Notas de Física - Volume XIV - Nº 2

ASYMPTOTIC SU(3) AND K_{13} DECAY FORM FACTORS

Prem P. Srivastava Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro

(Received August 5, 1968)

ABSTRACT

The hypothesis of the validity of asymptotic SU(3) symmetry for high energies and large momentum transfers is applied to the K_{13} and π_{13} decay form factors when some of them may satisfy subtracted dispersion relation.

It has been suggested by Gell-Mann 1 that the SU(3) symmetry, even though badly violated due to observed large mass differences within a multiplet, may still be a good symmetry when high energies and momentum transfers are involved. We study in this paper the application of this idea to the K_{13} and π_{13} decay form factors when some of the form factors satisfy (once) subtracted dispersion relations. The results following from this idea are in good agreement with experiments.

The K- π form factors in K_{13} decay are defined by the matrix element:

$$\sqrt{4k_0p_0V^2} < \pi^0(k) | V_{\mu}(0)^3 | K^-(p) >$$

$$= (p+k)_{\mu} F_{+}(q^2) + (p-k)_{\mu} F_{-}(q^2) \tag{1}$$

where $q^2 = (p-k)^2$ and in the exact SU(3) limit $F_{-}(q^2) = 0$ while $F_{+}(0) = 1/\sqrt{2}$. The π_{13} decay form factor is likewise defined by:

$$\sqrt{4k_0 p_0 V^2} \langle \pi^0(k) | V_{\mu}(0)^2 | \pi^{-}(p) \rangle = f(q^2) (p + k)_{\mu}$$
 (2)

where the conserved vector current hypothesis for V_{μ}^{2} implies $f(0) = \sqrt{2}$.

The hypothesis of the validity of SU(3) for large momentum transfers implies that:

$$2F_{+}(\infty) - f(\infty) = 0$$

and

$$\mathbf{F}_{\mathbf{(}}\infty)=\mathbf{0}\tag{3}$$

if $V_{\mu}^{1}_{3}$ and $V_{\mu}^{1}_{2}$ belong to the same octet. Thus F_ would satisfy an unsubtracted dispersion relation while F_ and f may satisfy a

subtracted dispersion relation. In fact, recently, in an attempt to explain the $A_1 \longrightarrow \rho + \pi$ decay by current algebra technique and to correlate the decay $A_1 \longrightarrow \rho + \pi$, $\rho \longrightarrow \pi + \pi$ and the $\pi^+ - \pi^0$ mass difference, it has been suggested 2 that the pion electromagnetic form factor should satisfy a (once) subtracted dispersion relation. It follows from eq. (3) that 3 the form factor F_+ should also satisfy a subtracted dispersion relation. However, the combination (2 F_+ - f) satisfies an unsubtracted dispersion relation. We obtain thus the relation:

$$(2F_{+}(0) - f(0)) = (1/\pi) \int_{4m^{2}}^{\infty} dq^{2} \frac{(2 \text{ Im } F_{+}(q^{2}) - \text{Im } f(q^{2}))}{q^{2}}.$$
 (4)

Now, the experiments at low momentum transfer indicate 4 that the variation of the form factors (with momentum transfer) is very well described by assuming that F_+ is dominated by K^* pole while f by the ρ pole. We may thus calculate the right hand side in eq. (4) in pole dominant approximation to obtain:

$$-\frac{2G_{K^*} G_{K^*} - \pi^{0}K}{2 m_{K^*}^{2}} + \frac{G_{\rho} G_{\rho} - \pi^{0}\pi^{-}}{2 m_{\rho}^{2}} = 2 F_{+}(0) - \sqrt{2}$$
 (5)

where we define:

$$\sqrt{2k_0 V} \langle 0|V_{\mu}(0)^{3}_{1}|K^{*}(k)\rangle = G_{K*} e_{\mu}^{K*}(k)$$

$$\sqrt{4k_0 p_0 V^{2}} \langle K^{*}(k)|j_{\pi^0}(0)|K^{*}(p)\rangle = G_{K*}^{*}_{\pi^0 K} e_{K}^{K*} k \qquad (6)$$

and analogous expressions for other coupling constants.

We can also derive the following relations for K* coupl-

ings, assuming that F₊ is once subtracted and is pole dominated:

$$-\frac{G_{K^*} G_{K^*} - \sigma_{K^-}}{2m_{K^*}^2} \simeq + \lambda \frac{m_{K^*}}{m_{\pi}} F_{+}(0) . \tag{7}$$

Here λ is the parameter defined by

$$\mathbf{F}_{+}(q^{2}) = \mathbf{F}_{+}(0)(1-\lambda \ q^{2}/m_{\pi}^{2})$$
 (8)

It is measured experimentally 4 to be +.023.

We obtain from eqn. (5)

$$-\frac{G_{\rho} G_{\rho^{-} \pi^{0} \pi^{-}}}{2m_{\rho}^{2}} = \sqrt{2} - 2 \left[1 - \lambda \left(\frac{m_{K^{*}}}{m_{\pi}}\right)^{2}\right] F_{+}(0) . \tag{9}$$

Using the relation 5 $G_{\rho}=\sqrt{2}$ m_{ρ} F_{π} , we find that corresponding to $\sqrt{2}$ $F_{+}(0)=0.85$, the value obtained by current algebra calculation 3 , decay width for ρ comes out to be 119 MeV to be compared with the experimental value 110 - 140 MeV. The corresponding value for G_{K*} G_{K*} G_{K*} G_{K*} is found to be \simeq -0.57.

From Weinberg spectral function sum rules 6 we can derive?:

$$(G_{K*}/G_{\rho}) \simeq (m_{K*}/m_{\rho}) \sqrt{2-(F_{K}/F_{\pi})^{2}}$$
 (10)

The equations (7) and (9) then lead to (for 3 (F_K/F_{π}) 2 = 1.17 and $\sqrt{2}$ F_+ (0) = 0.85)

$$G_{\rho}^{-} \pi^{0} \pi^{-} / G_{K^{*}}^{-} \pi^{0} K^{-} = 2.16 (m_{\rho} / m_{K^{*}})$$
 (11)

which gives a width of 41 MeV for the K* decay, in good agreement with the experimental value of 49 MeV considering the approximations involved in deriving eqn. (10). We may apply similar arguments for $F_{-}(q^2)$ to obtain: $\xi(0) = F_{-}(0)/F_{+}(0) = (m_K^2 - m_{\pi}^2) \lambda/m_{\pi}^2 + F_{-}(G_K^{-} - m_{\pi}^2)/F_{+}(0) \cdot m_{\pi}^2$ (12) where we define:

$$\sqrt{2k_{o}V} \langle 0|V_{\mu}(0)_{1}^{3}|\mathbf{z}(k)\rangle = i F_{x} k_{\mu}$$

$$\sqrt{4 k_{o}P_{o}V^{2}} \langle K^{-}(k)|j_{\pi^{o}}(0)|\mathbf{z}(p)\rangle = -i G_{K^{-}\pi^{o}}\mathbf{z}^{-}$$
(13)

for a scalar isospinor strangeness carrying meson κ . We can make an estimate of the kappa life-time from eqn. (1^). For the interesting case of $m_K < m_K < m_K + m_{\pi}$ we find that with $\frac{3}{\sqrt{2}} F_{+}(0) \sim .85$, $(F_{\pi}/F_{\pi})^2 \sim .34$ and $m_K = 570$ MeV the lifetime of kappa for decay into $K + 2\tau$, calculated in a pole model, is 10^{-11} s. if $\frac{4}{5} = -0.5$ and it is 2×10^{-12} s. if the value of $\frac{5}{5}$ is +0.3. For $m_K = 610$ MeV the values in the two cases are 1.5×10^{-13} s. and 2.5×10^{-14} s. respectively.

* * *

ACKNOWLEDGEMENTS

Acknowledgements are due to Conselho Nacional de Pesquisas of Brazil for a fellowship at C.E.R.N., Geneva, where part of this work was performed.

We also acknowledge gratefully discussions with Professor M. Jacob.

REFERENCES:

- 1. M. Gell-Mann, Phys. Rev. <u>125</u>, 1067 (1962).
- 2. H. J. Schnitzer and S. Weinberg, Phys. Rev. <u>164</u>, 1828 (1968);
 R. Arnowitt, H. M. Friedman and P. Nath, Phys. Rev. Letters, <u>19</u>, 1085 (1967);
 - J. Schwinger, Phys. Letters, 24B, 473 (1967);
 Fayyazuddin and Riazuddin, preprint EFINS 67-94 (1967).
- Similar conclusion is also reached in a current algebra approach to the K-W form factors. See for example:
 L. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224 (1968);
 P. P. Srivactava, C.E.R.N. preprint Th-893 (1968), to be published in Nuclear Physics.
- 4. See for example: Proceedings of the Heidelberg International Conference, Heidelberg, J. Willis, p. 273 (1963).
- 5. K. Kawarabayashi and M. Suzuki, Phys. Rev. Letters 16, 255 (1966); Riazuddin and Fayyazuddin, Phys. Rev. 147, 1071 (1966).
- S. Weinberg, Phys. Rev. Letters, <u>18</u>, 507 (1967);
 T. Das, V. S. Mathur and S. Okubo, Phys. Rev. Letters <u>18</u>, 761 (1967).
- 7. In this derivation we include the influence of kappa and assume $m_{A_1} = \sqrt{2} m_{\rho}$ and $m_{K_A} = \sqrt{2} m_{K^*}$.