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ABSTRACT
We investigate the creation of scalar particles due to
the propagation of anisotropic time dependent gravitational waves

perturbations in the isotropic Friedmann's cosmological model.

We consider a conformal invariant equation for the scalar £field

and
" the
ted

the

for the case where the equation of state is p = p we obtain
contribution for the energy-momentum tensor due to the crea-
particles and show that the reaction of these particles on

metric does not tends to isotropize the perturbed background.
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THE iNTERACfION ETHEEN CLASSICAL GRAVITATIONAL FlziwS AnND RE
AL SCALAR FIELDS
Let ¢(x) be a real scalar field and guv(x) the metric
tensor of a Riemannian space-time, with ;ignature (+-=-~). He as-
sume that the sources of both the gravitational and sca]af fields
are speéified independently of each other. The lLagrangian density

is given by

b= 5 /5% o), 0 (07 ’gmz)_ (1.1)

where R=g°LBR0LB is the scalar of curvature and a bar means the de-
rivative with respect to the space-time coordinates. From (1.1)
‘it follows that the equation of motion for the scalar field is the

covariant generalization of the Klein-Gordon equation

'go‘B Vo Vg 0t (m2+ %R) ¢= 0 : (1.2)

where Vu’denotes covariant derivative.

Equation (1.2) reduces to the ordinary Klein-Gordon equa
tion in the absence of gravitational fields, i.e., if gaB is naB .
where NaB is the Minkowski metric tensor. The reason for introdu-
cing the term proportional to R in (1.2) is that if m=0 this equa-

tion is invariant under the conformal transformation defined by

- 2
gaB —_— gC!B = Q (X)QGB

(1.3)
2™t (x)0

¢ — ¢

i

and as it is well known, conformal invariance of the massless sca

iar field equation has important consequences in the mechanism -f

:reation of partic]es]’z.



With the equation of motion written in tae form (1.2,
We say that the scalar field 1is conformally coupled to the gra-
ritational field. ‘

The energy-momantum tensor TaB{}(x)E is obtained as
usual, namely by the variation of the action integral with res -
pect to g

aS:

sl = Gji:dqx = JTQBGQGB /-q d*x

The result is
T =0, 61, - g Btk [R g L1497 ]¢2 (1.4)
B 1a®]8 " %08~ T & ["as %aB @B | .

where [ zg““vuvv . This tensor has the following properties :

T
T=T7%=n% (1.5)
v

In order to canonically quantize the scalar field in
the classical Riemannian space-time manifold we define the momen-
tum m conjugated to the scalar field as ‘

2

-> _ 9
and introduce the equal time canonical commutation relations
o(X,t),8(X',t)| = 0
[ > - .
T(Xx,t),m{x',t)| = 0 (1.7)

-

x4

o(X.t)um(F. )] = 1))



ihere x and x' are space coordinates on the same hypersusiace. I*
hould be mentiéned that the quartization procedure outlined abo-
'e is generally covariant and ‘consistent. See ref. 3 for details

We shall be concerned only with the isotropic quasi-E_

clidean Friedmann's model and so, the space-time metric is

ds? = dtz-az(t)sijdx1dx‘] (1.8)

(i’j = ]:2»3)

The scalar field may be expanded as

6(x) = W J a3k E&kék(t)wk(;)+Az<b:(t)xb:(;)] (1.9)

In the above expression Ak and AE are time independent

operators which due to (1.7) 'satisfies the commutation relations

Piefie ] = O

- . . '
ATLATL | =0 - (1.10)
Ak’A+. = 6(_‘:-?')

The functions wk(;) are eigen-functions of the three-dimensional

Laplacian operator, Vzwk(i)-kzwk(Q) = 0. Clearly, we have
+ik.X

wk(;) ~2 . The time-dependent function @k(t) satisfies the dif

ferential equation

. v
¢, + v

) 5, + [wﬁ(t) s —;‘;R]@k -0 (1.11)

where the dot means the derivative with respect to time, V = a3A

and



2,1 2..2,.,2
3

(t) = m+ — (k]+k2+k ) (1.12°

oY

Consistence of (1.7), (1.10) and equation (1.11) requi

res that

8, = % (1.13)

Let us introduce the new variables defined by

dt =adn . o =2 (n)x(n) (1.14)

It follows that (1.10) and (1.12), respectively, become

xg(n) + 22(n)x,(n) = 0 (1.15)
and

a2(n) = a3(n)wi(n) (1.16)

“We mention that the conformal transformation (1.3) pre
serves the canonical commutation relations so that if & and 7 are
the transformed quantities, ﬁhey will satisfy commutation rela -
tions analogous to (1.7). The inverse is also true. It is impor-
tant to observe that if the space-time is conformally f]at, them
g'v=92nuv and equation (1.2) can be transformed in the ordinary

M

Klein-Gordon equation with “"variable mass" n"V 5lu|v+ 54(x)m25=0.
In this case, if m=0 the gravitational field does not influence

the field § 1°°.

11. THE PARTICLE CREATION MECHANISM

With the Lagrangian density (1.1) and the momentum cen

iugated to the scalar field, we can construct the Hamiltonian den



3ity
S m(x)¢(x)|4 - = (2.1)
21 /:E{}¢‘0)2_gij¢!i¢!j+(m2+%R)¢2J (2.2)

and the Hamiltonian is
H(t)= 5 |d°X [———"2 - /=g gijcb}-év, -+(m2+%R)¢2] (2.3)
2 /_ i J

This expression is valid for fhe general case where the gravita-
tional field is homogeneous and anisotropic. Particularizing for
the metric given by (1.8) and using the expansion (1.9) for the
scalar field together with the commutation relations (1.10), we

get for the second quantized Hamiltonian operator

H(n) = % [d3k[U(E,n)(AEAk+Afk o)t
V(K,n)AfAT v*(E,n)A_kAk] (2.4)

where U(,n)=]x} (n) 1242 (n) [x (n) 1% and ¥(K,n)=x{(n)x(n) +
+02 (n) x, () 2.

_From the above expression we can conclude that H(n) is
not diagonal in the operators Ak and AZ and so it does not deffne
a self-adjoint operator in a Hilbert space. Then, we must consi-
der at different times non equivalent representations of the com-
mutation relations. This follows from the fact that the solutions
- of equation (1.11) are not uniquely determined by the condition
"1.13) and fhis implies that the operators Ak and Aﬁ are not als>
iniquely determined. The Hamiltonian (2.4) may be diagonalized L/

a time dependent transformation on the operators Ak and At.we write



* L .
S AW (DA (E) R (E)AL () (2.5

1k(t) and Bk(t) are complex functions which due to (1.13) must ¢

tisfy the condition

o ()12 = lg, (£)]% =1 (2.6)

The transformation (2.5) is then a time dependent Bogoliubov trans
formation6’7.

Now, if we define the vacuum state at the time t by
the relation Ak(to)]0>to = 0, at latter times we will have
Ak(t)|0>to # 0 which means that the vacuum for H(t) is not the sa
me for H(to). Under the hypothesis that at the time t, there were no
particles present, <Nk(to)>to = 0, we have for later timés <Nk(t)>t
=lBk(t)lz. In other circunstances we will have <Nk(t)>to =<Nk(to)>to+
lek(t)|2(1+2<Nk(to)>t ). Basically, this is the phenomena of crea-
tion of particles fro; vacuum due to tﬁe presence of an external
non stationary gravitational field. Then }Bk(t)l2 is a measure of
the mean number of particles created by the gravitational field.

Let us return to the casé of massless scalar particles
and conformally flat space-time. e saw that if the scalar field
is conformally coupled to the gravitatiohal field then the trans-
formed field ¢ satisfies the equatidn n”“$!u v = Oa It is clear
that in this case we have @k(t)~eiiwkt/a(t), with w, independent
of t. It follows that <Nk> does not depend on the time and so it
is a constant of motion, and no particles are created by the gra-
vitational field. This result is valid for particles with any

spin and was shown independently by Parker8 and Ze]'dovich?.



TI1. QUANTIZED SCALAR FIELDS AS SOURCES OF CLASSICAL GRAVITATIO-
NAL FIELDS
The gravitational field produced by a quantized scalar
field may be computed using a "semi-classical" theory of gravita-

tion based on Einstein's equations written as

R - IR gV - - <Tu“[;(x)]> (3.1)

Y - TV . 1 ;
where <Tu [:q)(x)]>=<01.1'u [}(x)].lo> is the mean value of the eheg
gy-momentum tensor operator and: : indicates normal ordering of
the operators Ak and A: .
Besides the conceptual problems that arises in such

theory]’9

there is another source of difficulties. When the equa-
tion of motion for the field ¢(x) can be solved by separating va
riables, the mean value of the energy-momentum tensor operator is
formally expressed in terms of divergent integrals. Using the ex
pansion (1.9) for the scalar field and the commutation relations

(1.10) in (1.4) one find

<0]:T0°:|0>=7517§ Jd3k{%(lék|2+w§|¢k]2)- F(R %-3R) |0, |2
. b1 )
1V d 2
- §var %l (3.2)
| 2
K
1 0 3, Ky 2. T, 0s 4221 121,01 Tovin 12
<0]:T, : 0> P ]d Koy 1% 281 ol o) )Ry T5R) [0y |
11d d 2 2 2
RS AR INEE S § I (3-3)

3

¢1d analogous expressions for <01:T22:IO> and <0|:T3 210> .



Some methods of regularization and renormaiyzation for
1,10,11

:he mean values <Tuv> has recently been proposed . We shal”

10t be concerned with this problem here and in what followus we sip
nose that these expressions can be regularized {(or renormalized]
in some way. The results of our calculations will not be affected

by the regularization or renormalization process.

IV. CREATION OF PARTICLES DUE TO ANISOTROPIC PERTURBATIONS IN
FRIEDMANN'S QUASI-EUCLIDEAN MODEL

Let us consider a time dependent anisotropic perturba-

tion tensor defined by
hy;(t)=a(t) a(t)dli61j+B(t)52162j+y(t)63i633] C(4.1)

h =0 (u=0,1,2,3,; 1i,j = 1,2,3)

so that the perturbed metric is written as

ds2=4t%-a%(t) [§1+ 0Lty axP+ (14 g%%%)dy2+(l+ %{%%dezl (4.2)

Using the results obtained inlz, the corrections for the

components of the Ricci tensor can be calculated and the result is

SR :-2-}-.3.9
00 a
As s . - °2 .

a s a a a + a
. oo (B Lo, (38 - 2.0) (4.3)
1J a a? 1] aZ a3 13 a? a3

Ahere

h,.
A\ij = -—;i . 8(t) = a(t)+a(t)+y(t) (4. 1)
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(Y
4itn these values we can construct tne corrections § Gu' to the

v v o]
ensor G =R "~ xR
u u 7"y

Now, suppose that there were no massless scalar par -

Y due to the perturbations defined in (4.1).

ticles before the perturbation. After the perturbation the metric

becomas anisotropic and massless particles can be created by the

(2)
new gravitational field. Let us call 6 <Tﬁv> the contribution

to the energy-momentum tensor due to the newly created particles
and (g)Guv the reggtion back on the tensor Guv
term. If we call Tuv the energy-momentum tensor whi?g)det?g?ines
the unperturbed metric through Einstein's equations Guv=- Tuv

then we can write the perturbed Einstein's equations as

induced by this

(o), (1) , (2 | (0), (1) 4 202)
Gu +e § Gu +e 6 Gu +... = = Tu --scSTu - 6 <Tu >+... (4.5)

where |e}2<<e.
We choose the equation of state for the background gra

: (o)
vitational field as being p=p which through the equations Guv=

(o)
= - TV leads to a(t) ~ t1/3.
With the additional hypothesis that the perturbations
are produced by the propagation of gravitational waves in their

lowest vibration mode, in the transverse traceless gauge, the

functions a(t), B(t), and y(t) can be obtained from the equations

(1) (1) '
- - vo_
56, =- 8T =0 (4.6)
with the condition
e(t) = 0 (4.7

The differential equaticns that result for the functions
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stt)s plt), and y(t) can be easily solved and 1eads~t§"fhe follo

ving values for the components of the perturbed metric tensor

:2/3

3y, - t2/3(14A%0g t) (4.8)

- 2/3
S33 -~ t (1+Alog t)

where A is a constant.
In the perturbed background the massless scalar field
equation is
(0} (o)
Hv 1 _ phv -
g vuvv¢ + 3z R ¢ h ¢lulv 0 | (4.9)

and the equation (1.15) now read

—_ 2 -
Xk + Ak(n)xk =0 . | (4.10)

where

2 2 2 2 '
Ap(n) = (1+2)k] + (1+ g)k2+(1+ 1)k5 (4.11)
With the initial conditions Yk(o) = 0 and ié(o) =/ mk(o5,
the equation (4.10) can be transformed into the integral equation6

. ne, .,
Sin wk(o)n i J Ak(n )

X (n)= o7 ST e (o) ()T (ntydnt  (4.12)

wk(o)
0

Considering only small values of t and using the first

order approximation to (4.12) we obtained

(2) (2)

8 <T0°> ~ 6 <T]]> = F(k)tzl3 log t

(2) (4.13)
87<m, % = (F(K)t2/3 10g v - H(K)t72/3)



(2) . -
6 <73 = (F()t?% tog t o+ H(K) t 213,
shere F(k) and H(k) are time ihﬂep endent integrals in the compo
nents of the momenta X of the particles.
(2, (@)
With these results and the equatiosn 6 Gu = - § <T

the reaction of the created particles back on the perturbed metric,
which we call a(t), B(t), and ¥(t), can be evaluated. After a len

gthy calculation we obtained

a(t) - t'/3

5/3

B(t) ~ - H(k)t (4.14)

F(t) ~ H(Kk)t>/3

V. CONCLUSIONS

We studied the evolution of anisotropic time dependent
gravitational waves perturbations in a quasi-Euclidean Friedmann's
cosmological model. The soiutions to Einstein‘s perturbed equations
have been obtained for the case where the equation of state for the
background is p=p. The perturbatiohs generates a plane of anisotro
py end the emp]itudes iheheages at jheteasing t. The solution to
the time qepehdent part of the scalar f%e]d equation has been ob-

ta1ned as a fwrst approx1mat1on of a Vo]terra type integral equa-

- -~

t1on, va11d for sma]] va1ues of the t1me t. With the nelp of this

resu]t we ca]cu]ated the react1on of the created particles back

on the perturbed metr1c Such react1on clearly does not tend to

vaze the gergurbed backgrouna

had T EEalalall:
,,,,, A "\
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It should be mentioned that recently Novello and Ga]vé'o2
analized the infiuence of primeval homogeneous e]ectrdmagnetic fi-
elds on the mechanism of creation of parﬁic]es in an anisotropic
cosmological model and showed that the existence of the electromag
netic field inhibits the creation of paftic]es due to the expan -
sion of the Universe, and so tends to difficult the isotropization
process. What we can conclude from these results is that the crea
tion of particles due to the expansion of the Universe does not
acts in all situations as a mechanism of isotropization but only

under special situations.
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