (3.82)

r= G(V, R) (3.83)

Differentiating (3.82) (dus= FldR+ FaU” ) and calculating in

R= R , and comparing with (3.81), we have the condition

F'(R,,-lr).-.o (3.84)

Using (3.82) and (3.83) in (2.1), comparing for R=Rs with (3.1)

and noting (3.84) we get

G (R, V)= R} (RS) T3(V)

(3.85a)
(F6') (R)=1
(3.85b)
__f » Y
{(1- 2m (F) 6™ ) F4y FG)} = RI(R)) TV (3.85c)
R”-Rs

Equations (3.85) define a class of coordinate transformations in
a finite neighbourhood of 2, which permit to accomplish the
junction conditions discussed above and with suitable continuity
properties. Indeed (3.85) express the continufty of the metric

through 2: . From (3.82), (3.84) and (3.81) we have

- . .
RR)TA(V) = { 1~ 2 (FRV))6 (R )+ 2608, V) JFl, ) (5. 86)
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We can also calculate dg/a(u. by using (3.80), (3.81), (3.28),

(3.29) and it results

df}(u) ,?:(k; {7~ 2 rmlu) +-?f;“.(u.) }4/1 (3.87)
du /? 1 (Rs) rs(w)

where the variable W is related to U by u= F(R,,'U'). Equation
(3.87) is a equation for the evolution of the surface 2 . We
remark that whenever root square is taken in obtaining the above
expressions, it is geometrically reasonable to consider the po
sitive root only. Since by (3.81) {1~zm(u)r,"'(u)+ .zr‘s(u)}"'z

is always positive, we can see that the sign of T,

s 1S given by

2- , such that if the fluid is contracting f'},(o and if the
fluid is expanding V;‘s>o » corresponding to a decreasing or increa
sing of the area of Z
Let us examine now the junction conditions (3.75) in

the junction surface (3.76), 2?:r-v3(c4) in exterior coordinates.

Denoting the normal to the surface J_ by Z,,‘_ we have

. K M#¥ .
Z,,A_-': ("rs,", 0,0) ) >N =? Z;.(“ (1)—rs+a('z_’o'o) (3.88)

Since the metric is continuous through J_ the junction conditions

(3.75) can be expressed in the tetrad basis (2.4) as

;::) —I;D % 9( )]e[ is) Z,g = continuous through Z
or
ABZ 18 = continuous through 2 (3.89)
-1. 2
where ZIB'( " r '( ( +°(1):°z°> and Ag is given by
o('z = 1-27nn07" since the normal is expressed inqterms of the

I
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exterior metric. From (3.89) we have

(AT,%) Ziy = (3.90)

where A-ﬂs denotes the discontinuity 1in 7;' on crossing 2 R
explicitly AT.%= 7;'*’(2)-;7:;8(2). In (3.90) «% is calcu
lated on 2. , which we denote “;(Z)= 1-2m(u) T, (“') , where the
coordinate W is given by u=F(Rs, V) in terms of the co-
ordinates X; of the interior solution. We follow an analogous
notation inall cases.

Noting that the quantities in (3.90) are expressed in
a tetrad basis and are invariant under the coordinate transform-
ations (3.82), we can use directly the components (2.19) and

(3.18) of the exterior and interior energy-momentum tensor in the

calculation of A'T;B . With the notation

ey = ame(XtA-XTX)

in (2.19) and using (3.80) we have

AT 1= 2 AC _ ¢ >

N a3 «d(3)

(3.91)

AT—-A_?"' -Z( (2) 0(.;[(2)>

AT'=-4ap- i_‘(—.z'(-z)- ;:;2__))

where dI(Z) RQ(R,)T (V) With the expression of Z,‘ » (3.90)

can be written

A—’;‘(%} +‘\'121_ (Z) ) "A—/:. f",=°

(3.92)
AT'(ts+ a2 (2)) = AT Y=o
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and substituting (3.91) in (3.92),

. 2 < ¢ X2 (X
Af Ts = it K}(Z) o(;().-.) ) z ) (3.93)
-Ap(T, +d1(2))- ( < 2(5)=0 (3.94)
P\ i) o2 (Z))XI

Equations (3.93) and (3.94) express the junction conditions on 2
of the exterior and interior solutions for a spherically symme-
tric star emitting neutrinos, continuously through Z: . Here §
and p are the quantities (3.40) and (3.41) of the interior solu
tion which must satisfy y=-'§ € . This implies their discontinui

ties through 2 must satisfy
Ap= da
p=- 35 ©8§ (3.95)

Condition (3.95) determines how the real solution ( fz ?3 A )

must be discontinuous through Z: . From (3.59%a,b)

Ag= DY +”‘AA (3.96a)

L AN
5p= Ap (3.96b)

where AA=N(R;, V) , with the additional condition (3.95) yiel
ding

1 ~ ~ 2
3 Q¢+ Aps= IR AN (3.97)
It is physically reasonable to have

Ay =0 (3.98)

that reduces (3.96a,b) and (3.97) to
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~ < 3.99)
; AN Ag:;—AA (

On examining the junction conditions (3.93) and (3.94)

we can distinguish two relevant situations:

(a) Ag¢, Ap F0

Substituting (3.93) and (3.94) in (3.95) we obtain

Idi(z)( L _ Y )(_1 f‘,+0(121(2)_1)=
3 «2(Z)  AF(E) 3 rs
that implies
L ¢
1) «(X)

=0 (3.100)

or

3.101
a3 (2) = (3-100)

The case (3.100) will be examined later. Equation (3.101) can

be written

Lwmlw)

= F(&, V) (3.102)

- 1-
‘z rs f:y (u)

Substituting (3.102) in (3.8) we have the expression for m(a)

26%> ‘3(u)

k"(ks) ; (3.103)

mlnw) = {31— 76 3 z

corresponding to the region of space-time where the coordinate
system is admissible ( ¥y > dm () ) and imposing the parameters

shall be restricted by
RE(R
1¢ 2-1172 o 8) < 1
R2(Rs)

Equation (3.103) which basically results of the choice (3.101)

contains the important information that in the static limit 3->0 ,
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the surface 2: coincides with the Schwarzschild surface of the
star, that is, for Z—bo — when the contraction and the emission
of neutrinos cease — the fluid is entirely contained inside
its Schwarzschild radius. Using (3.80) and (3.70) in (3.103) the
Schwarzschild mass for the static 1imit (g-»o0 ) of a star emit-
ting neutrinos immediately before passing its Schwarzschild radius,
can be evaluated

B (R )

d

(3.104)

From the above discussion, the choice (3.101) which re
sults in (3.103) is not satisfatory for quasi-static distributions
in radiative equilibrium (cf. (3.72)) with an eventual Newtonian

1limit. For this we consider

(b) distributions (?,ﬁ', /A ) which vanish smoothly on 2 ,
without discontinuity: Af', A,".;', OAA= O . From (3.93) and
(3.94) we then have

Lot
«3(Z) 4&(2)

which is the first case of (a). Using (3.33) in (3.100) results

(3.100)

2 (X -
&w) = +2 x z(‘u‘) (3.105)
wy(Z) X
or, by (3.29) and q’;(Z): /?,'Z(IS)Z‘?('U') ,
€(u)= 7- Ameu) X 3.106
s)( e ) /S ( )

From (2.22) (here #< 0O )

€ () = ‘/”';‘/k

which in (3.106) gives an ordinary differential equation for miw
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yon- 71X (,, ) (3.107)
R*{ks) rs (u)

With equation (3.107) we can discuss the sign of X . We know that
for neutrino emission m™<0 and neutrino absorption m>0 . Since

in the RHS of (3.107) the factor in parentesis is always positive,

we have
(b.1) AK<o emission (<o )
(b.2) x>0 absorption ( >0 )

without relation with the sign of 2 (*). Contrary to the case
(3.101), (3.103) where the sign of am is defined by Z > in the
present case (b.1) and (b.2) we can eventually have emission

with expansion or aborption with contraction of the fluid, though
these situations seem physically improbable.

Finally we now determine the function /\(R,lf) , which
contains information on the dynamics of the fluid configuration,
and the real density é? defined in (3.59a). For instance we con-
sider the case of the junction condition (3.101). The density §7
is measured in the local inertial frame of an observer comoving
with the fluid. The proper volume of this observer is expressed

u) (.z) cs) X fxBdxY (A)
dV=¢ e ¢ Ax*dx"dx with e; given by (3.2).

by
We could tentatively define the mass-energy distribution of the
fluid inside a sphere of radius corresponding to the coordinate

R , and for a given UV~

R
MRV)= § SRTV) AV (3.108)
o
(*) From (3.32) we note that in order to have R;(R) finite,x

must be of the same order of Z , that is, %90 whenever 2—)0

and vice versa, independent of the sign of both.
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Nevertheless the density §' — locally measured — is associated
to the rest, and the internal, and barion interaction energies
only but does not include the energy of gravitational interaction
which is not locally defined. So the definition (3.108) for R=Rs
differs from m({w) (cf. exterior metric (2.1)) by the ene}gy of
gravitational interaction. But since our interior solution has a
natural static limit defined by 30 , we can define the total

energy of a sphere of fluid, with radius corresponding to the co

ordinate R, in an analogous way to the static case25’26
R
~( t I
m (R V)= 4T [ §RTV)ERT) £'R,V) AR (3.109)
[

correctly including the energy of gravitational interaction. As
discussed anteriorly no gravitational radiation is simultaneously
emitted with neutrinos. Therefore, the problem of localization
of the energy of gravitational waves is not present here and the
total energy m~0§1ﬂ)def1ned by (3.109) is localized since other
fluxes of energy (neutrinos, for instance) are always locally
measurable (cf. (3.66) and (3.68)). For R=R; the total mass-energy
of the fluid is given
R
(R, V)= yn ([ e(RV)- -2 (R,V)J K:(x)k;(k)—l; (V) 4R (3.110)
°
Using (3.80) the equality of (3.110) to (3.103) results
Rs R
e { R, T(W) AR = 47 ([ V)- %(R,V)_]R:(K)R;(K)Isdk (3.111)

o o
where b"z-:-;-(’"’ 1‘2'2'7&’?:“‘)/,?’*(&)) . From (3.37), writing
g(R,’U'): S(R) -,;-1(-”-) , we take from (3.111)

P RET(V)= 1K) RR) RO T(T) - 4T Ag),

RER) RYR) T (V)
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up to a function of (R, VU ) whose integral in R between 0 and
R is identically zero. We then have for this case the expres

sion for A(R V)

2 --2

%(x,v)=3m,v)- Y 7 (3.112)

I R (k)
where ¢ V) is given by (3.40). Substituting (3.112) in (3.59a)

we obtain the expression for the real density

1 —_ -2
— re I, (3.113)
Y1 Ry (R)

2
We can verify directly that E(R)= Y/,nR:(R)increases with

'gu(k,'cr) =

R if Rz'/&<o and decreases if R.z'k.z)o. In the present case
where AT;') A¢ , etc. are non-zero, the value Ry of the coordi
nate R corresponding to the radius of the configuration can be
chosen with some arbitrariness subject for instance to the condi
tion K";/Kfo for o< R¢Rg (cf. (3.25)) ‘etc. In case of the energy-
-momentum tensor has no discontinuity through 2 the value Kj

can be taken as the first root of the equation §(R) =0

4. CONCLUSIONS

We have presented a simple but complete relativistic
model of a spherically symmetric star emitting neutrinos. The in
terior of the star is assumed to be a perfect fluid — described
by its total density ¢ , pressure p and the barion number den
sity = — and bounded in space by a spherical surface of radius

¥s . Once emitted neutrinos are supposed to have only gravitatio
nal interaction, that is, the matter of the star is transparent
for neutrinos, and the total energy momentum-tensor for the

interior solution is the sum of the energy-momentum tensor of
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the fluid and the energy-momentum tensor of the neutrino. The
latter is constructed with the classical spinorial fields 7L, so
Tution of Dirac equation for neutrino in the metric of the spa-
ce-time considered. In the coordinate systems used, and for the
choice of a current,jﬂ=jzfﬁ“7ﬂﬁ radially along the local light
cones, Dirac equation is directly integrable and the spinor-solu

tion depends on an arbitrary spinor function of the coordinate
[

X’z w , and also depends on & as (sin® )& . This @ -depen
dence is shown to be a correction due to the coordinate system

and has no physical significance, with all observable quantities
(constructed with the neutrino field) corresponding to an iso-
tropic emission of neutrinos. We then propose a legitimate rede
finition of the energy momentum tensor of neutrino which shall
enter the RHS of Einstein equations. This redefined energy momen
tum tensor has two important porperties: (i) it has null covariant
divergence; (ii) it has the form of the energy-momentum tensor

of a null fluid, which is the usual phenomenological description
for neutrinos in General Relativity. The exterior metric is the
Schwarzschild radiating metric (the region contains neutrinos and
gravitational field only) and we determine the variation of the
mass parameter of the star as a functional of the spinor-solution
of the neutrinos, and which is interpreted as the total Tuminosity
of the star relative to an asymptotic observer at rest. The inte-
rior solution is obtained by separation of variables — for the
solution obtained, field equations imply an equation of state
P=-'§'f which corresponds to neutrinos completely decoupled

of matter, in the sense that for‘p=-§-§ the energy-momentum
tensor of the fluid has identically null covariant divergence,
together with the null divergence of the neutrinos energy-momentum

tensor. To eliminate negative scalar pressures (which are not phy
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sically satisfactory) we introduce a /\ -term in Einstein equa
tions (or equivalently, in the total energy-momentum tensor). To
the above solution, it corresponds a solution for energy-matter
density and pressure, §'= <- A//{ and P'= P‘*A/K , respectively,
with §+ F/3=A/k . Bianchi's identities imply the local con-
servation law K7;.°,19=‘/\:p. and Twe conservation equation follows.
For m=0 , we have the analogue of the first law of thermo-dyna
mics for the system, in the frame of an observer comoving with
the fluid, where /( is seen to be proportional to the rate of
cooling of the fluid. For quasi-static distributions these equa
tions provide us the relativistic analogue for neutrinos of the
radiative equilibrium equation of Chandrasekhar, and we interpret
‘AAK as a radiation pressure for neutrinos (perhaps a better
denomination would be gravitational pressure due to neutrinos).
Contrary to the photons radiation pressure in Chandrasekhar's
Newtonian equation, the gradient of A/K has negative sign and

so has additive effect to the gravitational compression — in fact
the effect of neutrinos is to cool the configuration (they do

not interact with the matter of the star), this cooling being
equivalent to pressure in the inverse direction of photons pre-
ssure, additive to the gravitational pressure. This /A function
is completely determined by a careful examination of the junction
and boundary conditions of the interior and exterior solutions.
We have used Israel-0'Brien-Synge junction conditions. Two possi
bilities arise, corresponding to physically distinct situations.
In one case, the solution describes a stage of emission of neu-
trinos, with consequent contraction of the configuration immedia
tely before the surface of the fluid coincide with its Schwarzs

child surface, i.e., imediately before the fluid is entirely inside
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its Schwarzschild radius — this occurs when the emission of neu
trinos and the contraction of the star cease (3—>0). The A\
function is determined completely for this case. The other possi
bility can, for instance, correspond to a quasi-static configu
ration where A/K has the interpretation of a radiation pressure
for neutrinos.

Our detailed geometrical treatment of the problem has
nevertheless been unilateral because of our description of neu-
trinos as classical spinorial fields. An improvement of it would
be the quantization of the neutrino field on the classical curved
space-time. At present we do not know a general procedure to
construct a quantum field theory on an arbitrary Riemannian
space-time. In case the space-time admits a time-like Killing
vector and some other symmetries we can construct a basis system
for an invariant definition of particel and anti-particle states

and vacuum state27.

In the present model, the only Killing vectors
are the generators of the spatial rotation group. These are not
sufficient to construct a basis for an invariant decomposition
into excitation modes of the field. Alternatively, since the ex
terior solution is asymptotically flat we could essay an
asymptotic quantization of the neutrino field, choosing the asymp
totic basis functions as the usual basis functions in flat spacez8 and
for the junction condition (3.100) the form (3.33) would be an
additional guide in the choice of the asymptotic basis to express
Q(UQ. From the classical form of €{w) and following an usual
scheme of quantization it would in principle be possible

(through (3.33) and (3.100)) to characterize the parameter X as

function of the generalized momenta corresponding to the basis

chosen. At present we do not know if a complete quantization of
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the radiated neutrino field in the background
vide a drastic change in the problem of these
buting to the curvature of the background and

as a first approximation would be significant
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