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ABSTRACT

A systematic and rigorous presentation of the main
properties of inversion operations in quantum field theory
1s attempted in this paper. The lst chapter reviews the
foundations of the theory; the transformations of the in-
finite=dimensional representation of the inhomogeneous,
proper and orthochronous Lorentz group are gilven as wellas
those of the gauge group of the first kind. These are used
in the 2nd chapter for a proof of the superselection rules
which are essential for a clear understanding of the con-
cept of intrinslc and relative parity of elementary parti=-
cles. This proof, which does not lnvoke time reversal,
rests on the postulate that all observables are tensor re~
presentations of the inhomogeneous, proper, orthochronous
Lorentz group., The question of real and imaginary pari-
ties of fermions is discnssed. After presentation of the
particle~antiparticle conjugation in chapter IV, Majdérana
neutral flelds are studied in chapter V and in particular,
the guestion of possible interactions of hypothetical Major
ana fermions. Time reversgal and strong reflection are st
ied in chapters VI and VII.

* To be published in Contribuciones Gientificas, Serie Fisica, vol. I,
N.3, Faculdad de Ciencias Exactas y Naturales, Universidad de Buenos

Aires, Argentina.
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CHARIER I

=

REVIEW OF THE FOUNDATIONS OF QUANTUM FIELD THEORY
I, 1. Lorentz transformation of field operator

In relativisiic gquantum theoryy the wave fieids are postula=-
ted to be operators which act on & Hiibert 2pace. These operators
are determined by the field squation: and the commitation rules (to
within a unitarv bransfermationds These nperators alsc depend on
discrete variables - the spinuy and tenzor iadices - wiiich are deter
mined by the requirement *n2i “hey b elewerssz of 2 finitewdimen=
sional representation space of the inhomoganeons proper Lorentz group
(from which we shall also exzivde the time “aversion in Tnischapterl

The state ventors ¢ (or kets) are elements of the Hilbert
"space, The relativistic invarianze oi the theury vequires that the

transformed

Pr = L)Y | (1)
corresponding to é iuionogenecus proper Lorvents Lransformation Li

e LTI Y Lo A AP
(2)
o>t
be alst a possibie suate of “he nye Lﬁma‘ The cperators U form an in-
finite dimensional revwrsserniatiin ¢f this Lorentz groupr and are uni-
tary:
u(n)¥ (L)

30 that

(F 3 e =T, &
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Let q; be the state vector and 0(x) be the operators associ-
ated to a physical system by an observer in a frame of reference.
The physlicist of another Lorentz frame may either: a) asgribe to
the system the same state vector ip and new operators 0!'(x), or b)
describe the system by means of a new state vector 1?' and unchanged
operators O0(x). The first method is the Heisenberg~type of Lorentz
transformatioﬁ in the Hilbert space, the second is the Schrodinger
type.

Both methods must be equivalent in the sense that both must
give the same expectation values for the physical quantities.
Thus: (W, 07 () P= (P 0' )P, or:

(P, 00(x)P) = (P o) P) (3)
hence:

0t(x) = UN(LIo(x) U (L) (4)

The form of 0%(x), on the other hand, is obtained by the re-
quirement that the field egquations be invariant under the proper
Lorentz group. The study of the finite-dimensional representations
(irreducible) of the proper Lorentz group yields the result that the
field variables can only he scalars, spinors, four~vectors, and ten-
sors and spinors of higher rank. Thus, a scalar field ¢(x) is such
that:

er(x1) = UT(L) ¢ (x)U(L) = @(x) ; (5)
A vector field operator A“(x)_satisfiess

A" (x) = Ut A (x0mL) = 1Y a¥(x) (6)
and for a Dirac spinor one hass

yi(x') 2 UL ¥ (x")U(L) = D¥(x), . (7)
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where D is such that

ma=1 _ p¥ ok | o A M
DyHD™t = L ¥ LY =g, 0, (8)
and
,
My ot ag’“’ ,
- y
g%%= gll= g2 = g33 =1 5 = 0y pEY (9)

and for a free spinor fileld:

-2
axt

We remark that while the transformations U(L) which consti-

(19" 2 - m)yp(x) =0 (10)

tute an infinite-dimensional representation of the Lorentz group can
be taken as unitarys; the transformations such as.L, Dy which trans=-

form the (fiﬁitewdimensional) 4 ~ vector and spinor space into them=
seives respectivelyy can not be unitary.

For an infinitesimal proper Lorentz transformation:

L, = 84 +e" , t3c«e, (11)
cne gets:
Die) =1 - L€, , 8", (12)
= i— (Y -’ Y, (13)
Thus, because:
(y*)F = o° yFeo (14)
one has:
(BF)T = 9 A (15)
and

p(e€)t = % p~lqo,

A finite proper transformation gives
%e,.w (’YHT)’ - 7\’?”)
= e

D - (16)
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For space rotations one has:

because:

¥O aloak g0 c9lok = sk =1,2,3.

What is the form of U(L) corresponding to an infinitesimal
Lorentz transformation? Let £ be the lagrangean denslty constructed
with the field operators 0 (x) and their first space-time deriva-
tives in an invariant fashion under the proper Lorentz group and such

that the varlation ¢of the section :

I =f£ﬁ [O(X)s .@.3!%). ] a%x
X

gives rise to the fleld equations.
£ is known from classical fileld theory. However, when the fields
are operators, one must define the order in which they are taken in

products, since they in general do not commute,

& will be taken as the expression in classical theory, the opera-
tors being ordered.as normal products. Thls will be defined later
and adopted for all observables such as current density jH(x), angu-
lar momentunm tensorcﬂbyi gnergy-momentum tensor TFQ 3 energy-momentum

vector PH H
p! =fd3x iada (E/dc‘a oMy (17)

804 (x)

oM’ = gav —Toaf%—)—- . -£ g“”, (18)
()
X
¥ ; .
M =[ a3x MO (Efdo‘aJ't»“‘”") (19)

(integration over space=like surface-/'dc& shows the covarilance of



1:"‘Jl a.ndd‘v(.w),
MY 2 ghO "PJ-L ap’ (20)
A A aL __p
= - - — 1
‘H'cxp T X, TP Xy (90 2 13 30p j(x) (21)
axgt
Here, the Bi 3 ,ocp the infinitesimal operators of the transforma-

tion of the field variables in spinor or tensor space, (12). Thus,

for a scalar field

15 50p =0 ; (22)
for a vector fileld:
hij sop = sp gia - a gip’ (23)
1ydscp = 0,1,2,3,
for a spinor field:
. —

Now, then, an infinitesimal unitary transformation U(a, € )
in Hilbert space corresponding to an infinitesimal inhomogenous
Lorentz transformation:

= (8;( +€h Y + a" | e2we, afec a,
is of the form:

MY
U(a,e) = I- fc.aHPp - %Epv% 3 (25)

U is unitary, the energy-momentum vector and the angular momentum
tensor are hermitian. The latter are seen to be the infinitesimal
operators which determine the infinite-dimensional representations
(unitary‘) of the inhomogeneous Lorent, group. For finite transfor-
mations:

U(L) = exp (~ia, pH - 2 J%“") | (26)
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1,2 Cogg;tiogg imposed by U on the field operatorg.

The existence of a unitary transformation U(L) which trans-
forms O into 0O¢:

01(x) = uT(L)o(x) U (L) (4)
imposes certain conditions on the field variables 0(x). They must
satisfy given commutation rules with P* and M'°.

Indeed, let:

x" = xP e ph W’ 0w, (27)
be an infinitesimal linear transformation on x, with infinitesimal
parameters :nof In the case of a proper Lorenti infinitesimal traug
formation, the index'y is a pair of indices « {fand :

O —» € P

a LI L »

¥ £y
fvw»fa€=éqgavx 8 Bayp X'y  agP. 125

In the case of a translation:
£ =8y, W’=a’ ., (0
Transformation (27) induces a transformation of the field
operators, in their arguments x and in their form, O(x)—- 0 (x7)
and we shall write:
01y (x1) = 04(x) +Qy 4(x) (50)
The variation of the operator is:
80y(x) = 01, ()= 0y(x) = B (x) I (31)
while the variation in form only is
B0,(x) 2 0§(x) ~ 04(x) = 01,(x?) - 04(x) - (0] (x1)-0§(x))

- 20! k _
_n.ij(x)wi.. _'ijfax_ 8 x~ = (32)

- 904 ok
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On the other hand, (27) induces an infinitesimal unitary transforma=
tion U(W) in Hilbert space which transforms the operators according
to (4). |
If we call 4dU(w) the infinitesimal part of U(w);
U(Ww) =4I +8U(w), (33)
then the unitarity ofrU(OJ) gives
| (6u(w)t = - 3u(w)

014(x) = UT(w)0, (x)U(w) = (I ~ 8U(«))0, (x)(al+5U(w)) =

0,(x) + [0,(X), 3u(w)] (34)

where:

[ 4,8 ]

AB ~ BA .
Thus: | :

O/ (x) - 0y(x) - 0,% F0,(x) = [0,(x), sU(w)],
§U(w) 1is linear in the parameters wy so we write:

SW(w) =1 Uy w®

to get:
50,(x) = 1{0,(x), Uy ]w‘). (35)
Compare (35) with (32), you ggt?ir)l:
A X ] _
100 5 (x) = ?i-r fy) = [0 0;(x0)] (36)

These are the conditions imposed on the field variables Oj(x).
For a translation in space-time, (29) and (36), plus the
fact that then O, =0, will give (Uy = P,): "

80, (x)
L = [py, 0,0 ], (37)

-i*—
ax9

where Py 1is the energy - momentum vector (17).
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For a homogenous proper Lurentz transformation, (28) and:

_ A
Uy Ty = - My

will yleld:
20, (x)

K k A
1{Dy 4590 05(x) - E (8 By = 8y BpodX ] =
= [04(x)y My ] (38)

where My, 1s the angular momentum tensor (19).

The physical meaning of (37) and (38) will be transparent

in momentum space.

I,3. Emission and absorption operators of free fields.

The free fileld variables must satisfy the eguation:

(1 + %) o(x) = 0 (39)
where:
= oM 2 2
= ax ¥ axv

We therefore define O(P) 6§(P%~ m%) as the covariant Fourier trans-
form of 0(x): 1 4 —1px -
O(x)=-(-£;)-§7§/dpe O(p)5(p-m);px=p7‘xa
(40)
0(x) satisfies (39) because (paw mZ) 8(p2w wl) = 0
We separate O(x) and O(p) into a positive frequency and a

negative frequency part:

ox) = o'*) (x) + o) (), 1)
4
o(p) = o{* (p) + o) (p)
where
ol*) (p) = 0(p) X1 + sgn p°),
(=) 1 o (42)
0 (p) = 0(p) 5(1 - sgn p").
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As p is a time-like four vector, sgn.po, defined by:
1l for p° > 0,

sgn p° = (43)
-1 for pP« O, _

is invariant under proper orthochronous Lorentsz transformations.
By performing the integration over,po, it i1s clear that
0_(x)_can be written as an integral over the 3-dimensional momentum

space:

o(x) = — 13/2J/hd3p [0 (premtPx 4 ol~)(5) o1Px}
2

where now:

o) = L o,
2p

ol () = —5 0B 5 0% = +B v 07"
P .
Note that o) () and 0(')(5) depend on the 3-dimensional vector p.

One may define

MDY = 4z2p0 oDy
st ®) = J2° o'~ N(®)

where now B+ is the hermitian conjugate of By so that:

1 d3p ~ipX | ptoayod
0(x) = A(BYe™tPX 4+ BT(P)eiPX !l |, (44)
(211r)3/z JZpO { P P }

0(x), besides being an operator in Hilbert space, depends on spinor
or tensor indices, «.
We separate out the two aspects in A and B by defining:
ALD) = EI;‘ a(ryplu (r,8),
B;(if) = %/b'*(r,ﬁ') vy (rsD),
where the sum over r refers to polarization states: a and b are

operators in Hilbert space: U, and v, are spinor or tensor functions
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Thus:
- 1 a3 e =-ipx + i
0i(x) = —7 ﬁp_§,~ {ae®) ug (2i®e™ % p¥r v (r Me?P*}
1 a3 . -
0;(::) = (2my 372 1/3?0- {b(r :3)V;(r:_15)e ipx, a*(r,?)u;(r,?)eipx },
(45)
where summation over r 1s understood.
Thus for a gcalar field ®(x):
- d3p { =y =ipx + ipx
(x) = . (P) + b ()
Y SR | o L P e b
(46)

+ _ 1 a’p v =ipx + ipx
gt(x) = 4°p_ {b(p)e + at(Pe
(2m) 32 [ J2p°
which will be hermitian for a = b.

For a splnor field:

Y(x) = : alr,P)u (r,f)e™P*+ b (r,B)v(r,Pe P
(221r)3/2 /\/dpo {
(47)

T, - o . 1 d3g = -1px
) = Pi(x)¥° = b(r,P) ¥ (r,7)
¥ix) =9 (x o372 50 { rsp) ¥V (ryBe +

+aT(r, )0 (r,'ﬁ)eipx}
the spinor index o being omitted and where ¥ = ¥17° and:

('rkpk- m) v (r,p) = 0, (')'kpk+ m)v (r,p) = 0,
u (r,p*)('ykpk- m) = 0, v(r,p) ')'kp]!t +m) =0 . (48)
Normalization of the u'sand vis is taken as follows. First
uf(r1,8) u (r,8) = 2p°drir

v (r1,8) v (z,8) = 2p° ér'r, p°>o0, (49)
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then it follows from the equaﬁions (48) that:

T (rtyp) u (ry p) = 20 85 9
F @B v (r, ) = g,y (29) 1

virs B u (r, ) = 0.

For the.glgctromagneticﬁfiéld:

1 : | L
= - ok Wy Fara Bya—ikx, _t,, Py ikx]
b () = ==z [ LL 57 o) ) {athBle e atasbe (5;}’;

ew (A3K) is the polarization vector, k° = |k| .

We now wish to show that the commutation rules (37)
and ( 38) permit to interpret the operators a,b as absorption oge;

rators of particles with momentum D and spin r, at, bl as emission

operators.

That the bls refer to antiparticles while the a's re-
fer to particles follows from the.éoﬁmutatioﬁ rules of the opera-
tors with the charge (next paragraph).

Consider (37) in the case in which 0 (x) is a spinor
field ¥(x)s We have

[Pp ’ a(r,ﬁ)] n (I’e—ﬁ) = - pva(r’-ﬁ) u(r?-ﬁ) ’

: (51)
[Pv ] b+(1"9—§)] v(r 13)

]

p,bT(r, B viz,®) .

" Let Y (K) be a state vector with momentum K:

the K, being numbers. We then have:

[Py sl B Y (K) = Py alr;P)Y (K) -alr,p) PP(K)=

= (P, -K,). a(r,"ﬁ)\Y (X)
which should be equal, according to (51), to:

- p, alr,p)P (K)
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(we got rid of u(r,p) in (51) by multiplying on the left by u+(r,§)
and using (49)).

S0 ,
P, (a(z,BYW(K)) = (Ky- p,) (alz,®IP(K) ). (52)
Thus a(r,B) P(K) is an eigen vector of P, with momentum K - p, hence
the operator a(r,¥) destroys a particle of momentum p.
For al(r,¥); the operation is creation of particle. Analogously for
b(zr,8), bY(r,B).

With (38),; one obtains for spinors:

{a(rsﬁ)a My ] = (Syy + Liu )a(r,B),

where:
Rl (y %= 7y u (8, (563)

1

Ly = X,b, =X, P,
and thus a(r,ﬁ) is also absorption of a particle with spin S)“J and
orbital angular momentum L,y .

+

Now we want to show that a and a ' refer to particles, b,

b*, to antiparticles.

I44. Particle and antiparticle operators.

Assume that the wave field operators O0(x) are non-hermi-
tian. As the lagrangean must be hermitian, it can only depénd on
combinatioris of the fields like 0T (x) 0 (x). Therefore, the lagran .

gean will be unchanged if the fields are multiplied by an arbitrary

phasé factor eias io
| 01(x) = e 0(x) ,

(54)
o't(x) = e %% (x) .



30

The induced transformation in Hilert space; U{a), will be written:
U = 19, | (55)
where Q 1s an hermitian operator, the charge of the field. We have
0'(x) = U 0(x)VU() 5
so that for infinitesimal o :
(1+ ia)0(x) = (I ~'iQa)C5(x)(I + iQw) )
hence: |
[0(x),Q] = 0(x),
[oT(x),q] = -ot(x) . (56)

That Q is the charge operator follows from classical theory where it
is shown that invariance of &£ under gange transformation leads to a

conserved vector jV (x), the current:

P =1 o] 028 2 om} . (&)
‘ 020y (&%)
ax” ox”

| This will be taken over into quantum theory, with the nomal
product as the ordering criterion. Now the only, first order in 3,
invariants formed with °(x) are fi; y which vanishes, and Q =
=~/ de, H(x) =jfd3xj°(.x) y which is the charge. This is the only
one avallable to be put in (55). | |
Now suppose that 0(x) is ¥(x) as given by (47). We get:
La(fiﬁ):Ql = a(r,B), | |
[b7(r,8)50] = v7(r,m),
[a*(x,8),q] =-a*(r,B), (58)
(b(r,8), Q) =-b(r,P)

The difference in sign in the commutation rules (58) for a! and bt
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gives us the c¢lue tc the interpreiv.tion. Let g be the charge of a
state U (q) (in units of e): QU(q) = qW¥(q),
then 1t follows from (58) that:
a+(r,§)4f(q) is a state with charge q + 1;
b+(r,ﬁ)lp(q) is a state with charge q - 1.

+

So a; a’ are operators which refer to particleg, b, b*, to

antiparticles (with charge opposite to that of particles).
I,5. Lorentz transformation of emission and absorption operators.
From (4) and (45), plus the fact that
0t (xt) = 8 0(x),
where 8 is a matrix which acts on the spinor or tensor indices of

0(x), as illustrated by (5); (6) and (7), we obtain:

_&0p b { ot alr B)uv(r,p)e ™ PX 4 utot(e, 1) Uv (2 ,?)eipx'}
\/Zp5 r

d3p Z {a(r »D) Su (I’s—ﬁ)emipx + b+(I‘s—P',) Sv (T:_Iy)eipx } :
T *

Change the integration variable of the left-<hand side into pt, such

3.0 3
that pix' = px, note that LB = 42
1 (o}
p p
and ulr,p') = Su(r,p) , you get:
L] - -
p°" ot atr, ) U= V50 alr,®), (59)

which holds for all emission and absorption operators.
For a pure spatial rotations
R"La(r,8')R = alr,d) . (60)

As a check, verify that the energy-momentum vector being of the form

p =fa3p  {af(z,B)a (2®) + b¥(r, B0 (2,B)}
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(59) gives:
ute'o = 2 p7.

1,6, Lagrangean, energy-momentum tensor and current of ,c;agggga;

fields.
Complex gcalar field: ¥(x) :

* )
£ =g, L& 2P0 2 Fx) ),

" 9x,
o - 2% 2ex) __(_1 20x) _ g A (61)

St
<
I

= ig‘m((P (x) %ﬁl mg)-CP(J:))

Substitution of (46) in these formulge (where one replaces

hermitian conjugation t+ by complex conjugation *) gives:

pH =[ a3k {a*@aa (®) + b(k) b"‘(E)} k",

. O (62)
Q= [ &%k (" @®a(® - v @) .
Spinor field ¥ (x):
L =1 P ¥ my{(x) P(x),
axk
A__i_cx = A QW(x) aw()
T = 2 T (0t £ ey M) ), (63)
3P =09 px),
which, with (47) gives:
P =fd39§r{ a'(ryB)alr,B) - b(r.'ﬁ)b*(rs“p’)} 1
' - (64)

@ =[P L B a (0P o mm)
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I,7. Fundamental commutation rules of the field operators, Normal

products, Spin and statistics,

In (61) and (63) we have written the complex conjugate of
the classical field variables at the left of the field variables,
in x - space. If we keep this order, it is seen from (46) that in
momentum space, a* will be at the left of a, b at the left of b*.
This order 1s irrelevant in classical theory, where the fields are
ordinary functions. In quantum theory, it is important because the
fields are operators.

On the other hand, (62) shows that the energy is positive
definite for scalar fields and the charge is not (this is true for
boson fields, i.e., tensor fields). But by (64) the energy would be
non-positive definite for spinor fields while the ¢harge would be
positive definite. We do not want the energy to have negative values.
How can we prevent this for spinor filelds?

Pirsty we remark that in quantum theory, we want that the

energy-momentum and the charge of free scalar fields be of the faorm

Pt = [ a3 [n, (§) +n_ ()] x*,
(65)
@ =/ &% [n, () -n_ @],
where_/[n*(fjdsk and//.n_(ﬁ)dBK are operators of which the eigen-
values are non-negative integral numbers, which are, respectively,
the number of positive and negative particles. This 1s obtained

if we impose the following commutation rules:

[a(k),a* (K] = 8 (¥ - k1),
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[b(x) (K] =8(K - k")
[2(k), alkD)] = [b(®), b(®)] = [a(®), b(k1)] = [a(¥),b7 (X)) = 0.

(66)
Then

n, (k) = a7(¥) a (%),
—> —n
n_ (k) = b0 b (®). (67)
Indeed, it follows from (52) that if ¥(0) is the vacuum
state (P, P(0) = 0):
Py(a(p) U (0)) = —py(alp)P(0))
and as the energy Po must be positive definite, then
-" —
a(P) P, =0
fm'po>0.
From (51), one deduces that:
) n.'l. ) n,
== Ve = 4,7 -'- —““ )
Yo (ks «0 n (X)) = [a7®x] oo [a¥e)] T (o)
is a state with n, particles with momentum Ei,..., ng particles with
momentum Q;.
Application of the commutation rules (66) and of the last

two equations will show in a straightforward way that:
3, b —p —_
[2¥®) & () @k P(ny () se ey (i) =
= [ay (B + eov # n(KD] P (0 (EDy +0ny n(E)).

However, it iz also possible to impose, alternatively, the

following anticommutation ruless

{atic), aTxn}], = a() &t + at&)a () = 8(k-k"),

{pa0), BTED}, = §(E-EN,
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{a(E) sa(E0) ), = {B(K) (M), = {al®) bk}, -+ {a@) pTEND], = 0.
(68)

In this case, the number operators will have as eigenvalues
only O and 1. Replace a{x) by a(rsk), b(R) by b(r.k) and §(K-%')
by 6. (K-%"), when there is a polarization index r.

Which quantization procedure must we adopt, (66) or (68)%

If we chose (663 for the scalar field, you see that the ex-
pression {62) will not give (65) but rather:

Fo &jdsk{n_,_(_m + nm(ﬁ)}ko + infinite energy due to
the &= term in (66).

The free=field vacuum state must bé the one with least
energys i.8.3 zero. 7To get rid of this infinite energy for the vacu-
uny we may redefine all the operators like the lagrangean, energy mo
mentum tensor, current,; etc.y such as (61), (62); (63); (64), by im-
posing the condition that the products of field sperators be normal
productssice., that they be ardered by displacing the emission aperg
tors always to the left of absorption operatorsy; the sign of ti&e
commutation or anticommutation of the operators being taken in‘f.his
displacement, according to {66) or (68), but the B8 ~term being dis-
carded. Represent the normal product of two operators 'Ol 0Z by
107 0,1
Thus, if b, bt , obey (66) :

p(E) bTE): = pYE) b(E);
ifs however,; they satisfy (68):
:b(k) bk = =b¥(X) b(E).
Let us then assume that the quantities (61), (63) are, in
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guantum theory, normal products. The vacuum expectation value of
P”,Q, ete.y will vanish, as required.

But now we see which guantization rule to adopt for which
type of field: The scalar (and, in general, the tensor) field must
obey the commutation rule (66). The spinor fields nust obey the an-
ticommutation rules (68).

Thus, (64) 1is: |
P o= Pp & {ale B a (rB)-vCe WD) P =

=j a3p %{a*(r{ﬁ)a(r'{ﬁ) + b*(r?p’)b(rs?)} o,

(69)
Q =:f dBP;’{B-*(I‘s—D.)a(I’s?)"‘ b(r ,p) b+(1‘:'1-3’)}: =
= f dapzr'{ai—(r,f)a(r;ﬁ) - bf(r;ﬁ)b(r;ﬁ)r} ’
for spinor filelds,; thanks tc (68).
And (62) is:
pH =:/cz3k{a*(f€)a('k‘) + b ()Y 1M =
= [k {at () a (i) + of(X) b ()} ¥
(70)

@ = %k { aT(® a (B) - v(® i} =
= | Pefat(®a @ ~ vt o @}
for scalar fields (and in general for tensor fields, if you include

a polarization variable A), thanks to (66).

You see that the reguirement that the energy be always posi-

tive = definite imposes that tensor fields be quantized according teo

(66), spinor fields, according to (68).
As the occupation numbers, eigenvalues of the integrals of

(67), can be any non-negative integer, in the case (66), this cor-
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responds to the Bose-Binstein statistics,and the tensor fields and
particles are called bosons.

The occupation numbers, In the case (68), can only be 0 and
1; this corresponds to statistics which incorporate the Pauli,exclu-r
sion principle, the Fermli~Dirac statistics, and the splner fields
are accordingly fermions.

This connection between spin and statistics was discovered
in 1940 by W. Paull.

The exclusion prineiple; in case (68), results from the
fact that:

a(r,P a (r,0) = at(z,B) aT(x,7) = b(z,;F)b (£,3) = bH () vH(riP)= 0.

If you now work back from (66) and (68), through (46), you
will find the commutation rules in coordinate spaces
(07 (x), %) = 18 (x=3); [P(x),9y)] =

for a scalar field;

[a¥ (x)y £7(7)] =-12¢"7 D (x-y) (71)

for the electromagnetic fields
W) By}, = s fx-3)5 {900y, (0 ), =

for a spinor field. Here:

3 .
afx) = - (an»)B.[dk oHEE sin k° x° ,

KO = (B2 4 p?)¥ 5 D(x) = A(X) for m=0 j

| (72)
s(x) =-<.w"-£-p~ £ m)a (x). 7

These functions satisfy:
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(O +v2) A (x) =0,

A(x) = 0 for a space~like vector X,

(Laix)y = Ly, (73)

ax 'xo:o

(i*y“sip -m) S (x) =0

and are the ones which solve the Cauchy problem for free fields.

Thus the commutation rules (71) hold only for field opera-

tors which satisfy the free-field equations.

On the other hand, the more restricted rules:

[qﬁ(x),¢(y)] = 0 for (x -~ y) a space-like vector,

[536 @+(X)’?(y)]yo=xo = -1 6(2"§)3‘ (74)

[AH(X), Ao(y)] = 0 for (x~-y) space = like,

vl
[ﬁé—LEl , Ao(y)] = ig“gé(i-f),

ox° yOo=x
(v, W) = s@-9 for x°=5°,

still hold when there is an interaction among the fields, which does

net involve fieid derivatives.

I,8. Interactions

The physical processes are due to.the interaction among
fundamental fields. An interaction between two wave fields 0,(x)
and Oa(x) is taken into account by adding to'the two free-field la-
grangeans of Ol(x) and Oa(x), a third term X', the interagtibh la~

grangean, which is constructed as a normal product of expressions
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formed with 0;(x) and 0,(x), in such a way that %' be hermitian and
invariant under the proper Lorentz group. Further requirements may
be imposed on £¢ for specifie éasess the coupling of charged filelds
with the electromagnetic field must be gauge ~ invariant,; the inter-
action of nuclecvns with pionsy in the absence of electromagnetic ef-
fectsy must be charge independent; the strong couplings of baryons-
with mesons must bey as far as we now Xnow, invariant under space re
fleetion; charge conjugation and time reversal; separately. The last
requirement must not be Iimposed for weak interactions,; such as the
Fermi Aoupling.among spinor fields, except for iavariance under the
reversal, FExperiment 1s our guide in the cholee of these lmposi-
tions, as it has beeny so fary, for the Lorentz invariance of the
theory.

The inkevaction lagrangean gives rise %o terms in eachfield
eguation which make i% depernd on the other fields. The wave equa=
tions are asoupied together,

We shall congider only local interactions,; for which Oi(x)
and Da(x}.are taker. at the same point x, in s,

Tt follews from {(7) and (15} that the adjoint of a Dirac
spinor field, ﬁ <E§9 transformss under a proper Lerenvz transforma-
tion, in the fﬁllawiﬁg way's

T(x) =T (x) Dml (75)
Theny with the help of (7), (8) and (75), you will show that, if
Wl(x) and lﬁagx) are two spinor fields (representing, for example,
protons and neutrons, respectively), ﬁﬁx) ¥>(x) 1s invariant with

respect to the Lorentz group, a sealar S;-Aﬁa(x)'flwz(x) is a four=~
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V3 -?f- ﬁ{x)[’r", '7"]1#2(::) is anantisymmetric tensor T. It will
be shown in the next chapter that, in addition, the following forms,
'tf;l(x)'}"“ﬁ ¥,(x) and i%_(x)'yf’ll)a(x) are a pseudovector (or axial
vector) A and pseudoscalar P, respectively, because umder space re-~
flections they behave as such (here ,},5 =1 '70')'1’}‘2'73 ).
Thus we have the table

Tensor character Bilinear form Hermitian conjugate
S 17;(_31) ¥o(x) "a(x) ¥, (x)
v : i'v'l(x)?“ll’a(x) 7(x)7" v, (x)
T AL S B R U A TES
A G )Y U (x) Lug07" 8y x)
P 1T, (020 U (x) 17, (x) 7oy x)

Remember that we have chosen:
(,),n)fr = A0y © , (,?,5)+ = f),s’
,75 - i,.yc:r,.},l,),Z ,73 .

The following are some examples of interacting flelds:

1) Charged fermions and electromagnetic field:
b]
L= £ vt .8,

- _ 1. a" aAP(x)’.
il = - E . —?pil —3‘5' - 2

= 64 T M J¥(x) = .
xz = -Ai Yy (X)'}‘ axf" -my (x)U’(x). 3 (77)
L =1 (x)7" wi(x) Au(x): .
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The fleld egquations of motion are:

{ W“(i §%p'= e Ap(xl)qm}-lﬂ(x) =

0a¥ (x) = ¢ Px)o"y(x) , (78)
and the Lorentz supplementary coadition on the state vectors:
(+) -
AN, T(x).
R e ) LP - 0 ¢ (79)
BXH

The equations are cbiained in the following way. With L ’
one obtains T"Y and PY . With P’ , one uses equation (37), where
Oi(x) is Y(x) and AH(X)O To wcaleoulate the commutator in (37), one
needs commutation rules for the fields. These cannot be (71) be-
cause they would lead tec free field equations. The commutation
rules (74); which refer to fielids taken at the same time,; and the
additional condition that ¥(x) and Au(y) commute for y° = x°, will
give the equations (78). |

Commutation rules {74} can be written in a more general
fagshions; if ¢ designates a spaze~ilke surface and F(x) is an arbi-
trary function:

[aou [9*xis 90} =0 for ¥y in o

fcwp[ l‘e—vki s P(yI|F(x) = ~1F(y); y in 6 :
[as, [A.h(x“' R(y¥] =0, yin 6 ; (86)
faoy [ M » 2(y)] F(x) = 1" F(y), yin© ;

fd% {1/’(2@)9 ¥ (y)'}’“}+ F(x) = F(y), yin ¢
fddp {l#(x)s‘P(Y)} = 0y y in6

Jasu [aux)s wiy) ] =0y yin .
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Equations (78) give the time development of the field opers
tors and this constitutes the so-called Heisenberg representation or
picture, in which the-state vectors U are regarded as fixed in time.

(77) is gauge-invariant, i.e., invariant under the transfor

mations:
Al(x) = A (x) i%%%§l J
pr(x) = et E (i, (81)
7(x) = e 1A iy,

where A(x) is an ordinary function which obeys the equationvuf\(§)=
= 0. |

| You will notice that £' was made out of the contraction of
.AH(x)-with. ka)ff”¢(x), which guarantees its relativistic invari-
ance . A contraction of iﬁ(x)frH’Y51P(x) with Ap(x) would destroy
gauge-inﬁariance (under (81) ). Thus, it seems that the gauge~in-
varidnee requirement leads to 5 space-reflection invariant coupling._.

1helfact that the electromagnetic effects are described by

the interaction (77), without the need of an additional term in the
 lagrangean, of the form
| 24y 24,

2T @Y W @Rx) 5 where Ry () = ox” T ox* ’
H

- (such a term results in the second order equation), has led Gell-

Mann to propose phe rinciple of minimal electromaghetic interaction,
which restricts all direct electromagnetic couplings to those with
Ap(x) in the lagfangean.”
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2) Nucleons and plons. Charge independence and charge symmetry.

Pogitive and pggative plons are desc;ribed by a non~hermi-
tian pseudo~scalar field operator {(x), neutral pions by a hermi-
tian pseudo-scalar field. CPB(X)o The proton field is a Dirac spinor
I,Pp(x),_ the neutron field; another Dirac spinor : Wn(x)o

The lagrangean is:

58=5€+5€+5’5,'a

n T

R £ 1C s R .
£ i l/’p(x)"}”* ——R,r-—-axj M l'bp(x) lPP(XJ' *

n

awn(x)

¥ M

+

: ﬁn(x,)fy“ - M 'tFn(:;) ¥ (x)e s

(82)
29T(x)  H9(x)

(42 .
e

S
"

a¢3(x) o 3(2:):
dx" axP

H

21 =g, (G0 7P U x) gt +

” 5 +ioy)e
+ (P Y (x) @7 ()]
+ igp:'q'}p(x) d5wp(x)tp3(x):+ ig,: 'lf)n‘(.x_)f?st[h(x)tps_(x.); ,

with an obvious meaning for the different terms and the coupling con .

stants g,s g,5 g, and the g,k terms couplé charged pions with transi
c n (] ;

p

tions between néutron and proton states; the g and & terms couple

P
neutral pions with proton and neutron states respectively; M 1is the

plon massy, M the mass of neutron and proton, assumed equal.

The charge-independent theory, first proposed by Kemmer,
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TIZFgc_gP=-gnEg' | (83)
Introduce ‘an 8~component spinor: ,
(x) - |
y(x) '(WP ) (84)
o (x)

and the isobaric spin matrices 31, ‘g‘z-, "[‘3 such that:

Y () 1% (x)
fLu(x) = (U'n ) ; ‘L‘Zl}/(x) = ( n )
Yp(x) iwp(x)
(85)
: Yn(x)
Tz ypx) = P
Ly ¥ix ( (x))
Then:
To=g (Ty+1%,), T_=5(T-17,) , (86)
give: Y(x) Z‘_,_l_'lP(x) = 2 l?p(x) l—’lpn(x) )

F Ty = EF, ol ,

whére l_‘ is any of the 16 7y - matrices which act on ¥Yx) as follows:

ro <(L05) s [roa] =0 (&)

One then finds, with (83):

Wt ig é l.P(x) biﬁslP(x)ﬁPi(x)' : _ (88)
where:

1
@ (x) =7 ((Pl(x) -1 P,(x) ) . (89)
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and ¢, (x) and ¢,(x) are hermitian.

We see that now ¥ (x), as defined by (84), has two kinds of
spinor indices, one & = 1y 23 34 45 deflnes 1t as a 4~component
Dirac spindr, the other 1 = 1, 2, defines 1t as é Z=component spinor
in the isobaric spin space. The matrices T1r Too T3 are the infinl
tesimal operators which generate a rotation in this space. The
pseudoscalar field has an isobaric spin index 1 =1, 2,73, which de
fines it as a 3~vector in the isobaric spin space. The coupling (88)

is ﬁorentzéinvariant ands in addition; invariant ﬁndq;rrogations in -

the isobaric spin space. This is the requirement of charge indepen-

' ‘dence, which holds for (83).

Thus we can write (82) in a more compact form:

L= &+ i;_ + L,

L N ,
£y = e 3@ 52 - Wy,

5 (x) 99;(x)
2 u%,g,: (W2@P(x)- - Olpix LAY

T 0¥

Le

ig f%—l () vsw(x)tpi(x)' |

A épecial rotation in the isobaric spin space is the one

around the first axis in this space by an angle w. The transformed

pion field ¢y(x) will be
Q1(x) = @(x) 5 Ph(x) = - P,(x) 5 Polx) = -Fx) . (90)

One then sees that the nucleon fleld gb(x)‘transforms in

the following way: .
Yr (x) = 5 ¥(x) . (91)

In terms of Y (x), (89), ¢pr) and ah(i), (84) one gets:
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er(x) = P¥(x) ,
qﬁ'(x} = P(x),
(92)
Wp'(x) = lpn(X) ’
¥n'(x) = V()
This is the so-called charge symmetry operation, under which

protons are replaced by neutrcns,;neutrons by protons, and positive
and negative pions are 1nterchanged. Nuclel have this symmetry, as
known from the fact that the energies of the ground states of two
mirror nuclei are equal, except for a small amount due to the coulonmb
energy of protons.

While a charge-independent theory is automatically charge-
symmetric., the reverse is not true, as is obvious by the above econ-

siderations.

3) Ferml interactions

This is the coupling which we want to desceribe processes
like the neutron beta-decay:
n—sp+e ¥
the neutron decays into a proton, an electron and an antineutrino.
With the help of the table (76), we can construct an inter-

action lagrangean suitable for this purpose:

L=, v)(F, [0~ cr Pluy ) +

+ (P YY) (F ey [oy - c,luy ) +

+ @ 3 [V57)u T, 7] (op- c1pPryy
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+

T Y PUIT %, Pey- ¢t 7% vy ) +

+

(s'b’pmsy»n)('z?ei'ywhn cﬂp'ws]wy_) +
+ @ v @, o+ oy )+

8

+ (T )@, v, [co - c’:')5]1/)e) +

"

‘('17;11 %[Wp’q\)] q/p)( I8 %’ ['Y},arry]((}; + Cul':*"Ys) Vo) +

+ T Pu )@ [op ~ o Py ) 4

+

- = * . 1k g5 .
(i ')5%)(% :ws[cgp tC L7 ]lpe).

' 56" is hermitian and Lorentz invariant., Invariance under space re-
flection, chaége conjugation and time reversal depends on the choice
of the coupling constants C and C'; as will be seen in the next
chapter, The last five terms are the hermitian conjugate of the

firgt five and descriQe the inverse process:

p—n+ @&+ v,

The fields are-taken at the same point x.
Generalizations .to process 1like muon e + ® + 3T can be

made.

4) Pions and the electromagnetic field.

~ In this case, the interaction lagrangean is:

L= te: a¥ ()¢ (x) ;‘ﬂ_- 29 0 (x) ) -
X

%

- %A (X)) Ap(x) P ) P (). (94)
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CHAPTER II

Space Reflections and Parity: Bose Fields

IT, 1. Parity in non-relativistic guantum mechanics

Let —
- 2VZYE ) + VDB (Ryt) = 1 9—‘;%&2’ (98)

be the Schrdédinger equation of a particle which moves in a central
field in which it has a time~independent potential energy V(r),r =
= |x]|.

It 1s well known that the statlonary states of this system
are specified by.three quantum numbers n,ll, m and the corresponding

solutions of the wave equation are
Wogm (Fst) = R, (r) ¥, (6,p)e 180" (96)

where Ty 6y § are the polar coordinates, R (r) is the radial wave
function, Yy (6, ¥) are the spherical harmonics, E s the energy of
the state. Normalization coeffieients are included in the functions.

Let us now introduce new, space=-reflected coordinates:
X o= -_l?’ tt = ¢ (97)

and look for the transformed wave functions
YRy t1) T PY(FT, t) (98)
which satisfy the same equation in the new system, as Y (Z,t) does

in the old one:
I-b' 2
- 'zlﬁ;V'ZlP-(i“,tt) + Vi(r) ¥1(F) tr) = 1 9“"8’; el
(99)
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Because:
Vvi(re) = ¥(r)
ViZ =92, g1 st

we see that the coefficients of Y?¢ in (99) are the same as those
of Yy in (95).

We can therefore write:
Pi(EryE) T PW(R1,t) = € ¥ (X,t) ,

where € 1s an indeterminate phase factor:

€e =1 .

Thus: - >
PY(Zyt) = € W(=Z,t).

But by a well known property of Yzm(e,CP) :

n

Wy Est) = (105 (Zt).

PY 1n(Xst) = (nl)iewn (X3t) . - (100)

im
We see that,; under the parity operation P (in the space of
wave functions), the wave function of a gtate with angular momentum

quantum number [ acgquires a phage (-1 ! relative to that of the s-

state wave function. This phase is called the parity of the state.
We als¢c see that the complex number of modulus one,y €4 is

indeterminate, as a phase factor of the_(complex)_wave function is.

The relative parity of a state with respect to the S-state is well
o f . ) .
determined and independent of € , namely §=12£° {

One mayj; however, arbitrarily wish to attribute an even

parity to the S=-gtate and thus choose € = 1. As V(r) is even, it is

conventional to say that the non-relativistie spinless particle de-



50

seribed by (95) has an gven intrinsic parity, it is a scalar parti-
cle. |
The choice € = -1 gives an odd parity to the S-state and the

particle is accordingly called a pseudoscalar particle, i.e.,y it has

an odd intrinsic parity.
I1, 2. Parity in guantum field theory.

The proper and orthochronous Lorentz transformations of
fields and state vectors are determined by the requirement that the
coupled field equations, or the complete lagrangean, be invariant un
der such transformations. It follows from (3), (4) and (5), (6),(7)
that one has in the case:

W, O'i(x')q“) = 4y (P ,0;(x) 1), (101)

where A 1s a matrix which acts on the spinor or tensor index i of
the operator 0(x).

Thusy for a relativistically invariant operator
20.(x)

(oxto 37

formed with the operator and its derivatives, such as the lagrangean,

one has:

(q)'-sFﬂ(O'i(x’): ami(x} ‘P) (IP r(o, (x),aoi( ){J) (102)

From (101) and: either q,u =P, 0¢x) =UT0(x)U in the
HeisenberguLorentz transformation, or P! = U\P and 0'(x) = O(x) in
the Schrddinger-Lorentz transformation, we obtain:

vo(x) -t =a"1o (1) . (103)

We shall assume the same relations for the space reflections
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and call P the parity operation i~ Hilbert space and 8 the matrix
which acts on the spincr ¢r tensor indices, B the special case of

the 4-vector indices:

po(x)PL = s s7%0 (r71x), (104)
1000 '
- {0=100
0 0 Q=1"/

*
and s 1s a phase factor; s s = 1; also aliowed in (103).

I1;,3. Parity transformed of spinless fields

Consider a hermitian spinless field @o(x)o Then S must be
the identity. (104) and (105) give:

P @ (x) Pt = s @ (<, x%) . (106)
If the free-=fleld lagrangean is invariant under P:

£ =1, ' (107)
We call the fileld gealar for s = +1, pgeudoscalar for s =

= =]y if the wacuum state Ipa is even under P.
Let ©{x) be a non-hermitian spinless field. Then:

Po(x) P~L = s 0(F,x°) ,

Pelix) Pt = 5" o (-x,x°) . (108)

H

Invariance of the free-=field lagrangean imposes that s is a

complex number of modulus 1le
st s =1, ‘ (109)
P is a unitary operators it conserves the commutation rules

(71) for ¢(x).
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(46) and (108) will give you the transformed of the emis~
sion and absorption operators:
Pa (&)™t =sa(h,
Pb(k)p~t = sp (S,

P at(k)p 1o a+(‘K);
P b+(§)p_l = 5 b (k)
The amplitude of a state with n particies is:
- ' — — + + —- ) .
¥, -an (Bpyeeiky) & (B eea® B, %y ... a2k, (111)

.where Y is the vacuum state.

The convention that the latter is even:
PP, = @,
leads to, because of (110):
PY = (s )an (B k) a¥(E)enea’ (&) )‘i’d3k N

s0 that,y defining PFn by :
?“Pn =f(P Fn(i;l"”ign) ) at (fl)... a+(lE;)QJO d3k1... d‘3kn ’
we have:

P F (k ’cook ) = (S )n "'- -klgool’-k ) -

The wave function of the n particles in coordinate space

@ (Ei,...i;), Fourier-transformed of Fn:
5 oo, 1 i(kl'xl+"'+ﬁh‘ x,)
Fn(k’oookn) = m f a @ (xlgoaox )d xltu-d %

will be transformed in the following way: ‘
; - —x * . n
P@ (x reoey x ) = (S )n é (‘- ,.-o,? ), (112)

The same result holds when the particles intéract with an

even static potential. If there are n, particles with angulgr mqmeg
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vtum‘klgo.,nj, with angular momentvm 15, then: .
L +ooot ik

$ (mxl,.°° - %) = 1)1 3% (xl,m'i;l)°
Therefore: ‘

: 2 ooo""n
Ph (R eens B = (e ™

J j @ (? joco} xn)

As in II.1; we make the convention to call the particles

scalar if s is arbitrarily ehosen + 1, pseudoscalar if s = ~1l. The
coo Rl ‘Q

. parity of a n-scalar-meson-state is {~1) 1h” 3%, that of a n-

pseudoscalar meson state is
Ny dytoootn,l

"(wl)ll jjlﬂ n1+n2+ooo+nj=nn

IT,4. Parity of photons
In classical electrodynamics, one aSSﬁmes'thaﬁ the.charge
| density 1s invariant under space reflections
Pi(JC) = P(“’isxo) °
It fellows that éhargemeonservation invariances

Ojn{eué-n-‘?:‘.
A

imposes:

it Ax) = <3 (=%, x%) .

Invariance of Maxwell’s equations will then lead te a polar

electric field E and &n axial magnetic field Hi

E' (x) = = B (<%, Q)g

He (x) = (“ng ’
hence:
(x) = 'F'K (95591&033

(x) = &g (<%, x%)

g’

o=

fi
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We want these relations to hold in quantum theory, consis-

tently with S = Ry s = 1, in (104), (105):

P A (x) p'l -A (-E}xo) )

x (113)
Pax)pt =4, (-3, x°) .
The Fouriler development (50) and the supplementary condi-
tion (79) give: .
kﬂz;\, e Ask) a (.)\,E)\P =.0

and this, together with the choice:

Y /lx] = (1, 0, 0, 1),
e*(0,k) = (1, 0, 0, 0),
ef(1,%K) = (0, 1, 0, 0), (113)*
et(2,k) = (0, 0, 1, 0),

(0, 05 0, 1),

n

er(B,E)

imposes that:
a(0, E)TIJ =a (3, E)\IJ. | (114)

The consequence of (114) is that the time-like and the

longitudinal components of a() ,]Tc) do not contribute to observables.

Thus, the energy-momentum is:
Py =/d3k kW [a¥ (1,k) a (1,k) +
+a' (2,k) a (2,0)] ¥
and P Y 1s positive definite,

We therefore need to consider only the development:

- 3 e Z_/ 2 82 k) {ala B)e™= 4+ at(a Hre X}
(2m)’/2 ﬂgko 1,2 . |

(115)
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and the rules:

(a1, )5 at (1, B)] = [ a (2, By aT (2, %)) = 8(x - E0),

[.a (2, i;)s a2, TE}] =[a- (1, f) sa(ly dij} = [a(lgf«:b)g a(Z;ﬁ)] = (116)

= (a(1, ®); a7 (2, )] = 0 -

The number of linearly polarized photens is
_J[é+(A, X) a(hg K) a%k with polarization A = 1 or 2.

The spin angular momentum of the field (115) is, from (19),
(21) and &£ . in (77):

j . K
j{ ( x ax°)

Qar: .
s = ifd3 k [ 27167 al2k) -a'(2X) a(1)] . (117)

The one-linearly-poliarized photon state 1s not an eigen=

state of 5° . You wiil showy; with the help of (117) and (116}, that

a3 ?
(118)
s | af(z, ki) =1 a1, B2y, .
If you now form the linear combinations:
. . 1 . L owes
a(Rg k) ~ "'ﬁ"’ { a(l,gk) + iz (29 k)] )
a(L;K) = —q—l_é-[a(lﬁ k) - 1 a2, K], (119)
you will find that:
lat®OP ] = 2@ DY, ,
$atay,] = -aTL Y, . (120)
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(120) suggests to call at (R,ﬁ)\PO a one~right-circularly-
polarized-photon=-state, a*(L, k)qio, a one-left-eircularly-polarized-
photon state. .
faf (Ryk) a (R,K) 4%k and [a+ (1L, TIE.) a (L, %) a> k are the number
operators of right-and-left-circular photons, since (116) and (119)
give the necessary commutation rules for the emigssion and absorption
operators of right and left photons:

(115) can also be written:

- 1 . - o - o= . - -
A(x) = —E;;;r' 32§H [[ & (R,k) a(B,k) + 8(L,k) a(L,k)}e x
(121)
+ [ 3B atrB) TD) et}
with
FRE) = - (F(1,%) - 1 a(2, B) ),
{é‘ .
(122)
AL, k) = = (T (1, k) + 18 (2,8) )R

F

Now, back to the parity transformation (113). First, ob-
serve that the three vectors &(1, k), e(2, E) and ¥ are related by

=

T%‘{:ng (1, K) A s (2, k) (123)
Prom this: . ‘
% =8 (1, K)Ae (2,%) = -8 (1, B)AT (2, B).

We choose:
e (1, -K) =¢ (1, K), € (2, K) = =8 (2, K), (124)

which means that a right-handed system goes over into a left-handed
systen, as it mast be:

& (Ry -K) =& (L, &) . (125)
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Now then, (113), (115) and (124) will give us:
Pa(l E) pmi‘ = =a‘(1, m-ﬁ)s
Paf(2, %) pt

H

+a, (23 “:iz} 3

pat(1, ) p~t = -at (1, &), (126)
p atiz, ®) (25 =K).
From (119}, then:
P a(R, ) p7t = wa (L, <kJ,
P a(Ly ) p™% = <a (Ry =k),
(127)

— _1 —
P at(r, ©) p™ = -at(1, <%},
Pat(i, &)y p7t = =at(r, %).

‘ Thus a one=linearly=po1arizedmphoﬁon state is an eigenstate
of P tut not of 835 a one=circularly-polarized-photon state is an
eigenstate of s? put hot of Po

P transforms a right-photon moving in the ¥-direction in=
to left-photon moving into x=-direction., See the table below (al-

ways under the assumption P\yﬂ = qjo)ﬂ

Photen Image

S{1,K) _, S(1,-%)
1 LK < -
=K
/_9.(2""_]‘;)
bom ¥

[ » ‘ £
"y >k :i vy
[' A bl v i /?
0 >k < _
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II, 5. Parity and spin of two-photon states. Selection rules for
the decay of a neutral boson into two photons.

The following are the possible state vectors of two pho-
tons with momenta X and -k :

qJ(+R, -R)

at(r, B) a™(r, DY ,

P+Ly L) = a¥(n, ) a'(L, Sy,
P(+ry -L) = a¥(R, B) a¥(1, BV, (129)

Y(+L,y =R) = at(r, ¥) a¥(z, "'T“)‘Po’

of which the following oness W(+R, -R) +\{{(+L, -L), Y(+R, -R) =
-Y(+L, -L), Y (+Ry =L}, Y(+L, -R), are the elgenstates of both P
and 83, as you will easily show. The table (129) gives the corre-
sponding eigenvalues:

Eigenvalues and Eigenstates;of P and 83

V(+Rs -L)| Y (+Ly =R)| Y(+Ry =R) +P(+L,y «L)| P(+R, ~R)=Y(+L,~L)

P even even even odd

S el =2 0 C

(129)
If we make use of (119) we shall be able to write:

U (+R,-R) + V(+L,-0) = (a¥ (1,K) a™(1,-%) -a*(2,%) a*(2,-K)Y
' (130)
which shows that in this state the two photons have parallel polari=-
zation planes, with egqual probability for the polarization being
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A=1 and A =2 . Also:

Y(+Rs=R) = W(+Ls=L) = =1 ( aT(1K) a¥ (2,-K) +at (2,8) a¥ (1,E) Y
(131)

in this state,; the two photons have perpendicular polarization

planes. Finallys

"

Pearyn) = 3 {at(1®) a¥(1, ) st (2,5 otz +
+ 1 al (1,k) af (24-K) = 1 af (2,®) a*(l,;g)}%

(132)

VeL-r) = 3 {a¥(1, B) at(1,08) + a¥(2,8) at (2p) -

= i a*(l;lZ) at (23?&') + 3 a'i'(,Z;l?) a*(lgm_k’)} 'LPO,

the two photons, in each of these states have equal chances that |
their polarization planes be parallel or perpendicular,.

From (129) and the interpretation given in (130), (131)
and (132) we are now capable of giving selection rules for the decay
of a neutral boson of spin 0 or 1 inco two phoicasy which are indi-
cated in the table (133), where || means that the polarization planes
are parallel, _j_ means that they are perpendicular to each other.
The interacticn responsiblie for the décay must te invariant under
proper Lorentz transformations and under space reflections, conserv-

ing angular momentum J and parity P:

N
P 0 1

even | H forbidden | (1337

odd 1 forbidden
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The result is important:

1) a spinl neﬁtral’meson (vector or péeudpvector) cannot decay in-
to two photons:

2) positronium (bound state of an elecfron and a positron) in the
triplet S-state, 389 cannot decay into two photons: |

3) a scalar neutral meson can decay only into two || photons:

4) a pseudoscal&r.neutral meson’deeays into two J_ photonss

5) positronium in the singlet S state 8, 1s odd, as will be shown
later, a;d thus decays inte two _|_ photons.

II, 6. Determination of the parity of bosons:

It was emphasized; from the beginning of this chapter, that
the definition of the intrinsic parity of a particle depends on the

- arbitrary choige of the value + 1 or = 1 for a number s which is in-

determinate to the extent that it must éatisfy the relation s = 1
for neutral bosons and s s = 1 for charged bosons, and on the arbi-

trary choice W, =1 Py = w P .

How are we to make this choice for the particles which
exist in Nature? |
A well~defined prceedure for bogons is the following: first

step, choose the electric field as a polar vector, which fixes s, as

was done in (113); znd 2 . define the vacuum state as even:
Pl‘po = wo" - (134)

This determines the parity of any state which contains only photons.
Next, to determine the parity of pions, look for the decay of neutral
pions into photons. As they do decay into two photons, the T, cannc
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have spin 1. Disregarding the pc 'sibility of higher spins, as sup-

ported by other considerations, w_ must be spiniess. Theny in prin-

o
eiple, the second step is te determine whetner the bLwo photons have
parallel or perpendicular polarization planes. A pseudoscalar T,
leads to the latter. The third steps to determine the parity of the
charged pions-1is to be guided by the charge-independence of the in-~
teraction of pions with nucleons; as described in I, 83 item 2), and
to state; as a new, very reasonable,; agsumption, that the charged and
neutral pion fields; components of a vector ir. the isobaric spin
spacey have the same parity transformation properites. This last ag
sumption is equivalent tc stating that .iﬁp ¥° Y%, transforms in the
same way as t‘,lTp')fE’l,lJp9 Y, oy® Wys loees as a pseudoscalar, as follows
from the assumed parlty=invariance of the interaction lagrangean in
(82).
| The remaining boscns,; so Tar known experimentally, are the
K-mesons, which decay into pions, but the determination of their par
ity is more involved because the corresponding coupling does not copn
serve parlty.
Summing up; you will see that (104) combined with:

Py, = w ¥ (135)
where w: W, = iy gives:

PZO(x)lpo

I

wZ0(x) Y, s (136)

where w= g Wy, -
Our assumption (134) fixes w, = 1, The procedure de-
scribed above fixes s = 1 for photongy s = =1, for pions, giving for

any state vector ql constructed by application of Bose field opera=
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tors O(x) to the vacuum state:

PPy = . (137)

It may also be appropriate to emphasize that the third
step described above, namely, the identification of the parity of
charged pions with that of neutral pions is a new arbitrary assump-
tion, independent of that made for photons. This is because charged

1“} as described in 1,4. The

fields have an arbitrary phase factor e
fact that all observables must be invariant with respect to this

phase transformation leads to the ccnelusion that the phases (or

parities) of state vectors belonging to different charges cannot be
compared.

In facty let {) be such an observable. Let Y be an eigen~

state of the charge Q with eigenvalue ¢:

QY =4qV - (138)
and \J' an eigenstate of Q with elgenvalue q':
Qi =q P . (139)
Since:
Q = =10 o AQx | (140)
we haves
(P, Q¥ S(Y, e8¢ A0y iy - (141)
) = (19 g, 06100y = Dy, 0 )
therefore
(P, Q ¥ey=o0 - (142)

unless q = g'.
Now, glven q? and Y1, form the linear combination.@ =¢H5¥'
then:
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§a =p2Q=mzllJ+ wté s = p@ (IL’ +1IJ'), (143)

where W and < ' are phase factors. If q}describes neutral boson

statesy the assumption made in step one fixed wW. To determine w?,

then:

as a consequence of thisy; I could measure the expectation values of
an observable {) in the §* - state, in the U ~state and in the -
state, and the transition probability between qJ and q} L

(3,0 8 = (Y0P + (Pr,QYn) + (W @nZP,Q i)

+ (W (P, dn. (144)

This is, however, impossible if g # q', because of (142). Therefore,
the choice of w ¢ for charged systems is independent of that of wior
neutral systems.

We shall see in the next chapter that a similar~$election
rule operates between states with integral total angular momenta and
states with half-integral total angular momenta, so that the parity

of a fermion cantiot be deduced from that of bosons.



CHAPTER III

SPACE REFLECTION AND PARITY: FERMI FIELDS

III, 1. Parity transformed of gpinor fields.

The determination of the matrix S of formula (104) when
O(X) is a Dirac spinor fleld ¥ (x) is obtained by requiring that the
free~field equation (lO), or the free-field lagrangean xa in (77),
be invariant under space reflection. One finds S = 7°. Cally the
phase factor s in (104):
PY(x) P =ny°y(F, x°) (145)

- |
where » n = 1. You will see that P preserves the anticommutation

rules for Y(x)e

One also has:

P ytx) P71 = 0" yt(F, x°)°
Yri(x) 1 T)*‘/’ Xy X (146)
PP(x) P = 7 (-, x°)7°.
The Fourier mtegral (47), and (145), lead to:
\/27 P; {p a(rs3) P~ la(r e ™1F% + Po¥(r,3)P lv(r,B)elPX} =
p
(147)

= V/V—_—R& Z’ {a(r' =037 %u(r1,~5)siPx o4 bf(r' By v(r‘,-p)eipx}

From (48), you will show that:

(¥ P, = m) Yu(rt,~8) = 0 (* P+ m) v(rt,=p) = 0
= | | (148)

s0 that we can take

wr,P) = €, 7%(r1,-B)

(149)
€,9%(r1,-p) . ? .

vir )3)



We fix the factors € ; and 62 in the special solutionsg
u and v for a fermion moving along p,s with the gpin parallel or

antiparallel to Py which are, excep_t for a normalization coef-

ficient:
b, -
E>O r = -ol:i—lz = 1 T = =]
u{r,p) | 1 -0
uy(rsB) pz/w%m) 0
ﬁ4(rs§1  0 -p, /(E+m)
BE<O r = 1. T = =l
_Il(rg ) p{(lEl-ﬁ m) - 0
V2(r3 ) | 0 “PE/(’EI"' m)
vz(ry B) 1 0

Then, with o7 = (

I 0Oy .
0. -1)

€. =1, €

1 z

= =] .

Thusy (147)s (149) and (151) will give:

Pa(ry, D) p-l
ERNEN I
Pa¥(r, §) p~t
P b (r, B) p~t

n

L]

na (rty =B)
-n bT(rr, B)
# + -
na (I"___g -p)
-1 blry -B) .

65

(150)

(151)

(152)
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It 1s clear why we used rt! in the second-hand side. When
you reflect Py the helicity r changes sign, since & does not., So
when we change ¥ into :ﬁ iﬁ'the'columhs in (ls@),xwé ﬁéve to in-

terchange » = 1 and r = -1.

11T, 2. Parity of fermion gtates

How are we to define the parity of a fermion?
If we adopt the convention (134), (137), namely that the
repeated application of P to any state vector gives back this state

vector:
PPy = Y (137)
then for a one-particle state qpl :
=¥ Y, -
I obtain 7
P2y = (" PY, | (153)
since

(137) and (153) give then:
2

nZ =1
and we are free to choose n=+ 1 or n=~ 1. For any of these two
choices we see that a one-particle and a one-antiparticle states
have oppogite relative parity.

Yang and'Tiomno have proposed some years agé, that one
might also make the choice n=+1i orn = -4, Their argﬁment'is es-
sentlally the following: Apply again the parity operation to (145),
to obtain:
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PPy PP =l y(x) (154) -

This corresppnds to returning to the original point x in space=time
and”thé spinof Yy due;to‘its double~valuedness, may change its sign;
hance:
né=1%1, (155)

' of course, ?7 is an arbitrary phase factor, in (145); and
the choice of its value is "to a certain extent arbitrary. If we
adopt the convention (137), or in general, that the phase factor of
the phase in:

| p-Z\pi = wq;i (137)
is igdegegdent of the state vector \Pi, then:
o 7?2 = 1, (156)

| Suppose thét_yqu.cﬁooselto say, with Yang and Tiomno,
that thére may exist two fémilies of Diraé\spinor fields in Nature,
bne, the "real® famiiy;_for &hich n=+1 {(orn = 1), the other; the
“imaginary“ famil#, fdf wﬁich.q'= +i, -(orq = =1). Then, the conven~
tion (137)¢ will not hold any more, the phase CF in:

PZ qzj = W, Y, (157)

will depend on the state vector IPJ Thusy if you assume that for

the vacnum W, = 1, then

paxp[nr, n] = (-1) itpl[nr_, n,) (158)
,whefe n? is the number of particles of the “real"ffamily3 nys the
number of particles of the "imaginary"-family present in the state\.
You will note, from (152), that the intrinsic parity of a
particle is opposite to that of an antiparticle of the "real®" -
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family, while the intrinsic parity of a particle is the same as that
of an antiparticle of the "imaginary" -family. The physically sig-
nificant quantity is, however, the relative parity of a particle~
antipartiélels-state and this is o0dd, as is clear from (152).

III, 3. Superselection rule_of_Wick-WightmaniWigger
After the paper of Yang and'Tiomno (See bibliography), the
question of the intrinsic and relative parity of bosons and fermions
was greatly clarified by an article of Wick, Wightman and Wigner.
They essentially showed:
1) the parity of a neutral boson system of particles which can-de-
cay into pure photon states is well-defined if one makes a conven-
tion on the parity of a photon state; 2) the parity of charged bo-

son states cannot be compared with that of neutral boson states, as

shown in the preceding chapter, and thus needs a new, independent

convention; 3) the parity of half-integral total angular momentum
states cannot be deduced from that of intepral total angular momen=

tum states and thus, also needs another, independent, assumption.
The last statement consfitutes what 1s called the Wieck - Wightman -
Wigner superselection rule. In their paper, these authors gave a
proof of it by using the operation of time reversal. This has the
inconvenience that you may have, in prineiple, interactions which
are not invariant under time reversal. The proof we shall give now
is simple and general for all theories invariant under the proper,
orthochronous Lorentz group. In such theories, all observables ()

must be relativistically covariant, i.e., tensors:
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p o «os
where U is given by (26). In particular, for the element R of the

N 1.y = g1 '
L4 Dgpr.. ¥ x?—U ﬂa.@(") y  (159)

group U, corresponding to the rotation by the angle 2r around the z

-axis, we have:

— o=l
OGP ,.. =R Oapm R (160)
where
+1J
R=e BCP, JB—Mla, ¢=2r
Let J be an eigenstate of J5 with eigenvalue m:
JBlIJ = m Y (161)
and \y' another one with eigenvalue mf:
J}“l‘“ ..-:mslp’l

We then have, for the transition amplitude of {) between

these two states:

(QJ,CI}P')

W, R7IORYN = ®RY,Q rRY) =

(162)
= ollmi- m)ZW(\P,()\p,)O

Hence:

SUALV

Clearly,; if m 1s an integer and m! a half-odd integer,

(W’nl?') = 0&
Let us call W, the 's with m integral, [y the Y 's
with m half-integral and make the combination:

Y=y, +Wy .
PEY

0 unless m - m' = integral number. (163

Then
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according to (157).
Now, by (164) and (163):

PP, = (9, Q) + (PP = (3,0 Y. (165)

*
The term in W, Wy which would allow us to deduce LQB from an ag~
signment given to W, 1s mlssing because of (163) and, thus, its
determination is arbitrarily independent of W, Both states quf
and IP'are indistinguishable for the computation of expectation

values of observables,y or in other words P2 commites with fl.

III, 4. Further digression on the “real" - and "imaginary" - fer-
mions. |

There is a subtle point at the end of the above proof.

We did not mgke any assumption gbout whether PZ commates with all
observables {} . This was proved by (165):

P20 P2 = (166)
P being unitary., It is also a consequence of (142), (143) and (144)
Therefore, as {) is hermitian and P is unltary we haves PflP'l =
=+,

This makes it impossible for us to decide physically'be-
tween the assumﬁtion (137)t, for which 172 = 1, and the assumption
(157), for which 7)2 1s arbitrary and can be taken, in particular,
equal to + 1 for some spinors and -1 for others, as indicated in
(158).

As a result of (166) you cannot have a transition between

a state with an even number of "imaginary"-fermions and a state yith
an odd number of guch particles. If both states have the same total

angular momentum and charge, as for example:
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1 "real¥=-neutron + 1 "imaginary"-neutron —»
— 2 "real-neutrons (167)

then (166) forbids the transition:
(Uy + TpsQO(P3 + Pp)) = By + Yy, PO+ P )
P, + P Q-9 + P ))

hence: _
(Y Q) = 0 (168)
where [, and Y, are the initial and final states in (167).

The unsatisfactory circumstance in (168) is that we would
like to have a quantity, like angular momentum and charge, that
would not be conserved in (168). The nucleon number cannot be in-
voked, since real-fermions and imaginary-fermions, if both have par
ticles and antiparticles, have a nucleon number which can be chosen
to be conserved in (167).

A bose field, like the pion field, which interacts with
both real and imaginary neutrons, and which coupling is conserved
under parity, cannot make the transition (167). But another field
like a vector field, whose éoupling is not invarlant under the
parity operation - a weak coupling - can carry the transition (167).

We shall see, in chapter V, that for neutral Majorama
fermionss which belong to the imaginary family, one may\have a

physical justification for (168).

III, 5. Parity-~transformed of spiner bilinear forms.

Parity of neutron and proton.
(145) and (146) justify now the names S, V, T,y A, P,
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given to the operators in the table (76). You will easily find

Bilinear form - Parity transformed
- x

S ¥ 1(x) Yo(x) URUR Lpl(_f’ x°) IPZ(—'f,xc)

v | B@ 7Y, 01705 By (Fx%) 7° (3 ,x°)
E}_(x)’_f $o(x) -0 ;’72 @'1( -'i,xo)"")" Y (-Sc',xo)
iy (x)[ 1 ')'k] ) [ 71,47, (2° [ "rk]q’ (<X,x )

| 2% ’ 4’2 1/22%107% ’ 2 J
lpl(x) v° P wztx) D, Fy(Ex®) YO Y8y (F,x0)

A

7 — — 5 *

‘Pl(x)')")’ UJZ(JC) T) n Tp‘l(_x’x )»-7?5 L/, (_x,x
P | 13, ()% u,(x) D, 1 F(F,x0) 8 (% x°)

| (169)

The geometric character shows up for y&a = yiﬁ when the
phase factors disappear.

We now see that if the congtants Ct in (93) are differént
from zero, the Fermi coupling is not space~-reflection invariant,

Consider now the coupling L+ in (82). Our choice of the
parity of charged bosons, made in (II,6), imposes now, by the re=
quirement that (82) be invariant under the parity operation, that
the phases, or parities, of the neutron and proton be equal. The

alternative choice would be possible as well.
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CHAPTER IV

PARTICLE - ANTIPARTICLE CONJUGATION

IV, 1. Definition of partiele-~antiparticle conjugation.

This operation is defined as the transformation of par-
ticle states into antiparticle states.

It is frequently called charge conjugation for obvious
reasons, but it also applies to neutral partlcles, for which par-
ticles are never identical to antlparticle states.

We shall abbreviate it into € -conjugation , where the
letter ¢ designates the operator in Hilbert space.

Consider (45). Then by definition:

Catz,mY, = € by, (170)
Cov'(r,7) \l/o €at (2,B) \Po

wvhere € 1is an arbitrary phase factor.

If we assume, as reasonable, that:

€ Vo = Yo - om
then ‘

Cat (,$)C7L = €* vtz (172)
and |

C%at (r,3) C 72 = al(r,B) (173)

and analogously for bt. C conserves the commutation rules, as U and
P doy and will be taken as unitary.
From (45), we see that if there exists a matrix C! which
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acts on the spinor or tensor indices of 0(x), such that

-y + -
ua(r,p) ctapvp (r,p) (174)

vo(rsB) = crgiut (r)P)
then:

COx) C ™= € of (). (175)

bl
The reader wlll find easily that for a gpinless non-hermi-
tian field @(x), one has:

Cox) € =€ oFx) (176)
Cetx e = €T px)

and that the free-field lagrangean and energy-momentum tensor are in

variant under C . The current, however, changes sign, as expected:

+
o =i=<‘P+§x(i‘3:f,,“”: =-C3°Ct. (177)

The fleld orbital angular momentum does not change sign.
For a spinless hermitian field, one has:
l-l -
CPC ™ = €€ (x) (178)

and here 602 = 1. €o is called the C - conjugation parity.

IV, 2. Eigenstates of (.

We shall call charge of a state the number of its particles
minus the number of i1ts antiparticles. This 1s also the meaning of
the operator Q in (55). It can be electric chargey the nucleon num-
ber, the lepton number, etc.

Now we prove that the only possible eigenstates of ﬂ are

those with total charge zero. This is trivial. If q is the eigen-
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value of Q in the state W ;

QY =q (179)
and if q? is an elgenstate of £ with eigenvalue c,
Cy-= ¢V, (180)
then
CeP=CeC tC¥ =~qCP=-qcVy
303 A
CaV¥=qeV=-qeV¥ ,
hence: '
g = 0. (181)

Now (170), (171) and (181) show that ¢ = % 1.
The two elgen states, 1U+ and QI_ s corresponding to ¢ =+ 1 and
¢ = -1 in (180), are orthogonal because  is unitary, and thus ary
state vector @ can be written | |
¢ =« LI.}+ + qu.. (182)

with the normalization: o o + P*P =1 .
Examples constructed with (170):

Y, = —é—- Ca™(xB) v (re 30 + vT(r,B) at(r e, Py

1

Y. = == (@ (2,3 (rry51) - b¥ (e, Pl (2 3N Y
iz -
(183)
It is interesting to note that the relativistic invariance
of the theory, which gave rise to (166), by means of the superselec

tion rules, also leads to

i
o

cenge-¢ (184)

and-hence_to:

"
'+
o
L

cact
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Iv,3. Q-don;’ugation of splinor fields.

The consideration of (47) and (48) and of (170),(174),
(178), leads us straightforwardly to:

Cwx) C ™
u(r,p) = ¢ F:(f,'ﬁ) (185‘)
v(r,8) = ¢cu (r,8)

€ Cy T(x)

where T means transposition in spinor space (not in Hilbert space)
and C 1s such that:
c7loX ¢ = - (a¥)T

ol = ¢

(186)

besides being unitary. The antisymmetric nature of C is needed for
the consistency of the last two relations of (185).
From (185), it follows that:

=T -1 % -
C¥F C=€ ¢ty
Cv g™t
IV,4. @-conjugation of the spinor bilinear covariants,

From (185), (186) and (187) we .obtain the C -conjugated of

(187)

H

-E* S“T (.x) c-l.

the bilinear forms in (76). It is important, however, to emphasize
once again that the physical quantities are not those expressions in
(76) but rather theseexpressions taken as normal products.

Thus for jMx) = : w(x)aHyx): we get:
T T
Ci* @ C =yt e Tk o (x) =TT (x):

=- P(x) MYz,



In the same way one obtains the following table:

Norm%%n’i;.linear C - conjugated
s SN CIRTREI €1 €, Bo(x) Yy (x)
v sy () F @z(xx ~€7€ 1 P w (o
3 B T €3] A A RNESTR IETMEIEE A CO) LA 4 KN EOL
A ';;'u'l(x)f?”'ﬁ Y o(x)3 GIGZ: q‘:z(x)'y“frs Lpl(.x)i
P ;1¢1 (x)_;"")'sjsbl(x):v e;’[ € 1% P (x)Y ® Y (x)

Note that the spin term

sign under C.

(188)

B[y, )W :  does not change

Of course the phase factors € are restricted by require-

ments on the coupllng with other fields. Thus, € =-conjugation in-

varia.nce of the pion nucleon coupling L in (82) gives:

6 (p)e(n)e(w )
E(Tr)

1
1 -

H

(189)

n

The same requirement of C - conaugation invariance determines unique

.1y the phase~factor ( ¢ -con;}ugetion parity) of neutral (hermitian)

bose fields which in-t_eract w1th fermi fields. Thus, if:

C:% ) MYt Blx) € e ¥ (x): Bx)

the following table ‘r;esults:
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Neutral bose field B(x) € (B)-
Scalar 7 1
Vector -1 (190)
Tensor -1
Pseudovector 1
Pseudoscalar 1

Clearly, a superselection rule operates here: from the ag-
signment of the phase-factor of a neutral state you cannot deduce
the phase-factor of a charged state, and this follows from (184).

| +
Thus in (189), € (%) = 1 but we are free to choogse € {(7r~), and

once fixed the latter you are free to choose 6(-p) and €(n) satis-
fying the relation (189). In the last case, the superselection
rule referred to states with integral and states with half-integral
angular momenta.,

The reader will now easily show the following consequen-
ces of the assumption 6f (l-conjugate-invariant interactions:
1) the coupling of neutral scalar mesons with fermions cannot be
the sum of a scalar and g vector coupling (these terms mean the
coupling of S with the‘scalar field and of V with the 4-gradient of
this field, respectively);
2) the coupling of neutral pseudovector mesons with fermions can-
not be the sum of a pseudovector and a pseudotensor coupling:

3) a reaction among neutral bosons is forbidden if the number of
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vector couplings and tensor couplings with intermediate fermi fields,
is odd. This is because, by assumption, the interaction, and hence

the S-matrix, responsible for the reaction is invariant under C:
cscl=5. (191)

Then if the reaction ls p initial bosons —-q final bosons:
= (qfo’aq.oaal Saloo-a plp' ) (.q}o, C+Caq.-.a13a1...a+£+cqf )

= (\IJO, C aq ¢-1,.. Cal ¢ ~is Ca{ ¢-i,.. Ca; ¢-1 \Uo)- o)
192

t transforms in the negative one ,. if the couplings .

Now, each a and a
are vector and tensor, according to (190); taking alse (191) into ag‘
count you will see that (192) is equal to: |

A= (o)) + n(E) 5

.Corollaries: a) neutral vector meson — 2 photons, is absolute]_.y.
forbidden (Sakata and Tanikawa); o

b) neutral pseudovector meson - 3 photo‘ns, is abso-
l\itely forb.idden;

c) neutral pseudovector meson - 2 photons is forbid
den by (space-reflection) parity comservation;

d) transitions involving an odd number of external
photon lines are absolutely forbidden;

e) neutral spinless meson —»3 photons 1is absolutely
forbidden.

IV,5. Q -con;]uggtion pgritx of photon states.

,-‘f__I,f ‘e-}.\ectrodynamics 1s invariant under particle~-antiparticle
conjugation, it follows from table (190) that the C -conjugation par
ity of the electromagnetic field is -1:

& AY et = - (x) ; (193)
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. —> _1 —>
~which: leads to €CalA,K)C™" = —a(A ,k)

ca'(ra ¢ 1=t .

With the choiee (171), the { -conjugation parity of a n=
photon state is (-1)™:

| @ a+( A l"i{"l). '.a"‘(?\n,‘l‘;n) “I’o = (_l)na‘i'(al,}?l)...a"'(?\n;l;n),lp o-*
, (195)

IV,6. {\-conjugation parity of positronium. Selection rules.

The state-vector of positronium in a stationary state caﬁ
bhe developed in a perturbation sei-ies. As this is a neutral syste_m,
it may be an eigenstate of the operator € . This will then be true
for each term of the series. To determine the {0 -conjugation parity,
we will, therefore, need to consider only the lowest order term,

which 1s, namely, in the center-of-momentum system (see (111) ):

1‘P= Z'/dsp F(r,r',p) b*(?sﬁ) 3-4'-(1"3"—1;)(1}0 .

EAEY o

We then have (see (170), (171), (172) ):

C U= ZI' fdf’pF(r,r',ia’) at (r,B) pi(rt -0 P, .

Ir.T

= - ZI fd3p F (r'yr,-p) b+(r,§) a*(r',—'ﬁ)lpo

ryr!
by changing P into =P, r with ', and taking into account the anti-
commutativity of a and b.

Thus the definition:

C Y= Z,'f &p (C Flrsr,®) b7 (z,B) a¥(r,- )Y,

I,r
- leads to the transformation of the wave function F :

C F (.’l‘.",I‘_l ’—5) = -F(r',r,-ﬁ) . (196)
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vector couplings and tensor couplings with intermediate fermi fields,
is odd. This is because, by assumption, the interaction, and hence

the S-matrix, responsible for the reaction is invariant under C:
¢csCct=5. (191)

Then if the reaction 1s p 1nitial bosons —-q final bosons:

-
i

= (\]Jo,aq...al Sa'{...a"'pllfo) =2 (¥, C"'Caq...alsa;...a;ﬂ"'@ ‘l’o)

(U, Caqg C71,., Ca, C~1s Ca{ c-i... Ca; c-1 Wo)'
(192)

T transforms in the negative one, if the couplings .

Now, each a and a
are vector and tensor, according to (190); taking also (191) into ag
count you will see that (192) is equal to:

A - (_l)n(V) + n(t)A .

Corollaries: a) neutral vector meson -+ 2 photons, is absolutely
forbidden (Sakata and Tanikawa); |

b) neutral pseudovector meson -— 3 photohs, is abso-
lutely forbidden;

¢) neutral pseudovector meson —» 2 photbns is forbid
den by (space-reflection) parity conservation;

d) transitions involving an odd number of external
photon lines are absolutely forbidden;

e) neutral spinless meson — 3 photons is absolutely
forbidden.

IV,5. Q -conjugation parity of photon states.

- T If ‘é:l\éctrodynamics 1s invariant under particle~antiparticle
conjugation, it follows from table (190) that the C -conjugation par
ity of the electromagnetic field is ~1:

€ A" (x) €7 = -4t (x) : (193)
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‘which leads to Ca(r,K)C 1 = —a(a k)

caf(a e 1=t .

With the choice (171), the { -conjugation parity of a n-
photon state is (-1)™:

¢ at(a 19K, ). at(a ,kn)QJ (~1)%a +(A ,k Yeosat(a ,kn)tp
(195)

Iv,6. {L-coniugation parity of positronium. Selection rules.

The state-vector of positronium in a stationary state can
he developed in a perturbation sefies. As this 1s a neutral system,
it may be an eigenstate of the operator € . This will then be true
for each term of the series. To determine the ( -conjugation parity,
we will, therefore, need to consider only the lowest order term,

which 1s, namely, in the center-of-momentum system (see (111) ):

q;= EL de3p F(r,rt,p) bf(r:p) a (I":"P)IIJ

Tt

We then have (see {170), (171), (172) ):

C [1)'2 ZI /dBPF(I’,I"g.ﬁ) a+ (I‘;}S) b+(r’,-3)Lpo

r,rt

]

fa3p F (rtyry-3) b7(r,3) at(er 5P,

Iyt
by changing P into ~Py r with r', and taking into account the anti-
commtativity of a and b.
| Thus the definition:

C P¥= Z,.f @p (C Flryrts®) b7(2,B) atrr, 90,
I'yr

leads to the transformation of the wave function F :

c F (I"I",-Pb). = -F(I",I‘,"-f;) . (196)
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‘The effect of the ¢ -conjugation is to exchange the rela-
tive momenta and the polarizations of electron and positron, with a

negative sign for the resulting amplitude. As

5 dpl

r—s>rty, p—s=p lead to & —q1,

Let 1 be the orbital angular momentum quantum number of the state.
The exchange 3—-» -3 correspond_s to an exchange of position (space-
reflection of the relative coﬁrdinates). Let s be the total spin

quantum number of positronium. We see that:

F(rts vy ) = = (-0 B(z,e D)

and so: _ -
CF(ry r'y B) = (-1)" " S F(x, r*,B) S (197)

(= 1)“' 5 4s the € -conjugation parity of pésitronium.
The following table results:

Positronium state C - parity C -parity of Selection rule
S n photons o
3 ‘ n 38 cannot decay
s(t=0, s =1) -1 (~1) . |into even number
: ' : ‘ of photons
1
o ‘ S cannot decay
Is(4=0, s=0) 1 (-1)" into odd number
: : B : of photons
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Iv, 7. Fermi intersctlons: condition on the coupling constants by
C -conjugation invariance requirement.
Straightforward application of formulas (185), (186) and
(187) to the lagrangean (93) will show that if:
cL' ¢cr-2' (199)
then one must have
€(pen) efe)e =1
and , moreover:
Cy = Cys Cty==Ct," ,1=8,V, T, 4, P.  (200)
Experiments disprove (200) and, therefore, (199) is not

true.
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CHAPTER V
MAJORANA NEUTRAL FIELDS

PARITY OF MAJORANA NEUTRAL FERMIONS

Vyl. Definition of Majorana neutral fileldgs.

We are now in condition to define a Majorana neutral field.
Denote it by M(x). We shall define it as a field which is identical,
except for a phase factor N to its particle-antiparticle conju-
gated: _
| M(x) = 7@ Mx)C L. (201)
Repetition of C ~conjugation gives:

e €= g% ) = M)
hence: \
p=31. (202)

Thus a Majorana neutral field is such that:
Mx) =t @¢ux)e . (203)

The hermitian bose fields are examples of Majorana neu-
trals, such as the neutral pion and the electromagnetic field; neu-
tral pions and photons are Majorana neutrals, they are identical to
their antiparticles. For the electromagnetic field, the - sign is
taken in (203).

V,2. Dirac and Majorana fermi fields.

" We shall call Dirac fermi field a spinor field which does
not satisfy (201). These are the fermions so far found in the world
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such as electrons, muons, protons, and the chargéd baryons. They

may also describe neutral fermions, such as neutrons, neutrinos and
probably the neutral strange baryons. Their antiparticles are dis-
tinet from the corresponding particles, by some physical property |
such as the magnetic moment, nucleon or lepton number. That their
electrical charge 1s zero leads to state that for them e = 0. But

for the neutral Dirac fermions, as for the charged ones,

Py uix) e, |
as well ag the other covariants of the table (76), does not vanish.
This is not a satisfactory explanation and we do not know a better

one.

Majorana fermj fields, l.e., spinors which satisfy (201),

have not been found in nature; as yet. It may be worthwhile to in-
vestigate some of their propertlesy since we cannot exelude their

existence a priori.

Vy, 3. Bllinear covarlants of Majorana fermions. Commutation rules.

It follows from the definition (201) and from inspection

of table (188) that the V and T bilinear forms, as normal products,
vanish identically for a given M(x): M (x)"M (x): =
= Hx) [y, 9Y] M(x): = o0

Majorana bilinear forms
M (x) M (x):
0
0

M (x)oM ¥O M (x):
1:M (x)‘?s M (x):

Wik 1l1a]|<d]t
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Of course, this statement was based on the anticommutation
properties of this fleld, which we shall now find. First, the spin
of the field, namely, - % M (x)’?o['Ti, ﬁk] M(x), is well defined.

Now, by (185) and (187), and (201), we have:

M (x) = * ¢ F(x) |
- - .7 -1 (205)
M(x) =§fM (x)C

The definition (201}, (202) mugt now be completed by the

requirement that, in a particular representation of the ry -matrices,
M(x) be hermitian in Hilbert'sgéce. This is obtained by choosing,

as well-known:

"° = (8 R 8) = =% =9 (206)
i 0 0 0
and: c=t o= 5 9o | (207)

This is the Majorana representation, in which all o ¥ ,s are imagin-
ary. | o |

We ﬁake the + sign in (205}, to avold unnecessary writing,
and C in the Majorana representdtion is = qp.

The Fourier development of M(x) 1is:

1 - > I > ]
M(x? = EE;;372J/PVEEBl,r” {IC(r,p) u (r,p)e ipx-kc+(r,p)0u (r,p)eip%}

(208)
where u(r,p) and u(r,p) are given in (48) and C, in (186).
| The anticpmmutation rules:
{etrB)y o (r'-,ii')},,,— ppt 8(5 =)
' (209)

{c(r,ﬁ), c (rr, p')}+ = {c*(r,p), c+(r',§')}+ =0
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lead to the following ones for free fields:

(M) Mp()}, = 1 S (x-7) Cag (210)
where S is given in (72); and

{M ), Hy (9} = -1 Sqp (X = ¥) . (211)

- Thus, ngx) and Ma(v) have an anticommutator different
from zero. This shows that in the representation (206), in which
M(x) is hermitian, it is ndt, however, an observable.
The anticommutation rule (210), with a right hand side dif

ferent from zero is welcome indeed. Otherwise, Mg(x) would vanish,

and in the Majorana representation, in which M(x) is hermitian, M(x)

would be zero, because
(Ps ¥ P) = (M )G, ux) §)o

The reason for the assumption bf_the fundamental rules
(209) can be visualized in the following way. Let W(x) be a Dirac
spinor field and form the field:

(+) (-'—')T
Mx) = y (x) +C ¥ “(x) | (212)
where: ()

+ - l d3 - P A

Y (x) = o377 Jzﬁg z;; a(r,p)u (r,p)e PX

(=) _

T _ 1 32 te. a2y am T, sy dpx
CY¥ "(x) = (2#)3/2 ﬁ ; a'(r,p)Cu (r,ple (213)

are the pos%}iveefrequency part of Y¥(x) and the negative-frequency
part of C ¥ (x), according to (47).

From the anticommmtation rules:

(+) (=) (+) (=) () (=)
Y(x)y ¥ (y)] =18 (x-y), { Y (x), ¥ (yJ} = «i 8(x-y)
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all other éombinations anticommuting, you will find, by noting that:
(+)

| (=)
‘ ¢l S (x-y)C = - STPQY“X%
that (212) satisfies (210). Here:
(+) (=) - (+) (=)
(s x); 8 (x))= -1y 3.8t m(A (x); & (x)

(+) -
A (xY+ A (x) .

fl

A(x)

V,4. Possible interactions

- The fact that: M (x)f)'”M (x)¢ vanishes indentically means
that the charge operator Q = fdcr,,,:ﬁ (x)r™ M(x): 20 . A Majora-
na fermion is a totaily neutral -2 article: electric charge, nucleon

number, lepton number, etc, are all zero for it. From the vanishing
of M (x)[’y“,fyg]'M(x): ‘ifjrollows also that such a particle can
have no magnetic moment.

| The table (204) shows that, in principle, a Majorana-Fer-
mi field can interact only with a scalar, a pseudoscalar and a pseudo
vector field. It would be of interest to see whether such interac-
tions are consistent with the'anticommutation rale which follows
from (210) for equal times.

If we now_aésumé'aS'a generai principle that all couplings
must conservé the operator Q - conéervation of electric charge, of
baryon number and lepton number - 1t 1s clear that in any reaction
the same number of Majorana neutral fermions has to be in the ini-
tial and final states. It would thus be possible to have a heavy
Majorana fermion decaylng into a palr of baryons ﬁ{,f? y according

to:
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M=Y + T + M1 __ (214)

and the pair be attributed to a neutral boson. Such a decay could

occur via a weak pseudovector coupling of the type of that which de=~

- scribes beta-decay. If one wishes to attribute such a Fermi weak
coupling to an intermediate coupling with hypothetical heavy bosons,

we see that (214) needs a neutral vector or pseudovector boson.

Thus the postulate of the existence of such a neutral
heavy boson, introduced by the author recently, would allow decays

(214) to be described by a Feynman - Gell - Mann type;of theory.

V5. Parity of Majorana fermions

From (212), we see that M(x), transforms, under P, 1ike

¥(x) + C P (x). By (145) and (146) we obtain:

(=),
P M (x)P"1 =7 v° Yy (=~X,x°) - 7)* v°c WT(-x,xo)

(218)
thus in order that M (x) transform under P like a spinor we must
have: *® .
which gives: - .

PM(x) Pt =N (-£,x%) . (217)

From (216}, v can only be +1 or -1 . Thus a Majorana
Fermi field belongs to the "imaginary"-family of Yang and Tiomno.

The superselection rule forbids the transition:

2 Dirac neutral fermions —1 Dirac neutral fermion + 1 Majorana fer-
mion as seen in (167). We now visualize here why this must happen,

if we assume conservation of lepton or baryon number .
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CHAPTER VI

IIME REVERSAL

VI, 1. Iime revergal l1n clagsical physics

In classical mechanics, time reversal is the operation of
inversion of the direction of motion. It changes the sign of t and
of all odd functions of the velocity or momentum. The motions de=
scribed by even lagrangeans of the velocitiles (even hamiltonlans of
the momenta) will obey the same laws as the inverted motions. This
operationlis, however, not a canonical transformation. It changes
the sign of the Poisson brackets of ébordinates with momenta and for
this reason it may be;called-én_anticanonical trangformation.

In classical electrodynamics, the convention that the

charge density is unchanged under time reversal:

p!(Fit) = p(F,-t) (218)
leads to: _ |
FUEyt) = =3(xy-t)
for the conservatioﬁfof dhgfgeﬁin the feversed motidn.
Tt then follows that: |
CEuxyt) = E(X,-t)
Hi(Ryt) = -H(Fpmt) (219)
Ti(E,t) = -K(Xy~t) '
UREAS) = Ay (X-t)
for the iﬁvariance of Maxwell's equations.

In the claséiqai electron theory, one may require that
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time reversal keeps the energy of a free electron positive. As
dx

this is m ﬁ;g 3 where m is the rest mass and s 1s the proper time,

this means that we should define as time reversal:

o —t
X' = X, % = -x°, st = =g, (220)

The equations of the Lorentz electron theory are:

2
acz . az
[V o] ¥
Y e e[Fv’?(Z) RS @] (221)
o gz
Oa'(x) = eiio :Ef 8(x - 2(s)) ds;
EJA$4(x) =0 ; limaAM(x)=0"

Xo——b-CD
The limiting condition defines F,,, (2) as the retarded

field, ng (Z) 1is an external field.

Time reversal changes the boundary condition into:

1im AY (x) = ©

X°= + ®

(222)

and thus the fleld goes over into the advanced one. In this sense,

the equations of motion are invariant under (220).

VI,2. Time reversal in non-relativistic gpantum mechanics.
Thils was first investigatgd by Wigner, in 1932.

Gonsider a particle which moves with a defined momentum ¥

and positive energy E. It will be described by a plane wave:
wix) = aet (P X -Et) (223)

Our observatlions of the progress of this particle in time are such

that the time intervals between any two of them are positive, At > 0.
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With this convention, the momentum and the energy in (223) and the

eigenvalues of -13 and 1 3‘?-5 9 respectively:

-1V yw(x) = Pylx)
1 £ y9(x) =Ey(x), E>O0, (224)

We now want to have,; under time reversal, a particle mov-
ing with momentum -p and positive energy E. In this new fréme of -
reference, the time intervals between two observatlions are the nega-
tive of those of the original frame.

The Schrddinger type of time reversal in Hilbert space,

transforms the wave functions but not the operators. Call T this
transformation. We want to have

-1 (TYix))

i

- D (T ¥(x))

12 (T ¥(x)
This will be achieved by setting:
* -1(F-X - Et)
TY(x) = A e (226)

and, in addition, having in mind that the time intervals are now neg

E(T ¥(x)) s E>O0 . (225)

ative of those of ¥ (x). Thus

. 14m TY(E+AL) - TW(t)
F Tv(t) = -, 100 Tt (227)
At

if

P¥(t)  _ 1im _p(t+at) -¥(t)
ot Atmo |A t]

and (225) are satisfied by (226). We see that in Hilbert gpace, time

reversal ig here the operation of complex conjuggtion.
In the Helsenberg type of time reversal, only the operators
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are transformed, not the wave fﬁnctions,.with the same convention-
on the time running backwards in the new frame of reference.

The two types of transformation must be equivalent for the
observer of this frame. _ '

How are we to express this equivalence?

We first remark that the condition (3), of the e quality of

the expectation values in the two types of description, is rather"_'

too strong. Wha

n;obabilities:

(0@ = [P0 8012 (28
which, of course, is fulfilled By the equality of the transition
amplitudes: | “'_ | | | o

(P,01(x) &) = (Pryolx) & ). (229).

But I could also have: e  ;" ' ' ' .

(F500(x) &) = (Pryo(x) § 0 (230_)' |

which satisfies (228) as well.

Call K the operation of complex conjugation. This was the -

operation of time reversal as defined by (225) and (226):

| T =K. (231)
This obviously does not conserve the internal product in

Hilbert space:
Ky, XP) = (§7, @) = (P, @" . (232)

We are thus led to adopt (230) for time reversal, which
shows that, in the case (231):

01 (x) = O-*(x), At L0, _(232_)' |
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Thus:
(eA V) = K(-1V)K = (=1 ¥9) =1V
‘ g =xa E k=1 F )V =-1 k. (23

These_must be applled, in the Heisenberg picture, to the unchanged
Yy (223)y with the convention A+4<O0.

Usually, one takes this convention inteo account by stating
that the transformation is complex conjugation in Hilbert space, and
t — (as was analogously employed in the space-reflection and cop

responding parity transformation):

*
TY(x) = Y (x,~-t) _
i V)T = 1V (234)
1y Byp =y 2
N VAR
The hamiltonian H(¥,-i%’) will be invariant if it is an

*
even function of the momentum operator, so that H = H.

VI,3. Time reversal of the Pauli spinor function

The non-relativistic spin %:_- -particle is described, in the
¢c=number theor'y, by the Z-component Pauli spinor.

Let }, (x) be an external magnetic field. The hamiltonian:

- “L --32 -_e_. --w.—-"*" .
H==-2=V 40+ 2 (@ ) (235)
will transform, under (232)!, into:
* — - —>
H = -2V + V() - 2 (¢ W) (236)

because, according to (219), the convention A $< 0 in the transforme

ed frame entails M, — - . Tor H, (235), to be invariant under
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time reversal, one needs, besides complex conjugation, a unitary

operator such that:

- *
vl 5 u==xn
i.e,

-l —b* — ~—h - - —
U0 U=-030x=x0U3;Up=pU.

In the usual representation of the Paull matrices:

. o1 - (o - (1 0
% © (1 o)’ %G = (1 o)’ "z‘(o-l)

=g .
v ¥

we see that:

Thereforey, now T 1is given by:

T = S, K . (237)

VIs4. Square of time reversal on the Schrédinger and the Paull
wave functions.

Of course, both (231) and (237) could have an arbitrary
phase factor € :

€€ =1 .
If:
T = €K
we get:
*
7% = €K €K = €€ =1, (238)
If: '
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then:

2

= eq'yl(e cryK = O'ydy* = -1, | (239)

It will be shown later that T4 = I for all states with

‘an integral total angular momentum and 72 = = I for all states

with a half-integral total angular momentum.

'VI,E.' Iime reversal is an antiunitary operation
‘ ‘A linear and uﬂitary operator O defined on a space of

:functions ¥ 1s one which satisfies the two conditions:

0¥ e ¥) T 0¥ 0%, ()

(043 ©y,) = (Y, o) s | (241)

where «; and G, are complex numbers.

The operationbdf complex conjugation K:
Ky =y
does not fulfill (240) nor (241). It satisfies the following two
relations: '

X ( Ay “2"*’2) = q_;i Ky, + q; K\pz (242)

called antilinearity condition, and:

(232):
| (Kyy 3 Kyn) = (p 5 W)
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called antiunitarity relation.

*
The complex conjugate of an operator n ig{l = KOK.
Every antilinear and antiunitary-operator T (simp;y call

ed antiunitary) is the product of a unitary operator U by K:

T = UK (243)
(this U will not be confused with U (L) in (26) ).

This follows from the factor that X° = I and that T and
K satisfy both (232) and(242). |

Iime reversal is in general given by (243). Example: (237).

From (243) it follows that T° = + I.  Indeed, T° must te

¢Ily where ¢ is a complex number.

Now:
" =UKUK=0U0*=0 (L) T=er
hence:
U=e¢ul
UT;-CZUT’ c=-.[:l . (244)

¢ =+ 1 for integral angular momentum states, while ¢ = -l.fér—

half-integral angular momentum states, as will be proved later.:

The antiunitarity of T shows itself also in the fact _
that 1t does not conserve commutation rules which have imaginary
commutators. Thus, as X! = T x T = Xy p! = p-1 pT = -p, we see

that:
' [xyp] =1
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goes over into:

[xty pt] = -1 . | (245)

Also: |
[J13 Jz] = i J3

goes over into:

where

I ~1_
dty =T Jd3 T7=-0y

VI,6. Iime reversal of Dirac's spinor functiong
We are still in the c-number theory, where V (x) is a
‘Dirac spinor funetion, not quantized. Considerlthe'Dirac equation .

of a particle in a classical eletromagnetic field:

(K (1ﬁ - e i) -m) Y(x) =0 (246)
(WKT@E”E +~fe.:.AK) + n) ¥ o =0 o (247)

where T as an upper index means transposition in spinor space.

We want the time reversed spinor W'(x') to satisfy

Dirac's equations 1n the time. reversed frame:
K - ' -
(v (1%;;@- - eay)-m) V) =0  (28)

(vx"( pxr * e Ay rm) PG - o (249
- ,
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vhere:

-y

¥ = %,x° = x°, (280)

Take (250) and{219) into (248). This will be identical to (247) |
if:

W (x') = €B Y (x) (251)

vhere € 1s an arbitrary phase factor and:

Bl 3 = (A9 T . (252)
B-]'FV. B =-('V)‘T

or:
B YR = (v0vRa0)T | - (253)

From this, you prove, by taking the hermitian conjugate, that B is
unitary:

gt = p-1.

Now, take the transpose of (251), you will show that BT B'1 com=

mutes with ¢vH, hence Schur's lemma:

BT =k B, k being a number (254) -

Now:

k=+1.,

Which of these two values must we take ? By means of (253), you
will see that the following relations hold for the 16 matrices:
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Bl =k B ;
(v° B)Y =x (v¥°B) ;

(vB) = x (¥ B) ;
@°¥B)Y =k (v ¥ B) 3
i ¥m)T = o (viaK B), 1#; 1,k = 1, 2, 3;
¥t = x (08 B)
%) = x (v1a8 ), 1=1,2,3

(v5)T = x (v B) .

Only for k = =1, do we get 6 antisymmetric matrices and 10 symmet~

ric matrices, as it must be.

So: _

Bl = -8 . (255)
A choice of B is:”

B=9°~%¢ (255)

where C is defined by (186).
If one now takes (250) and (219) into (249), one finds:

#'x) = gy (@) B, (256)
M 1s another arbltrary phase factor, which will be fixed in terms
of € of (251) by a condition on the transformation of ¥ (x) Y (x).

VI,7. 2Iime reversal Iin quantum field theory.

In the c¢-number theory, the hermitian conjugate'w* (x)
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of a spinor means this operation in spin space. When W(x) is an
operator, we have used, in (47), W' (z) to designate the hermitian

conjugate of ¥ in both spin and Hilbert space.

Thus formulae (251) and (256) are well expressed in the
c~pumber theory. In quahtum field theory, however, we must take
complex conjugation in Hilbert space. Denote by a supergcript H
the operation of transposition in Hilbert space. If we still keep

the convention (47), that % is the hermitian éonjngaﬁe of '¥in
Hilbert space, I must rewrite the trans‘rformed of ¥ and Vv ag
cperatorsy as follows:

v r = €3 FE 3, =)
| | - (257)

1
-~
<
3
=
~
o
-
)
"
o]
A4
b
L
b

T1%(x) T
Let us give the general definition of time reversal in
quantun field theory. | |

We assume (230) and (243):
(9,0 (X)) =(®r,0(x) B (258)

Vs Y= wxy,
U= 0u= I
we obtain:
(Ty 00 (x) &) = (x¥, 0t o (x) ur P
thus:
-1 %
0t (x) =(U"~ 0 (x) U) - (259)
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Call:

Then:
ot (x) = vLo* (x)v. (260)

i Therefore, if a physicist calculates a transition ampli-
tude of an operator O (x) between ﬁwo'states, the initial § and the
final¥, (9, 0 (x) §)y the physicist of the time reversed frame
of reference will compute the transition amplitude (7§, 0'(x) §)
“with O' (x) given by (260). The transformed of the former ampli-
tude 1s thus: | |

(g, vIo (x)vH. - (262)

This may also be written:
‘ - _ * ‘ * .
e, vioctH v =i, ot x)UY). (263
The last exprBSSion gives rise to a rule: to transform a trangi-
tion amplitude (¥, O (x) §) between an initial and a final state,
gglcuiagg the amplitude of 0" (x) between the transformed of the

original final state as the new lnitial state and the transformed
- of the original initial state as the new final state:

(9,0 (x) P—> (T §, 0" ) T9), (263

~ where 0" is hermitian conjugate of 0 in Hilbert space.

Consider the product of two or more operators 0y (xl)

0, (xZ).
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We have:

[ 0] (%) 0, (x,) ] =vt o; (xq) o; (x,) V. (264)

I can also write:

(¥, v o] (x) 0, (x) V)= (% vI o (x) ofF (x)V §) =

= (%, v"Io} (x,) 0] (x; N V)

(0 3%, 05 (xy) 0] (x;) UED) .
(265)

We thus see that the transformed amplitude of:
' + +
(¥» 0y (xp) 0, (x) B 1s (T}, 0F (x,) 0F Gxp) T %) (266)

Hence the following rule, due to Schwinger and Pauli (Niels Bchr

and the development of Physics, Mac Graw Hill Book Company, 1955,
page 30) : the transition amplitudes of the product of hermitian
operators transform, under time reversal, into the transition am-
plitudes of the inverted product of these operators. This is the
case of all observables. Another way of saying is: if you read
the matrix element of the product of hermitian operators from ‘left

to right, read the time reverted matrix element from right to left.

VI,8. Iime reversal transformation of fhe spinor bilinear forms.

This is now obvious with the result (266). The operator
0 (x) are now the spinors which transform as given in (257). Ot

(x), in (260), is now of the form B 0 *(x) where B acts on the
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spinor indices. O' (x) will be of the form U TH (x) 7L, Thus,

instead of (266), we will now have:

' -1 T (o
(¥, 0 (x) [T 0, (x,) ) — (T b, B, (xz) (B™ ['B) 0,(xq) TD
' ' . (267)
where [ is one of the 16 v - matrices, and B satisfies (253).
The transposition H in Hilbert space to arrive at (266) will entail
the transposition T in spinor space. If we call 52 (xZ) (=t I-"B)T
0y (x;) the transformed of U (x7) [T 0, (x,) we shall obtain the

following table:

_-Bilinear form o Time reverted

5, (x) M 0, (x,) 0, (x,) (Bt vr BT 0 (x;)
in (267)
8 ¥y (x) s (k) ¥, (x,) ¥y (x)
. . . ~ - ‘
v ¥y (=D VEY, (x,) ¥, () YOV (x)) 1

T T G v, 0] wy(x) | o g Fale) YOLYE v 190y, (xp)

A w?l(xl)'\"‘ Vo, (Xé) ¥ (2,0 VO VP By (x)

P 1WAt Y, (xy) EEERARCRLAAMRCS

% .
X e,l 652
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*
In (257)y we take M =€ so as to have no phase factor in the

transformed of bilinear form of one spinbr field.

VI,9. Conditions for invariance of the Fermi beta-decay inter=-

action under time reversal.

These follows immediately from the tranpsformations (268)
and the requirement of invariance of £ given by (93).

Ore obtains: _
e (meme (edew) =1

* o
¢y =Cjy Gy = c'; , 1=8,V, Ty A, P. (269)

Time reversal invariance of the @-decay processes imposes

that the coupling constants in (93) be real.

It may be appropriate to emphasize that in the transfor-
mation 52652, the hermitian conjugation of 0+ {x) does not éhaggg

i _Jinto =i. This i1s because all numbers contained in O (x) can

be incorporated as & factor of ¢ . On the second-hand side of
(263) this factor will be the same because of the double ccmﬁlex
conjugation once in T §, the other in the transposition of T §

to the dual Hilbert spaces. With this remark in mind, table (268)
and conditions (269) follow immediately from (263). |

VIo10. Iime reversal of emission and absorption operators'of fer-

mnions.

We leave it to the reader to verify, with the help of
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(257), (47), (255) and the tables (150), that:

-1 Ea (r, "P)

]

a(r, p) T
it (r, B) T = —€bE (2, D)

-1

(270)
a* (ry ) T =€ &t (v, -B)

T

- = * ok —
1 b{r, p) T=-€ b (r, =-p).-

If we employ the rule (263), we will have hermitian con~

jugation instead of complex conjugation, and no transposition H,
in the second-hand side of (270)# In this case, one has to keep

in mind that initlal and final states are switched in the same op~

: eration._

 VI,11. Iime reversal of Boge fields
It will be left to the réader to find the tramsformations

for spinless and vector fields.

For the electromagnetic field, one imposes that (260)

~lead to transformations like the classical ones (219).

One than obtalns for photons

T =y
La (R ®) T =-a (R, &)
- - *. —
a (Ly k)T =~a (L, k)

- o o (271)
™1 o*(R, B) T = =a® (R, )

Take, B) T

-al (L, <K).

Here;fapply the same remark of the end of last paragraph. |
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Thus time reversal keeps the polarization of photons (as

expected because both spin and momentum change sign):

Photon Time image

—E—
——

(272)

—~—

VI,12. Reciprocal theorem., Principle of detailed balancing.

Consider a reaction which transforms a state with mpar-
ticles with momenta 51, eve En’ at t = ~ @, into a state with k
particles with momenta 3'1, e SWk. Let ryy «»0 T, and r'l;.;rfg

the corresponding polarization variabiés.
The transition amplitude of the reaction is:
A = (at (rty, 3'1) eoe bt (rtys Euk)‘wo,'Sa* (rq) 31)...bf(rn,3;)ﬁg
where § 1s the S-matrix. This can also be written:
Invariance of the transition amplitude under time reversal gives:
A= E (‘T‘o’b(rn’ -—ﬁn) ses Q (rl, -31) S af(r'l:'-ﬁ'l) LN b-,-(r'k’-qﬁk')‘?o)
where € 1s a phase factor.

Thus such an invariance entails the equality of the follow
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ing reaction probabilities:

- - —- 2
(Y[I"ls P’l: 000 I’“ka P‘k]s 5"]'{[1'19 P12 ees rn’pn])l =

n

(T[rl: “Pys oo Tpy -Pn]s S‘.P[I"l: “Plygoee I"ks'P'k])|°
(273)

The principle of detailed balancing is a particular case
of last relation by omitting the negative sign of the momenta. It
is valid only if the 1interaction is invariaﬁt under both parity

transformation and time reversal,y, T P.

VIs13. TIhe sguare of time reversal is -1 for half-integral angular

momentum states.

It follows from (255) and (257) that for a spinor field
W (x):

T (x) 7 = - Y (x) . (274)
Therefore for any state \p with an odd number of fermions:

T = Wy (K eee Wy ()P,

one ¢obtains:

T_E .‘?B = "'\Pl (xl) KR} Wn (xn) T-Z .TO °

The natural assumption:'

T.-E ,\Yo = ,@0
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gives:

Y s -
or:
2 P = -¥ '
| B B o N (275)

For integrai angular momentum states:

.T_a Y.A‘:.'YA.“-.l_ - _ (276)



CHAPTER VII

STRONG REFLECT ION

VII,1. Definition of strong reflection

| It is the change of particles Iinto antiparticles accon-

panled of space reflection and time reversal,

The classical formulas (218), (219) are here replaced by:

P (x) = =P (%)

7' x) = <G ()

E' (x) = E (~x) (278)
B (x) = ® (=0

AFi-(x).= =AF(-x) .

In non—relatiﬁistic guantum mechaniecs, one can easily'
derive the transformation § in the space of wave functions which
corresponds to a strong réfleCtiona (223) is transformed, in the
‘Schrédinger type of strong reflection, into:

*

W@ =Y () | (279)

with the convention that the intervals Zﬁt,zsxi, 1i=1, 2, % in
the measurements ig state S Y are the negative of those in the
meagurementg in state ¥ . One requires that momenta and ener-

gies db not change, which 1s satisfied by this transformation.
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The abbreviated form, analogous to (2%24) is:

sY(x) = v (<x)
s -1F)s= -1¥ (280)
sMeaZ)s=12%

2t *
As the charge now changes its sign, the transformation

§= 6,K | (281)

represents also strong reflection for the invariance of (238).

VII,2. Strong reflection of field operators.

S may be represented by the product € P T« Now CP is
a unitary operator because € and P are unitary. T, we saw, is
the product of a unitary operator U by complex conjugation. Thus

we may also write:
S=WK (282)

where W 1is unitary.
Thus, extending the definitions (258) for S, (282), in

place of T, we obtain:
- *
o' (x) = wWto(xw. (283)

Now the operator W, which is essentially C P, changes
0 (x) into its hermitian conjugate in Hilbert space. Thus, we
.obtainz
o' (x) = Mot (x) M (284)
where H is the transposed in Hilbert space and M is a unitary oper-
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ator.

A transition amplitude (¥, 0 (x) § ) transforms, under

stroﬁg reflection, into:
(2,0 x) D)= (¥, Mt oH (x)Md) = (0 &, 0 (x) M P, (285)

The rule is: if you interchange initial and final states,

the transformed amplitude will be that of O (x) with the new states.

Alsc:

(5 0) (x) 0, (x) §) G § 4 0, (x,) 0q(xM ¥)
(286)
with an obvious rule (compare with that fcllowing (266) ).

The following are the transformation laws under strong

reflection:
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Operator F (x)
in (¥, F (x) §)

Strong reflected F (x) in
(M § , F "(x) M ‘]-.' )

Spinor V¥ (x)

€YY (=x)

Adjoint spinot ¥ (x)

-E* Y (=x)v°

Ferml annihilation operator
a8 (r, 5)

+

€£b (r,

Creation operator

" P
a+(r, E) b (r, P)
b (r, P) G* a’ (ry D)
bz, B) €a (r, D)

:@l (xl) ‘!’2 (xa) :

3{131 (-xl) \PZ (-xz) :

:1_?1 (xl) 2 (xz) :

- :ﬁl ("xl) . WP'\PZ ("xa) :

‘\pl (xl) (Y, ] Yo (x5):

:Wy0-xy) 5 [V, Y] v (x,)

5
."Pl (xl) vt o Yo (xZ)

= 1 (x) Y Y® , (x)

129 (x) ¥® v, (x,) s

iz "'Pl (“x )(Y '\PZ -, 2)

You will note that for the bilinear spinor forms the

transformation laws given above refer to the normal products. They

do not hold for the formg ag ordinary products.

Thus:

— T _
Yo (1) Y% ¥y (x) = =¥ T (xp) 45 BT (-x).

(288)
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You must also note that from the table one should not
conclude that a'a —bb*. The true transformation is, without chang
ing initial into final state, a+a-—>bH b+H = (b+b)H « When you now
switch initial and final states, és assumed in the above tahle, then:
a+a—obfb.'
This shows that the energy-momentum vector P"and the

. B
angular momentum tensor P A s transform as:

PY— P¥

v
W —r - Jo" (289)
as it is intuitive from the representation of S as © P T,

VII,3. The ©CP T - theorem.

We note that, according to the table (287), scalars
and pseudoscalars transform in the same way undsr strong reflection.

This is also true for vectors and pseudovectors.

As a result, all interaction lagrangeans which were
previously constructed by the condition of hermitianity and invari-

ance under the proper and orthochronous Lorentz group and as normal
rod ; are automaticgllx invariant under strong reflection.
This statement,y in its general form, constitutes the

so-called CP T - theorem. You may check this with the Fermi inter
action lagrangean, by means of the table (287).

First we observe that, according to (286), the expecta
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tion value of normal products of operators transforms in the follow

ing ways
: + * L% *__ %
(B, ¢ 0) (x) 0, (x) s )= 2e2 (U}, 2 0p (=x) 0, (=x): M P
| (290)
where we have allowed for a phase factor € in (282). The t sign

comes from the Bose or Dirac statisties which the 0's obey.

This factor € appears in the spinor transformafion
given in table (287). Pauli has restricted its value by imposing
that the reality conditions which the dotted and undotted spinors
obey, be preserved under gtrong reflection. Let ‘Pa and . "Pi be

that two 2-component spinors which form W :
7

-5\
Yy = (l’) o (291)
¥ :

5

and choose cv* diagonal:

5 (I 0y |
Yo = \g .1/° | (292)
Then as Y — ¢ 'Ys ¥ under strong refl ection, we have:
A A . — —€ Y.

hence: . .
v —ew?

. ; . * N ’
Now V" trapsforms like (¥") so that we can set:

vA () | - (294

If we require that this reality condition be preserved under strong

reflection we must have:
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hence:
€ = ~€ . (295)
Thus, under this additional requirement, € must be + 1 or -i.

Any tensor or spinor entity can be expressed as funce

tion u (k, € ) of two indices k, ¢ and

u (ky€) is a spinor, if 2 (x +¢€)

B

odd integral number,

, (296)
u (ky¢) is a tensor, 1f 2 (k +£)

even integral.

For V¥ one hag for YA and WA , u ( % y 0) and
u (0; %) respectively, and the trangformation laws under strong

reflection, (293), can be written:

u(d,0) —eu(d,0)
u(0,3)—€c u(0,3)=-€eu(0,3).

(297)
These relations will be generalized for tensors and higher order

spinors as follows:

u (ks €) —€(-1)F u (k,2) for 2 (k +2) = odd,l.e., for gpinors;
| - | (298)
u (k, Q)—i'(-l)Zk u (ky¥) for 2 (k +2) = even, i.e., for tensors,

under strong reflections. The first relation (298) is a generalizg
tion of (297) for higher order spinors. The second relation (298)
is a generalization of the transformation of the coordinates y to

higher order tensors. Of course, in the transformed frame one has
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to take into account the convention: Ax" are the negative of the

A x* in the original frame.
Now, according to (298}, a product of n spinors trans-
forms as:
+ * e e
B (gafy) vew w (kg 20— (=€)% (<132 (it oot uxe,p )L utiy o 8))
(299)

while a product of n fensors, according to (298), transforms as

follows:
+...
W (g s€y) oo u (8 ) (-12Ka oo e¥in) iy ey L, u(Ky »2))
(300)

for 2(kl+ ces + kn) = even.

We see that (300) transforms like a tensor, if:

u (kl’al) L ] u(kn’an) = u(kn,‘gn) [N N ] u(klgel) .
Consider, however, (299). If n is even, the product (299) is a ten-
80ry hence one must have

(- €) (—1)2kr*eeetin) o (gy2(k1*ee et kn) £ b ven, and
(301)
u(kys%) oo u(k ,8) = u(kn,zn) con u(kl,ﬂl).

If n 1is odd, (299) is another spinor, if the u's

commate hence, according to (299) and‘(298), one must have:
(=€)2 (~1)2(k*eeetly) o _g(_q)2(kpteeatk,) oo n _odd. (302)

There 1s, therefore, in the c-number theory, an extra

factor in (299), which is, according to (301) and (302):
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(- €)%, for n even;

- e)®L ror n odad
ors
(-€)2¥, for n = 2y, vintegers;
(- €)2”, for n = 2v +1, » integer.
¥ n' n=J. -
So the extra factor is: (- G.)Z = (=1) . » in both
cases. ' '

This extra-factor, which is needed for the consistency
of the transforniation formulae (298), is ‘obtafined automaticcaly in
the transformation of normal products of operators. Indeedy from
(299) we get: ,

CtuClys )., u(kn,f e ey (R F et )'u(kn,£ ) ulieg )2

| (303)
= (-)R (V2 (- on (yRlEtee ety )-u(kl,z Yoo vulic s & )2

where (~1)® (n '1)/ 2 cémre from the anticommutation of spirors, which

{

has to be taken into account in the normal product.

The general“_f-orml;ia of ﬁi'ansformaticn of a normal product
of fie'ld operators which ;:aay contain j. YM matrices (distinct ‘fromfvs)
(5t QG710 () @)4(-1)3 (-1yR(n=1)/2 (_eym o

| (304)
x ( 1)2(k1*--~+k ) o g 0,(x;) My eee 15 0q0my): u .

The coefficient (—-l)'j came from the anticommutation of

r-"s' with v 5_, needed becance of the transformation formulae for Y in
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(287).

Nowy the € P T = theorem is actually proved by conside;
ing. that for all observables L qan-...(x), the proper and orthochro

nous Lorentz group transforms them into:

' B’

07l () Qp... 1) T () = A Lot Q... (1750),
(305)

Thus the ggansfogmationr(3042 1ls preserved under the proper ortho-

chronous Lorentz transformations.

VIIs4. Theorem:

Corregponding groups of particles and antiparticles
have the same energy spectrum. |

Consider n free particles. We have:
H, =Za+ (r, ?) a (I'r p) PO
and their energy is:
(\P, HOT) = EO -
Under strong reflection

(Byal (s B a(xy DY) = (P, b (z3 3 b (ry DY)

hence:

B, (particles) = B, (antiparticles).

The contributions from the interaction energy are also
invariant. A particular case is, thus: the masses of particles and

antiparticles are equal.
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APPENDIX I

The angular momentum of a spinor field

The lagrangean, the energy-momentum vector and the ap
gular momentum tensor must be hermitlan operators. Formulae such
as (18) and (21), taken as normal products, must be completed with
terms in the hermitlan conjugate of the field so that this reality
requirement is fulfilled.

The lagrangean of a free splnor field may be taken asg

L, in (77) when the hermitianity condition is not invoked. The

hermitian lagrangean of this field is the following:

-L(W‘Y“ 2t --a-y—“f“‘?)-m VY

DXR 'oxr-t
The energy-momentum tensor is:
p» _ A4 _«xuy Y - Y '
Ta =358 (“’"Yp 3% = %o 'V@'\P)-i-
v pdY Y
+ 06 (" 5 6’"’ X% T xR WHW)*' n ¥ ‘\’)
and the angular momentum tensor density:

A - A A A
X x

where:
A g [ W A U o ' A -
S F 0 TVl + Y v VI YA
Thus the angular momentum of the spinor field has the form:

*< [ao, NPV
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Mo+ ‘
We see that is hermitian. The spin part 1s:

sk’ = - %—de s (Y F[ovr, ’Y”]‘P+"P+"Y°[’Y'*,’Y"] YO Yy,

which shows that S°k= O+ The reader may verify that this is con-
sistent with (38) by making use of the relation:

‘V“[PA, Y (x)] = -nWP(x)
for a free field,; which follows from (37).

APPENDIX II

On_the procf of the superselection rule

In the left-hand side of formula (159), we could allow
for a phase factor €. Due to the fact that U is unitary and the
observables (L are hermitian, this factor can only be 1 or =l. The
choice € = +1 is imposed by the assumption that observables trans-
form like (proper) tensors under the inhomogeneous proper orthoechro

nous Lorentz group.

When, however, U acts on a state vector there is an
indeterminate phase factor w . Allowing for such factor, the rela

tions (162) are replaced by:

(WRY Nw'RE) = o ' (?,0%)

il

in virtue of (160}; ands
(WRVY; LwRrRE")
due to (161). Hence
(P, Q0%H

if m'-m=half-integer, independently of w and ou'.

*

1
0 C&J' erri (m -ﬂl) (ﬂ? , nY-l)

it

o
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