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ABSTRACT

It is shown that Einstein equations allow a special class of stationary
solutions which correspond to spherically symmetric clusters of particles
in circular motions, the total angular momentum of the cluster being zero,
and all orbits being performed with the same period. The mass density of
such clusters is everywhere regular and positive, decreasing with increasing
radius. No restriction is found either on the radii of the clusters, or on

the value of the period of the aobits.
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INTRODUCTION
To investigate the mathematical and physical significance of the Schwarzs-

child singularity, Einstein |

in an ingenious way introduced rotation
without angular momentum in a system with spherical symmetry. He considered
a stationary cluster of particles moving in circular orbits about the centre
of symmetry under the influence of the gravitational field produced by all of
them together. To have spherical symmetry it was assumed that the phases of
motion and the orientation of orbits were perfectly at random. For such a
distribution Schwarzschild singularities do nof exist in physical reality,

because if a cluster of given mass shrinked to Schwarzschild radius its outer-

most particles would attain velocities greater than that of light.

The aim of the present work is to investigate a similar stationary spheric
ally symmetric cluster of particles under a constraint of motion. If one
assumes that all orbits are performed with the same period, the size of the
orbit may tend to any arbitrarily small value in agreement with the result
of Einstein's spherical clusters. The mass density of such a cluster is
everywhere regular and positive, decreasing with increasing radius. For a
given gravitational mass the radius of cluster depends only on the period,

but has a minimum which is three halves the Schwarzschild radius.

FIELD EQUATIONS

With a suitable choice of spherical coordinates, xM = (x°, r, 0, ¢), it
is possible to obtain stationary spherically symmetric line elements in the
form (Anderson (2))

ds? = eV(dx%)2 - e dr2 - r?(de? + sin? © d¢?) (1)
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where v = y(r) and A = A(r). The Einstein's field equations are given
by

Moph o1 psp . _ 816G u

B =R -5 RS = o L (2)

where TS is energy-stress tensor, For a stationary spherically symmetric

cluster of particles one can consider this tensor in the form

Ts = ¢?p diag. [} +a%, 0, -a%/2, -az/é} R (4)

where o(r) is some function related to the components of the velocity
vectors of the particles, and p(r) is a continuous mass distribution corres

ponding to the whole of the particles.

Inserting the expressions for g and T from (1) and (4) respectively
Hv v

into the field equations (2) we obtain

60 = eM(r*or"t A)) - r72= -8nGo(T+a2)/c? , (5)
G, = e Mr™? 4 v,) - r-® =0 and 6)
6 = 6 =2 2 A - 4nGpa?/c? (7

, = Gy =e Vo, t PV 20- 20 - Ty, 1| /(4r) = 4nGpa*/c*® . (7)

We can simplify the task of obtaining the solutions of this set of equa-

0 connected to Einstein equations

tions. Indeed, Bianchi identities Gvgu

(2) impose the equations of motion Ts-u

b

0; from these, equation v = 1 is
the only one which does not vanish identically, and gives

rv, = 20%/(1+a?) . (8)

The four equations (5) to (8) are not independent, however. We shall
conveniently consider (5), (6) and (8) as the equations of our problem. We

have thus three equations to be satisfied by four unknown functions
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(vs Ay pand a).

Our purpose is to investigate the distribution under a particular
constraint of motion, so we choose o arbitrarily. Equation (8) determines
v. Substitution of v in equation (6) determines A. One then easily can

find the mass density p from equation (5).

Let us put o? = w? r2/c? where w is an arbitrary positive constant.

Then from equations (5), (6) and (8) we have

o = 3 wi(4nG)” (143 wir?/c?)”? (9)
el = (1 +3 02 r2/e2)(1 + w? r2/c2)”  and (10)
eV = A(1 + w? r2/c?) , (11)

where A is a constant of integration. The constants A and w will be

interpreted from the boundary condition and geodesic equations.

MOTION OF PARTICLES IN THE GRAVITATIONAL FIELD
The motion of any particle in the field of others is governed by the

geodesic equation

d2xH y dxV  dxP
e o (12)

ds?

with the supplementary condition

dx*  dx¥
g — — =1 (13)
Wods  ds
Now we define a time-like Killing vector field ™ associated to our spheric-

ally symmetric stationary field, that is,
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12=z¢qg ™ > 0 and T +T.. =0 3 (14)

with its help we construct the projection tensor
B _ M _ U 2
B = 8, - T/t , (15)

and the covariant noumal velocity (of an object of velocity ut = dx“/ds)

-1

TR G R C S (16)

P

The norm of this vector corresponds to the norm of the classical velocity of
the object,

vé = - ¢? 9 Vv, (17)

One can easily verify that <" = (1, 0, 0, 0) satisfies (14), and that the
corresponding 733 = diag (0, 1, 1, 1). In order to simplify calculation of

Vo We consider a particle of the cluster in equatorial motion: then its

ut = (uo, 0, 0, u?®) ,

where due to the restriction imposed by (13)
()2 = A'1[§+(r ua)’;‘l(lmzr‘z/cz)'1 .

Then the geodesic equation (12) gives for u = 1 after straightforward calcula

-1/2

tion |u®| = w/c and thus u® = A7V, finally substituting u* = (A", 0,0,w/c)

into (16) and (17) we get
)-1/2

Ve = rw(l + w? r?yc?

Thus we see that for wr/c >> 1 we have Ve > ¢ and for wr/c << 1, Ve > Tw,

so that w is angular velocity in that limit.

We have shown already that for any equatorial particle |u®| = |d¢/ds| =

= w/c, irrespective of radial distance from the center of symmetry. Since



31

the radius

3nin = 3 rs/2

where re = 2 G m/c? is the Schwarzschild radius associated to m.

DISCUSSION

We see that near the origin p and 9., tend to their classical values, the
same happening to 900 in the case of "slow" (wa/c << 1) clusters. With
increasing distance inside the cluster we have a decreasing p and increasing

9y and |g,,| ; on the boundary we have the values

990 = |g“l'l = (T+w%a?/c?) (143 w?a?/c?) .

Outside the cluster we have g tending monotonically to their

o0 = 19,1
Minkowski value at infinity.

STow clusters (wa/c << 1) have a total mass which is approximately propor-
tional to the cube of the radius and to the square of the frequency of its
particles: and "fast" clusters have total mass nearly independent of w and

linearly proportional to the radijus.

From equation (21) it is evident that Schwarzschild singularity does not
appear in any region of the bounded cluster in striking constrast to the

incompressible fluid sphere of Schwarzschild 3.

Very shrinked clusters (a -+ 3Gm/c?) have finite mass m, with the density
of mass p showing strong concentration near the center, and with particles

having classical velocity near c, except those near the center.
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