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Summary. An equation is presented by which the energy of many-fermion 8ys8
tems can be calculated in such an approximation as the effect of hole
-hole interactions is alsco included besides the particle-particle inter
actions considered in the Bethe-Goldstone equation. Though we cen
correctly take account of the effect of hole motions by the Iwamoto
equation when +the interactions between fermions are repulsive or
weskly attractive, we meet a difficulty that some of the eigen-values

become complex when we apply it to a system with strongly attractive

interactions. We can avoid this difficulty completely by using our equation.
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1. INTRODUCTION.

Here a new equation is presented by which the energy of many
-fermion systems with strong interactions can be calculated inbetter

approximations than by the Bethe-Goldstone equationl.

Sinece Brueckner, Levinson and Mahmoud2 proposed a Dpowerful
method for the calculations of the energy of many-fermion systems
with strong interactions to which the perturbation method cannot be
applied, various mathematical refinements and many applications to
practical problems have been done. Thelr method 1s essentially the
following: A pair of fermions ig first picked up arbitrarily from
the system and their motion is calculated exactly with consideration
of the Paull principle. Then the shift of the energy of these two
fermions from that in case of vanishing interactlon is summed up over
all possible pairs. The ground state energy of the system is con-
sidered to be given by the sum of this total energy shift and the
kinetic energles of fermions. The energy shifts due to correlations
of more than two fermions are regarded as‘higher order  corrections
there. Mathematically, this 1s accomplished by solving the follow=
ing Bethe-Goldstone equations

(E-T)Y =qvy, (1)

where T 1s the kinetic energy operator of a pair of fermions, V Iis
the potential energy between them and Q iIs a projection operator to

states in which both fermions are above the fermi sea.

In spite of 1ts usefulness; however, this method bears a

short-point; that is, the effects of movements of holes are neglected
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there which are not necessarily small. As an example,; let us con=-
sider the third-order effect. In the Brusckner method, a further
transition of a pair of fermions which has been excited above fhs
fermi sea to other states above the fermi sea is taken into account
(ef. Fig. 1l=a), but the transition ef anéther pair of fermions
under the fermi surface to the holes-which arose from the jump of
the first pair is not taken into account (cf. Fig. 1.b). Consequen-

tly we can not expect qualitatively good resultis.
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Fig. 1 - Third-order energies. The particle motion (a) is taken into account
in the Brueckner theory, but the hole motion (b) is not.

This point was emphasized and improved by Iwamoto3.5tart;ng
from the usual secondly quantized Hamiltonian, he proceeded with
his calculations in an analougous way to those which were developed
by Sawada% and Bardeen,'Cooper and Schrieffer® in their theories
of the correlation energy of a high density electron gas and  the

superconductivity, respectively. That ié, a product of an appropri
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ate pair of creation-, or annlhilation-operators for fermions were
approximately substituted by a creation-, or annihilation - operator
for a single boson. As conclusion, he showed that the ground state
energy of the system 1s calculated with inclusions of the effects
of hole motions by solving the following equation instead of the

Bethe-Goldstone equation:
(E-T)Y =(Q-P)VY, (2)

where P 1s a projection operator to the states in which both

particles are under the fermi surface.

However; we meet with a difficulty in solving this equation,
when the interactions are strong and attractive. In this case, the
above equation has complilex eigenvalues and the total ground state
energy becomes negatively infinite. This is discussed in detail in
Sec. 2. Physically this corresponds to the fact that, when the inter
action is attractive and stTong, a pair qf fermions can form a
bound state with negative energy and consequently the lowest energy
state is that in which an infinite numbers of pairs which are con-

sldered to be bosons enter to thls negative energy level.

This diffjculty has its origin in that a pair of - fermion
is regarded as a true boson. Pairs of fermions have a  boson-like
property in a point that the wave function must be symmetrical under
exchanges of any pairs of fermions when the pairs are sufficiently
separateda But,; they are rather fermion-like when they approach
enough, because more than one pair cannot enter into one state.
Therefore, the valldity that, stressing the symmetry property under

the exchange of two pairs in different states, we regard a palr of
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fermions as a bogon is very doubtful. It may be rather a  better
approximation when a pair of fermions may form a bound state that,
stressing the point that moré than one pair of fermiong cannot.entef
to a single state, we regard it as a fermion. The main difficulty
with which we meet when we proceed in this manner 1s that the sign
of some non-diagonal matrix elements of potentlal become incorrect.
But, we may overcome this by modifying the potential itself in ac-
cordarice with a guiding principle that the result must agree with
Twamoto's in the weak coupling limit. In Sec. 3, this consideration

is developed. As conclusion, it is shown that the ground state
energy of the many-fermion system in an approximation in which
the effects of hole motions are also included is calculated by

solving the following equation instead of the Bethe-Goldstone e-

quations:

(E-T)Y = (V- 2PVP)¥ . (3)

This equation has only real eigen=values and we do not meet with
such a trouble as in the case of the Iwamoto equation. In Sec. 4,

the approximation used here is discussed.

2, COMPLEX EIGEN-VALUES OF THE IWAMOTO EQUATION,

For completeness and later convenience; we first repeat
briefly the Iwamoto theory. The Hamiltonian of a many-fermion sys-

tem in the secondly guantized form is written as follows:
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2
P 1
> ot t ot
H= 3 —cg e + = 2 V(s,tiu,v) Cg Cf Cy €, 3 (4)
M 2 :
where cg and ¢, are creation~, and annihilation-operators for single

fermions respectively, V(s tju,v)_1is the Fourier transform of the
interaction potential, M is the mass of the fermions, the suffix on
c+ and ¢y for iInstance s, denotes the momentum Py and the spin state
T and the isotopic spin state Ty of the fermion, and the whole sys~-
tem is enclosed in a large normalization box with volume (. forsim-
plicity. It is more convenient for us to transform this Hamilto-
hian into the form analogous to that of Dirac's positron theory.

To do this, we introduce new operators a_, bs and their complex cop

s
Jugate which have the following properties:

a

s = ¢ forlm l>pps ag = 0, for Ip,| < pp)

(5)

s = cls for Ipgl < ppi b =0, for log | > pp-

b

Here Pp is the Ferml momentum and in the case of the naclear matter
= (917'/8)1/3 r;l vhere r  is the mean interparticle distance.
Hereafter we call a and bS the annihilation operators of a 'parti-~

cle! and thole! respectively. Rewriting eq. (4) in term of a_ and

s
bs’ we have ma
5:::::: s
M
lp | < pp
where W? . X
T = Z -2";1' (as as - bS bs): (7)

= () SVCsstium)al ap by B} + by by ag as  (9)
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Vg = (%) T V(sstiu,v) a: az a, 3, * by by b; ;i ) (9)
Vg = (3) I V(s,tsu,v) ay by ag by + by al by a; ,  (10)
vy = (BT v(s,t,u,v)[ by by a, *+ by ap a, b:i , (11)
v = terms of odd number of creation operators.

odd

According to Brueckner, Iwamoto neglected completely the
interaction between holes and particles, that is, he neglected VS’
VR and‘Vodd, but he kept all other terms. Putting Pg ~ K+, Py =
= K-k, P, = K+&k' and Py = K « %! and 1imiting the summation over
k and k! to the half-gspaces kz’ ké > 0, we can write the inter-

action Hamiltonian in this approximation as follows:

- + + .+ 4+
PIED) V(s,t)[s+ cDi by ¥ bgubo ap at, +
K S,t

+ 4+ + o+
+ag,ac a8, ¥ bs+bs-btwbté] ) (13)

where s+ denotes a state with momentum K + ks’ spin state Og+
and isotopic spin state té+, 8= denotes a state with momentum K -

kS, spin state 0. and isotopic spin state t%ﬂ, Ejé means the sum=-
mation over s+ and s~ under the restriction that K is fixed and
ksz > 0, and

V(S,t) = V(S"‘, S5=3 t+9t") - V(S"",S""; t"gt"‘)n (14.)

The next important point in the Brﬁeckner method 1is to
consider that,; once a pair of fermions 1s excited above the fermi

surface, we need to take account of all effects 'of interactions
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between themselves, but the effects of splitting of this pair or
interactions between different pairs is negligible. Mathemati-
cally, this corresponds to regard a product of a pair of particle
operators as a gingle opei'atoro Extending this ldea to the case

of a pair of holes, Iwamoto introduced the following operators:

a as+ for s>pF

Sn
A(K) =4 .
0 for other cases,
(15)
boy by, for s < pp
B(K) =¢
o O for other cases,
where s > Pp and s < Pp mean'respéctively | K + ks|>rpF _and

| K + [i:sl < Pp» and then, on the az;a.i'Ogy of the Sawada theory and
the Bardeen-Cooper-Schrieffer theory, he assumed that these oper-

ators satisfies the usual boson commutation relations:
, + '] -
(8,00, ATCED] = &gyt 4,
(16)
t ! -
]:BS(!K), Bt(E{)]“-élK,IK; 8,40

all others are zero.

In this approximation, it is shown that the kinetic
energy of the system T is equivalently written as

T2 S g (KD 60 [ah() a(K) + BY(®) B (K],

K s (17)
where
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W (K) = (K2+ kS - p;'f)/M (18)
and €/(K) is an indefinite metric function defined by
+ 1 for s > Pp
g, (K) = -1 for s ¢ Pp (19)

L for other cases.

As the result, the following reduced Hamiltonlan 1s obtained:

2
IpS
H= T — o+ > H(K) , (20)
[IPSI<PF o K

BHK) = 3 e (K) w(K) I:A;( K) A,(K) + Bg(K) BS(IK)]
S ’ .

+ 57 (85w + 3R] VGost) [ag(m0+ YR

S,t

This H(K) can be easily diagonilized by introducing

new boson operators:

%’ Y2 (sy K)|A,(K) - BL( IKE' ; for ne M(A)

@ (K)= 9
0, for ne M(B)

2 !
- 214, 04,00 - B}(K)] s for neM(s)

B(K) = <

0, for ne M(A)
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where ah(s, K)!'s are a complete set of orthonormal functions in

the following sense:

SUYr(s) €, Y ls) = € 8 (22)
S

b
o
On

T Yn(s) E Yo(E) = €y &gy o (23)
n

and are the solutions of an integral equation:

(B, - wy) $.(s) = S'e, V(syt) P (£, (24)
| t

and M(A) is a set of states which are considered as the shifted
ones of levels with s > ppy M(B) is another set of states which
are considered as the shifted ones of levels with s {pp and En(Eo

is a new indefinite metric function which is defined by

+ 39 for n ¢ M(A)
€ (K) = (25)
= 1, for n € M(B).

In terms of @, and ﬁn’ H becomes diagonal:

H=8 ¢ 57 e (K B (K [wi(K) o (K) + BA() B0,

IKgn
(26)
02
s .
Eg = > el ST € (K)E (K) - > € (K)w(K),
S

P, < pp K |ne M(B) S<Pp )
. : (27

and the ground state energy is given by E, itself. Eq. (24) is
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the momentum representation of the Iwamoto equation.

Now,; when the interacti@n potencial is repulsive or it
is attractive but very weak, this equation is very powerful. How
ever, when the interaction potential is attractive and strong,
this has solutions with complex eigen-values. In that case, egs.
(22) and (23) do not hold, namely, the eigen-functions with com=
plex eigen-values are neither normalizable as eq. (22} because
their tlength' becomes zero owing to the indefinite metric nor
orthogonal with each other. We here show this difficult situ-
ation by a simple example of the separable potential.

Putting

Vis,t) = G v(s) vit) (28)

in the Iwamoto equation (24), we can easily solve if:

€q vis)
Y (s) =G C,,9 {29)
N n = %5
where
C, = S v(s) 4&(5) o | (20)
s

Substituting eq. (29) itself into eq. (30) and dividing by Cps

we have a secular equation by which the eigen=-values should be
decided:

, € v(s)?
1=6G D, o (31)
a8

By = wy
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We plotted the right-hand side of this equation as a function of

E  in Fig. 2 of which (a) is for a repulsion (G>0),; (b) is for
a weak attraction (G <0) and (c) is for a strong attraction (G«0)

Himk e

i
T

Fig. 2 = Plot of secular equation (31). Small circles give the eigen-
~values E 's. (a) Case of repulsion, G > 0, (b) Case of weak attraction,
G < 0; {c) Case of strong attraction, G<< 0,

In the figures, fine virtical lines show positions of u%'s, The

abscissas of the points at which the curves cross a line of ordji
nate 1 and which are shown by small circles in the figures give

the eigen-=values Eno

As seen from Fig. 2-a and 2-b,; we have a complete num=
g

&S one by one

ber of elgen=values which correspond to each w
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when the Interaction 1s repulsive, or attractive but weak. How-
ever, as seen from Fig. 2-c, we cannot find any eigen-values cor
responding to two custs which are nearest to zero. Namely, the
eigen~-values which should corfespond to these w s become come

s
plex in this case. Since the secular equation is real, these two
complex eigenuiralues must be complex=-conjugate with each other.
Giving marks a and b to these elgen-states, we may write the
elgen-values as E, = € + 10 and Eb = € « 10, The eigen-func=
tions of these levels ¥, and qvb are orthogonal to those of
other levels with real eigen-values hut they themselves do not
satisfy eq. (22), that is, we may have rather the following

relations:

]

Sua(s) € Y (s)

0, Z'CP;(S) Es'z}’b(s) = 0,
s s

—
2 Y5(s) €y Hls) = 1.
Therefore we can not transform As and Bs as in équ (21) by using
Ytg. For this purpose, let us construct a new get of functions
<Pn's=

Ppls) = ‘Pn(s) ‘when n ¥ a and b

Tes) = [dale) + Uto)| 2 (33)
B(s) = [dp(e) = h(s)| V2

If we consider that o belongs to M(4) and B to M(B), we can
see that ¥, 's satisfy eqs. (22) and (23) though they do  not
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satisfy eq. (24). Expanding A's and B's by these functions, we

can transform the Hamiltoniaﬁ‘eq. (20) as follows:
2

P ’
B> =4y [: £, (K) E (K) - ) € (K)w(K)
lpg | <pp M g | nen(d) S<pp

ntp (34)

+ E €, En [m:;(ﬁ() @, (K) + ﬁ;(lr{) @n(K)]] +h,
= B

h=-c+e(aa- Y8)+ 15 (" Bt - ap), (35)

ol
second and third terms in eq. (35) are commutative with each other,

where we have written simply o and B instead of «, and ﬁﬁ' The

and we can obtain state vectors which are the eigen-states of each
terms. If P 1is a super-position of the states in which the aif
ference of the numbers of a=-quanta and p-quanta is constant, Y
i1s an eigen=-state of the second term. Therefore, if € > b for
instance, a state in which x=-quanta are infinitely more than
B-quanta is considered to be the ground state, which has infinite
negative energy. 1In case of € = 0, we have not this type of aif
ficulty, but we can obtain no normalizable state vector, anyway,

because ¥ is a divergent superposition of infinite number of

states as seen from the structure of the third term of eq. (35).

Physically, this may correspond to the following fact:
when the interaction is strongly attractive, a pair of fermions
can form a bound state with negative energy. Since we considered.

a pair of fermions as a boson, infinite numbers of thesé bosons
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should appear in the lowest energy state. This contradicts the

true situationléf nuclel.

%, FERMION-LIKE TREATMENTS OF PATRS.

As shown in the preceding section, we usually treat a
pair of fermions as a boson. But,; we hardly consider this a good
approximation, when a pair of fermions can form a bound state
with negative energy. To examine this point more in detall, 1let
us calculate commutators and anticommutators of As’ Bs, etc. From

eq. (15), the commutation relaticns become

+ + + |
[As(m' At(K')_‘_l_ = Ogs %t = Bp+ Bge Stoyae T B By Spuysed
(36)
+

+ _ +
[PS(K)’ Bt(Kii]m - 6KK’ Ost = Pg+ Pgs 5t“93= b Ps. St*35+9

all other commutators are zero,

On the other hand,; their anticommutators are

+ _ o+ +
[As(fK)g At(lK')]+ = GIKIKI 6St = at+as+étm35m atmaS"éS*g'b“ﬁ‘ +
+
T lap42 8584 5
+ = & + +
[Bs“m’ Bt“K”)L = O %t " Prabsidse, b = PePsdsi b * (37)
+ 205 by

t4+04=Pg Py
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[AS(IK), At(IK)iL = 2 ag 84y 8¢ 24,9 ete.

From these we can see that the relation between two operators be-
longing to different states is completely boson-like, for example
as [}S(K), BZ(K*{] = 0y but the relation between two  operators
belonging to the s;me state is very different from that of true
bosons. When the state vectors which are eigen-solutions of the
reduced Hamiltonian are very similar to the free ground state,
that is, the vacuum in our representation; the expectation values
of the second and third terms of eq. (36) are considered to be

very small. In this case, we may regard that AS, Bs’ ete. satisfy

the usual boson commutation reiations, for example as [AS(K)g
A:(K)] = 1. However, when the eigen-state is very different

from the vacuum; the probability with which the single particle-,
or hole-level is excitedy; that is, the expectation values of the
second and third terms of eq. {(%36), is not considered to be small,
and then we cannot regard them as boson operators. In this case,
it 1is rather better to consider that they satisfy the fermion=-
~1ike commutation relation, for exampie as [ASGK)Q A:(Ki]_= 1. As
obvious from eq. (37); when the eigen=-states are very si;ilar to
the free ground state, the last three terms are very small, and
when the eigen-states are very different from the free ground
state and the probability of the excitation of single particle
states is nearly equal to opne,; the sum of the second and third

terms almost cancels out with the fourth term. That is, the anti-



23

commutation relations hold in much wider regions. Thus we should
rather take the anticommutation relations for two operators be -
longing to the same level instead of the usual commutation re-

lations.

Namely, particles and holes described by A.S and BS be-
have like bosons in the point that the state vectors must be
symmetrical under the exchange of two of them in different states,
but they behave like fermions in the point that only one of tﬁem
can enter to a single level. When the potentlial is repulsive of
weakly attractive, we may consider that the eigen-states are sim}
lar to the free ground state and the probability with which each
single particle or hole level is occupied is so small that we may
neglect the probability that more than one particle or hole enter
to a single level at the same time. This means that it is rather
a good approximation in this case to-’substitute the anticommu=
- tators by the usual commutators. But, when the potential 1is
strongly attractive, we cannot use this gpproximation but should
use rather another approximation that two operators belonging to
different states statisfy the boson commutation relations but two
operators belonging to the same state satisfy the fermion commu-~

tation relations:

3,00, ag)] =1, [a,00, a®)] = o,
bBS(IK), 13;’(&{)]+ =1, EBS(IK), BS(K)]+ = 0, (38)
jAS(IK), A:({Kv)]'_: 0 for s ¥ & K Ky etec.
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because we cannot consider that the probability with which each
single particle states are occupied is small so that we cannot
believe that Ags Byy ete. satisfy the usual commutation rela-
tions eq. (16).

This assumption may be a good approximation but it is
so difficult to treat them mathematically that we cannot solve

the Hamiltonian in any methods other than the perturbation.

Then let us try last possibility that, Stressing the
fact that only one particle or hole can enter to a single level,
we regard that ﬁhey behave approximately as fermions. The main
difficulty with which we meet in this approximation is that
some matrix elements of the interaction become incorrect in
their signs due to the change of éimmetry properties. That is,
the sign of matrix elements of hole-hole interactions becomes
incorrecto- But, we may overcome this difficulty by modifying
the interaction itself so that it gives correct signs of matrix
elements. In the other words, according to the guiding princi-
ple that the energy calculated under this assunption must agree
with that calculated -in the usual way when the perturbation
me thod is_applicable, we may construct a new interaction Hamil=
tonian. For this purpose,; we may use the following interaction

Hamiltonian in our case:

=y 3 2 V(sys) + Z Z [A (K) + B (K)]
K S<Pp

x Vylsyt) [a,00 + B, (39)
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where As, BS, etc. satisfy the anticommutation relations:

n
On
n
b

» +
3,000, A3@D)] = g

(40)

t
On

_ . i
L_Bs('K)’ Bt(’Ks):L KK’ “st

all other anticommutators are zero, and VM(s,t) is defined by

- V(s,t) for s < pp t <pp
VM(S ;t) = (4]_)
+ V(s,t) for other cases.

It is easily shown that the matrix elements of this interaction
Hamiltonian are completely equal to those of eq. (13) with egs.
(15) and (16).

Conseguently, In orther to calculate the energy of
many=-fermion system approximately, we may alternatively use

the following reduced Hamlltonlan:z .

2
P
H;:j— +Z :Iaws,t)+z H(K) , (42)

2M
Ips]<pF K s<pp K

H(K) = }:’ & w, [A;(IK) A (K) + B;(IK) BS(IK)] +
S o

+ Z’ E{;([{{) + BS([K)] VM(s,t)Elt(lK) + B:(IK)-] 3
Sst

where AS, BS, etc. are this time the fermion operators which

satisfy eq. (40). We can easily diagonalize H(K) by  intro-
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ducing new operators mﬁ, Pn’ ete. defined by the following e~

quations:

T ¥s ) [A,(K) + BEE)] 5 for n e M(a)
o (K) =4 °

o, for n € M(B)
-

. Z ‘P;(s,E{)I:As(KI) + B;(IK)], for n & M(B)
AL(K) =< ° ‘ |

0, for n € M(A)

-

which satisfy thils time the usual anticommutation relations:

&+
[anUK)s am(K)]-'- 6IKKI 61’11:1 ’

(44)
+ _
Ban(K)’ pm(K)]_,_ - 6[[{[[{“ 6nm !

all other anticommutators are zero,

and qh(s)'s now satisfy usual orthonormality and closure property:

SUs) fls) = 6,
s (45)
Ygls) ¥plt) = &,
- |
and they are solutlons of an integral equation:
(B, - wg) () =Y Vyls,t) Y (4). (46)

t

In terms of these LB ﬁn’ etc. we have the following diagonalized
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Hamiltonlan:

H=m o+ Y Y 6 (0 Bl @ + BHm) pa]. (a7
K n

3
©

EGz E : +Z'Z’ 2V {(s,s)

lp, < pp K {s<pp

21

+ Y 6K wy(R) = ) E(K) B (KD, (48)
s<pp neM(B) " -

and the ground state energy is given by EG itself.

Eq. (46) has always real eigen-values, since the  po-
tential is 'Hermitian' and the eigem-solutions are orthonormal in
usual way without using indefinite metric functions. We can easily
 show this by the example ofnﬁhe separable potential eq. (28). Eq.
(46) becomes in this case

(En-ws).¢n(s) G v(s) (Cy +Cg) s>pp

(49)

(B, - w,) 4&(5) ¢ v(s) (Cy - Cg) s<pp

and

= > W)Y (s), Cy=o  ws)Yls) . (50
' 3 < Pp

Eliminating C, and Cp from egs. (49) and (50), we have a secular

equation
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2 , 2
L= GZ v(s) -GZ v(s)? +2GZZ v(s) Z v(t)

-0

s>pFn s s<pFn s. s>pFn st<pFn t
(51)

We plotted the right-hand side of this equation as a
function of En in Fig. 3. Even when the potential is strongly
attractive (c.f. Fig, 3=c), we see only the translation of mini-
mum point to the negative direction and we have always complete

ﬁumbers of real solutions.,

When the perturbation is applicable, it is directly
shown by explaining eqs. (31) and (51) that both eqs. (27) and
(48) agree with each other.

%1 | 'qll\
|

e A
i f\x\ﬁ\

Fig. 3 = Plot of secular equation (51). (a) Repulsion, (b) Weak attraction,
(¢) Strong attraction, (d) Very strong attraction.

_=_____--
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4, DISCUSSIONS.

Using the Iwamoto equation, we could take account of
the effect of hole motions which was neglected in the  Brueckner
method. But, if we apply the Iwamoto method to the system with
strongly attractive interactions, we meet a difficulty of complex
elgen-values in relation with the appearences of bound states.
This is originated in that we have fixed our eyes upon the fact
that the wave function must be symmetrical under the exchange of
two'pﬁirs of fermions in different states and havé treated them
as bosons, in spite of that only one of them can enter to one
level as a matter of fact. Improving this point, we treated them
as fermions in the preceding section. In thls case, the sign of
some matrix elements becomes wrong due to incorrect symmetry
property of the wave functions. To avoid this difficulty, . we
modified the interaction itself beforehand so that the pertur-
bation limit of the ground state energy of this method agrees with
usual ones. As conclusion, it was shown that the ground state
energy 1s calculated in the approximation that the effect-of hole
motions 1s included, by solving eq. (46), deciding the eigen=
~Vglues En“s and substituting them into eq. (48), without meeting
any difficﬁlty of complex elgen-values even for the case of

strongly attractive interactions.

The ground state vector in the present approximation

is easily calculated by transforming the definition

B, $g =0 5 ne M(B) | (52)
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into the A and B representation by using eq. (43) with the result,

Yo expl= T 75T Us k) € (K) $E(tK) x a2(K) BLUO) |y s (53)
K S,t n )

where éb is the vacuum of the A and B representation.

To clarify the physical meaning of the approximation,
however; 1t is more convenient to introduce new operators C's as
follows: (For simplicity, we discuss only the sub=-Hamiltonian with
K = 0).

~

AS(O) for s> Pps
G = 9 - (54)
. :

BS(O) for s < pps

—

In terms of this Cys H(Q) becomes

H0) = ) 0F [0, 65 + Vst oy (55)
sst

This is easily diagonalized by a canonical transformation,
Oy = T %) s (%% = oy (56)
n

with the result
H(0) = )" E,(0) 9 7 . (57)
n

The ground state vector of this sub-Hamiltonian is given by

Pt =TT (X4 cQ) ¢, (58)

ne M(B)\ s
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where {6 is the vacuum state vector. If we consider CS as an
approximation of Cg. Cgad We may interpret this as follows: we
first pair the fermions with K = O and considering the inter-
actions only within the pair but modified due to the Paull pripn
ciple we solve the two-body problem exactly, and then we put all
pairs in the two=particle levels thus obtained from the bottom
onelafter‘another; this is the ground state in our approximation.
In this case, the eigen~values of H(0) give the shifts of ener-

gies from that of the free systems.

If there are some'eigenmfuncﬁions with finite exten-
sions among 4%“5, or in case of finite nucleil someones with
extensions smaller than the dimension of the nuclei, the pairs
in those states are considered to form a kind of bound states.
In fact, the energy of these pairs becomes negative. The word
hound state! used up to now has had of course this meaning
and it does not mean that the same two-particle bbund state as

that in the free space is formed in the many=fermion systen.

Extending this, we may consider our approximation as
followss we first pair the fermions with a constant K and then,
considering only the interactions mentioned before, we calcu-
late the energy shifts as explained above in case of K = 0} we
may consider as the ground state energy the sum of these energy

shifts over different K and the kinetic energy of each fermion.

The application to actuwal problems will be presented
separately in collaborations with other members of the Univers;

ty of Sao Paulo.
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