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INTRODUCTION

The problem of the interaction between spinor fields angd
gravitation has been trested by some authors. 1 Presently we use
the simplified version of this problem given by Diraczzwhich uses
the Hamiltonian formulatiorn and a conveniently oriented set of

tetrads.

The dynamical variables for the interacting system are not
all independent, but they are related by a set of four secondary
constraints 3 and by three primary constraints., As it is known
these constraints are the generators of infinitesimal transforma-
tlons under which the Lagrangian of the system is invariant. The
primary constraint represents the generator of local Lorentz
transformations, whereas the four secondary constraints, the so
called Hamiltonian constraints,; are the generators of infinitesimal

coordinate transformations.

*
Partially supported by G.L.A.F,
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. The coupled system is studied from the point of view of the
three~dimensional geometry and under the condition that the
gravitational field is a linear field (weak field approximation);
the transformation law for the spinor field is then interpreted
as a gauge transformation in the three-dimensional hypersurface
of constant time where the state of the system is given. An ex-
pression for a gauge invariant guantity involving the spinor

field is derived, this expression is a linear functional of the

spinor field.

The determination of a localized spinor guantity which is
invariant under these gauge transformations calls first for the
determination of the explicit form of the spinor wave function of
the spin 1/2 particle in interaction with the gravitational field,
that is, is a property which depends on the behaviour of the

gravitational potentials.

The notation which will be used is the following: coordinate
indices will be denoted by greek letters, they fun from O to 3.
Local or tetrad indices will be denoted by greek letters inside
a bracket, these also run from 0 to 3. In the three-dimensional
formulation of the system we will use small latin letters to
denote the coordinate indices going from 1 to 3, and latin let
ters inside a bracket to denote the three=-dimensional tetrad
indices. Spinor indices will be denoted with capital latin let-

ters, we will use only the four component spinor formallsm.
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Finally, the metric tensor will be used with the oo
component negative, that is g, and the local component §00 are

chosen to be negative, the last one being simply equal tc -1,

1. THE LAGRANGIAN FOR THE COUPLED SYSTEM

It is known that in order to take into account the gravita-
tional interaction of the spinor field it is necessary to as-
soclate to each point of the four dimensional Riemann space a
system of tetrads 4 (or local Lorentz frames) to which the gpinor
ls referred. From this consideration it is possible to derive

the equatlon for the spin 1/2 field in interaction with gravita-
tlon, the so called generalized Dirac equation 5,

The tetrad vectors satisfy the following relaticns

H _ o oy -
Bla) Pu(py = Bapr " Bycay By(p) TEps

where éaﬁ is the local (Galilean) metric tensor with signature +2.

They also satisfy

{(x) _ o H - P
T D LI % Tl - Y%

The Lagrangian which gives rise to the equation for the spin

(1)

1/2 particle in interaction with the gravitational field may be

written in the form 2

_ o) 1
L =7 h;th) ¢ o{‘( ‘P,p (J‘ h(q)) Hq;d(a) Y -

1 14 2
- 1 7 hfyy by Byiry,p A(xca)[i «(P) pm(“’)) Y- inJgBY  (2)

where the subseript S stands for "Spinor part", and the commsa

denote the usual partial derivative. The meaning of some symbols
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introduced in Eq. (2) is az follows
- yad

(mpa Mm) ((oz) sl P) _ ol Py m)p

- g7 APy g 37 oz,(a') 9

@) L gy (@) 500

¢ = i¢+3 o) 2 Br
The Lagrangian density for the gravitational field is the

Einsteints Lagrangian density, where the surface term has been

o= w5 ({213 {1 -

{P?é} is the Christoffel symbol build up with the metric field

dropped

g and its inverse ghV,

}19

2. STRUCTURE OF THE DYNAMICAL VARIABLES IN THE TETRAD FORMULATTON

From here cn we adopt the point of view that the tetrad
vectors are the fundamental variables for the gravitational field,
so that the metric fieid &y is defined by the Eg. (1) in terms
of these tetrads.

In the Hamiltonian formulation for the interacting field we
must specify the state of the whole system on the points xl, XZ,
x3 of a given three-=dimensional space-like hypersurface which is
embeded in the four-dimensional Riemann space. In other words ; we

need to give the set of canonical variables q(x ), p(;3 at that

"instant of timeY,

The three-dimensional hypersurface is characterized by the

unit time=like normal
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Given a four=-vector V%, we can always associate to it another

four-vector W% which has a vanishing time-component,
W= y? (5.1)
o - g X a
% =8y + AT, (5.2)
The quantities 7% are the projection operators for the three-

dimensional geometry,

o ) - 3
Trl TTT - vo)/ (503)
The vector W(x) is tangent to some curve lying in the hyper=-

surface xp = constant.

Gilven the four covariant tetrad wvectors hp(o)5 hp(l)5 hp(z)
and hP(3) at the point xM , we can make the decomposition of these
sixteen quantities in the form hr(s)’ hr(o)’ ho(o) and ho(i)“ The

four components hF(O) =<h"r(o)’ ho(o)>form a four-vector field in
the Riemann space; we take this four-vector sc as to define local=
ly the space=like hypersurface 2
n(e) = 1, (6
with this condition we have that
(o) _ -
hi = - hi(o) =0 (7.1)
- (o) _ -
ho(o) z = ho T = W (7.2)
3

The quantities hr(s

ol
ing the three-dimensional hypersurface; in more specific terms,

)(x) depend only on variables characterigz

* Another example of such quantities is given by the vector W*of Eq. (5-1).
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they are ilnvariant under any coordinate transformation whiech keep
unchanged the hypersurface<x° = constant but which changes
arbitrariely the adjacent hypersurface Xo4-8 = constant, where ¢

is an infinitesimal. Quantities with such behavior will be called

D-invariants 2.

Of the above sixteen h”(v) it remains to be discussed only
the four guantities hO(F)’ these variables form a local four-

vector (respect to local Lorentz transformations), they are not

D-invariants.

From the relation,

ho(}l)
and using (7.1) we conclude that
hO(i) =0 (8)

Now, we analyze the structure of the contravariant tetrad

H]
o

hi(p)

vectors. From Eq. (8) it follows that the three four-vectorshP'd
have vanishing time component; therefore, with the choice given
by (6) the pP{L) are automatically D-invariant, *

| FP(i) _ pr (L) p(1)

With the conditions (7.1} and (8) we have dropped eight of
the original set of hp(v) and hF(V)s it remains as independent
variables

By "“(hi(s)’ Yy = hoqu)>

all the remaining can be written in terms of these,

We can also see this from the fact ;;hat,
K .

since h;?) is normal to the hypersuffacé;'it follows that hP(i) are a get

of three vectors on the hypersurface.
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hé(O) = - (1) USIRLTS (9.1)
PN (9.2)
1(1) _ =1 i1k
hi(z) 2 1 e-jk R12) Pi(3) (9.3)
- ™ i J
1) o "o 303 e (9.4)
BT S DR Byan) yca) (9.5)
where
D = eijk

B2y By(2) ()
The Eqs. (9-3) through (9-5) are a consequence of the relation

R(B) _ L (B)
hyoy 8P =805

or equivalently of
! T i) - 5 (k)
i) (33

These equation emphasize the faet that the hi(S) being D-

invariant can be written as function of the D-invariant variable
hi(s)'
The spatial covariant component of the metrie, the Brg (which

are D-invariant) are written in term of the h.c;y by

8prg hr(i) he(1)

The inverse matrix, usually denoted by e'S
, gOr 508
oIS = grs -
g0
rs _ AT
e gge =8y
is presently,
rg _ ,T s
T ) B

Now, we proceed to introduce the canonical momenta. Calling

by og the total Lagrangian density, we define the momenta as
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usually by means of

oL
U (12)
919
AL
K = oews = K
Y @ (13)
9=§°—.g=0 (14)
where, f
K = ;T D= 1hr(i)| (15)

The expression for vr(ij being

ra v v , T o 1
1y < Z‘T(e “higy-e " h (i)v{uv K Bqy 99+

(

1

tgx hm"’(m (1) ™ 1) m)"’ (169
From Egs. (13-14) we can eliminate the pair of variables ¢, ©

from the theory,

p==x
K

it remains the pairs hr(ijg #§i) and ¥ ; x. With these we can

define the canonical Poisson brackets,

[ (19> 205 ey G5 23] = 85y 83 8GR (17)
[0 x%3, X (&5 2%)]= 8802, F0)

2, THE CONSTRAINTS AND THE HAMITTONIAN

As consequence of the relation (16) it is possible to prove

that the canonical variable are subjected to three constraints, 2

R T i} -
M) T T Praed T T Breo) tE "("‘(i) *(k) ™ X(k) “m)"' %
(19)

which are primary constraints (they come from the property of
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invariance of the total lLagrangian density under rotations of the

three~legs hr(k) in the hypersurface).

As in the problem for free gravitational fields, 3 there
exists four constraints coming as result of four of the field

equations, namely the equations,

_ %
Guo = Tyo = O

These constraints are called secondary constraints. It can
be shown that the existence of these constraints is associated to
the invariance of the total Lagrangian density under coordinate

transformationsg. 7

The explicit form for these constraints is presently

ﬁ%s st g =0 (20)
fp =, +H#,5=0 (21)
where,
H =" Buv,s = 20 gy )y v (22)
= w=1 { s 1l . r s Trs
igLG =k (P Prg = 2 Pp ps) * Ke™” 8. (23)
with

rs _ 1l {.r g s T _ 1. rs
P =g (W(ij hesy* 7(1) h(i)) ze x¥ (24
- i3
Prg = Epy Bg35 P

In eq. (23) the symbol S.q denotes the Ricci tensor build up
with the three~dimensiocnal metric Brs and its inverse e'°, Both of
these are in turn given in function of the present set of variables
by the use of Egs. (10), (11) and (9=3) through (9=5).
4 Y

1.2 (1
= —— « S K—— (K"x¥) +
S5 gx8 2 7 5,8

* Guv = Ryy = % Buv R is the Binstein's tensor,
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1, Pup

PRER ““‘“S’““"‘("‘(m“(j} MR EY “(ia)“’“’
ox

1

8 2

a | ) N
& (b1 h‘sm*ém 3 T °‘(i>)q’}’ 26

+

1
ﬁLs“ ""h( YX A5y s o¥ —-thj)—»@-(x”lxot(j)ql>+
axdi 2 axl

i

1 (1) 2(2) af3)
timpy - 8(13(;;)(1:) By hesy b n(kx), r (27)

The Hamiltonian is a linear combination of thesge constraints,

H = J d %=g°°)”% Hy + R ers'ﬁi{" (28)

4, THE LINEAR STRUCTURE FOR THE COUPLED SYSTEM

The variation of the components qh(x) of the spinor field at

the point x% induced by the generator

=j/\ritr c‘in* (29)
1s given by the Polisson bracket,
S‘PA(ﬂ = {‘PA(ng GZI . (30)

As it is known, the functional G of the canonical variables,
is the generator of infinitesimal coordinate transformations for

the three-dimensional geometry.

In the weak field approximation, up to first order terms ., we
get the following expression for the Poisson bracket of Brg with
G,

ol = |gpg (@) 0] = <A, (@) oA, _0) (31)

S,y

/\r are first order infinitesimals,
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Thus, we can think of G as the generator of gauge transforma
*
tions (this holds only in the weak field approximation) on the
gravitational potéﬁtials§ and to consider gy of Eq. (30) as a

gauge transformation on the components of Y.

The explicit expression for this variation is (in the complete

theory) . 1 .
OVEAT G F AT By Bagyy e o) gn ¢
1 r u
* 3N B Py e 4y Y (32

In the weak field approximation,

hu(j) = Byy T k ?uj
u _ aM u
h(j) = 6j -k fj

u.=9 ku
Yj ngT

(k a first order infinitesimal).

Retaining only the first order terms, we obtain for 8¥,

1
Nt r ot
=8P~ A ‘Psr + 5 Aigj ol.[j OCiJ 2 (33)

As in the corresponding problem for electromagnetic fields,8
we try to find out a gauge invariant quantity build up with the

components of the spinor field.

We .define the quantity,

*  These gauge transformations are defined on points of the three-dimensionsal
hypersurface,
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=f¢m)em@jdf (34)
where

Cxy=14d xt[ (3) (x,xdh(j)(x') r--=b([ ](x,x') .
s(j) ahr(j) }

o.xT ax S

(m 1s the mass of the spinor particle).

The coefficients ¢S (1) and bgj)] are to be determined so that
*
@ has a null Poisson bracket =~ (up to first order terms) with

the generator G.

8¢ = 0
With this requirement, it is possible to show that, =
c®IGyxr) = 1889 §(X,x0) (36)
_—s im —
olsrl @2ty - — MEPLIFYstts (37)

The Eg. (37) giving the divergence of b[sr] is similar to
the relation found by Dirac 8 in the correspondent problem for

electromagnetic fields.

* .
Thus, a quantity ¢ of the form given by Egs. (34), (35),
(36) and (37) represents a gauge invariant quantity build up with
the spinor field ¥ and three-legs hy(yye

* , , o
We also impose that these coefficients are C-numbsr functfbns (not dependent

on the canonical variables).

#3- . ‘ 7 L
C Provided-that'ﬁf‘is equal to zero on the boundary of the three-~dimensional

space,
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