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ABSTRACT

A space-time dependent gauge transformation of a non-hermitian field is
assumed to induce a unitary transformation in Hilbert space. This is
determined by a linear functional of the gauge function which is regarded
as a test function in the sense of Laurent Schwartz. It is shown that the
generators of the corresponding infinitesimal transformations are mltipole
moment operators; the commtation rules of these operators with the field
are automatically obtained and are valid for any non-hermitian field. The

commutators of these moments with one another are also written down.

These operators might have a meaning in the quark theory of elementary
particles where a meson, which has vanishing baryonic number, might have a
baryonic multipole moment since it is a set of quarks with opposite baryonic

charges.

* . Supported in part by "Conselho Nacional de Pesquisas" and FUNTEC. This
paper will be presented to the Third International Conference on High
Energy Physics and Nuclear Structure - Columbia University, New York,
September 1969.
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1. UNITARY JMPLEMENTATION IN HILBERT SPACE OF GAUGE TRANSFORMA-
IIONS

It is well known that any non-hermitian field operator Y(x)
may undergo a phase transforﬁation of the type
| Y (x) = el yx) (1)
where o/ is a real number, all physical theories which involve
‘this field  ©being invariant under this group (1).

The unitary implementation in Hilbert space corresponding to
equation (1) is
P () = U () Plx) o)
where
) = &9

and ¢ is the charge operator, Q+ = Qo
In the case of infinitesimal transformations, the equation:

s 1@y 29 1 Iy 2)

reduces to |
(I=-1Q) Y(xINI+1iaQ) = (1+ 1) P(x) .

wWhence the well known commutation relations which characterise

the charge operator:

[ ¥x), Q] = 770(3{)

(3)
'), 3 = - ¥Hx) .

In this note we examine the question if it is possible to
define an analogous unitary implementation in Hilbert space

when the gauge transformation is of the type:
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iA(x)
p" (x) =e Y(x) (4)

that is, when the constant o« in equation (1) is replaced by a
real function A(x).

We shall make a few assumptions: 1) The funetion A(x)
(which belongs to the class C®) is a test function in the sense
of L. Schwartz. 2) We assume that it is possible to define a
current vector jH (x). 3) We define a distribution:

Ix%; Al =f/\(x) 3%(x) aox (5)
which is a linear functional of A and depends on the time x°.

Let us further assume that A(x) vanishes outside of a small

set around the or’gin in three~dimensional space.

A, x°) =0, Ix|)a (6)
where a is a small radius. We can thus develop A(x) around the
origin: %

=>_0 o] k o x o
A(X3x7) = A(0,x7) + x A’k(o,x ) + 3T A,k,Q(o’ x°) + ... (7)

An operator 1s now defined o
o 17[x%; A
u[x 3 /\] = e (8)

and we assume it to determine the unitary implementation in
Hilbert space of the symmetry corresponding to the group of
transformations (4). That is, we assume that the generalization
of equation (2) for the group of transformation (4) is the fol-
lowing:

-iJ 17 IN(x)

e P(x)e =e Y(x) (9)

where J is defined in equation (5).
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In view of the conditions (6) imposed on the test function A(x)
we suppose that the charge density jo(x) makes the integral (5)
such that in the exponential (8) we may neglect terms of higher

order. This means that A(x) containg a factor € and that one is

allowed to neglect second and higher powers of ¢ in equation (9).

Therefore, for an infinitesimal transformation we approximate
eqﬁation (9) by the following one:
{1-1J[x°;&l} W(x) {1 + 13[x%; /\]} = (1 + £ A(x) ¥(x) .

The series (7) in this equation gives then rise to the fol-

lowing commutation rules:
My(x)y Q] = $(x)
o), Q€1 =xEyx)
[B(x), ¢4 = xMxbyp(x)
where the Q's are:
a) the charge operator of the field:
Q = f;)°(x) a>x | (10)
b) the dipole moment: |
Qk = Jﬁk 1%(x) a’x (10a)
¢) the quadrupole moment le operator (with non-vanishing trace):
L =[x 5°x) 3% (10b)

etc.
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2. GENERALIZ TIPOLE MOMENT OPERATORS

This association of multipole moment operators and a space-
time dependent gauge transformation may be easily generalized to
a set of non-hermitian fields @A(x), where the label A refers to
internal symmetry as well as to space-time components of tensor

or spinor fields. This is aceompiished by oconsidering the fol-
lowing infinitesimal gauge transformation 10
Yy (xY >Y,(x) = (8,0 + 1 Cyps Ap(x)) Hp(x) (11)

The corresponding unitary implementation in Hilbert space will

be assumed to be ul th,’forms
{I-;JXB(X)JB(x)d%xJ%htx){14-i jkB(x) ag(x) a’x }
= (§ 0™ 1C,p0 Ag(x)) Yolx) | (12)

The development of Ag(x) around the origin in 3~-dimensional

space for all times gives us:

{1- 15005385145 (0208 -3 Ag o o (0,2t .}, {1 +

* L AR(05" 0+ 15 1 (02005 + $ Ay (0’1‘0)‘?11;’{'"-}:

{6110 +1i CABCCAB(OQXO)* xk/\B ,k(o’xo) +% xkaAB,k’l(O,xo)-h..)}S‘é(x)

whence the commutation rules:
(#2325 Q) = © e P
[Wa@)s 4] = 0ppc 2 Yo (13)
[9,005 &Y = cp 2 22 g

0

etCeova



28

The operators

N

% = | Ipx) &x
Q= (x5 35(x) a7x | (14)
Q§Q= x4 jg(x) aox

are the generalizations of the multipole moment operators (10).

They may be associated not only to a system of electriec charges
but also to systems with baryon number, lepton number, etc.
Thusy a positive pion is formed, according to the quark model, of

a Py -quark and a H;mquarks
»-;,+ -
By Po

The baryonic nun. -~ of the corresponding field is zero. However,
this meson, regarded as a set of two entities with baryonic
numbers 1/3 and = 1/3 respectively could well have a baryonic '
dipole moment or a higher order baryonic multipole moment.
Clearly, these are operators which refer to static multipole
moments. If the current jg(x) is conserved then the charge QB
is time~-independent (provided of course that 3§<x) vanishes at

infinityy k = 15, 25 3). In this case, the charge Qg may be

written ' :

Qp :J ;ig(x) do‘H (15)
as an integral over a space=like surface o and QB Is o~independent
becauses 6QB a jg(x)

g = g =0 . (16)
de(x) 2 xf‘i

Hence QB is a Poincaré scalar.
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The higher order multipole moments are temnsors in three-
dimensional space. This comes from the fact that the integral
(5) refers to an instant X°.

A relativistic generalization of equation (5) which suggests

itself would be an integral of the type:

I [o3 A] =J AB(x) Jg(x) do, (17)
. .

where o is a space=like surface.

Equation (5) would be a special case of equation (17) for a

surface o perpendicular to the time~axis if J[o; A] were o=

independent:
§JIlos4] 2 o
= A():l()>=|o° (18)
Soly)  oy% ( B BT

3. COMPARISON WITH THE LAGRANGEAN FORMALISM
Let us now assume the existence of an effective lagrangean

density:

2%,(x)
oL =LY, : (19)
2x/
The transformation (11) and its associate:
T m ThE) LG —— (A Ygo(x))  (20)
- — — = + — 0
"0::" 9 xf 2xH ABC 54 R Ap(x) Yolx (

induces a change in the lagrangean density by the amount:
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ol 2L 2
= )
o4 ¥, (x) She 3<9¢A(x) 2xk (MbA(x >
2 <k

which, in view of Lagrange's equations:

2£ 2 AL
DY) K a(@_%)
2x/
may be written: |
2 2L 9 al A x)
6.5—91,,3(%) 88, b 3<?_{_"A> 1Cype Ag(x) P lx
2=l , oxt

If we define the vector-current by the relation:
i 2£
Ig(x) =1
) 2
ﬁxP
we obtain for the change in the lagrangean density:

a .
84 = — </\B(x) 3§<x)> (21)

X

Cppe Vlc(x)

The invariance of the lagrangean by the transformation (11)
and (20) would thus be equivalent to assuming that the integral

(17) be o-independent, equation (18).

We thus see that:

spo 8300 Mgl
do (x)
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and that, in general:

H : ? GJI.—OBAB]
jBCX) = ™ ~
aa’,f(:;) 2 aJ[cr, /\B] -

= (22)
axP aAB(X) 6 o.(x)

These are the well-known Gell-Mann-Lévy equations.
Equation (18) is therefore not generally valid.

If we develop Ap(x) in a power series around the origin we

obtains ZJP( )
B‘% 2
8L =A_(0 + (o) Z_ < o M )
5(0) e Mayo TS (X B))
1 ? oL A
+ 5-'_ AB,O&,?\ <O) 5';'P <x p.4 jg(x)) * ooe (23)

The invariance of the lagrangean density i1s assured in the case
in which Ag(x) is a constant (which is not a test function) and

1s equivalent to the existence of a conserved vector current.

The non=-invariance of the lagrangean density for a trans-
formation of the type (4) or of the type (11) may be interpreted
by the statement that non-vanishing divergences of currents of
the fo:;mjﬁ“xp oo ;]}’;3J (x) are added to the first, usual term

B

/\B(o) -5-;—,;- as shown in equation (23).



OPERATORS

Let us require that the generalized charges QA’ as defined
in equation (14), form a Lie Algebras

[Ra2 9] = 1 £45¢

(24)
where fABC are the structure constants of the group.

This will
be satisfied by the well-=known equal-time commutation relation

of the charge densitiess

[1360, 8] =t 20 - . (25)

x0=y"
If then follows ..om equation (14) and (25) that the multipole

moment operators obey the following commutation rules:
_QAQ Qk]"': ifpe Q’é

0,0 = 1 1,5, okt

FE}A, QBQooop] =11, QIé.Q esé P

QB:] =1fm % kL

' k b oo e

and so on.
rule.
1.

This set of operators is closed under the commutation
¥ % #*
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