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ABSTRACT
An account is given of recent theories by Brueckner, Eden, Swia-
teckl, Bethe and co~workers about the propertiss of nuclear matter,
which is identical in content, but different in 1ts method of presen-
tation. This presentation tries to clarify the reasons for the ap-
plicabllity of the indepéndent-particle model and to determine what par-

ticular features of the nuclear forces are responsible for the vall-
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dity of this model.
I. INTRODUCTION
It is the intention of this paper to glve a simple theoretical
account of certaln genersl properties of nuclear matter, This pro-
blem has recently attracted great attention and has been treated in
detall, mainly in the pepers by Brueckner, Eden and GOwworkersl and

2 and by Swiatecki3. The presentation which

by Bethe and Goldstone
will be glven here does not contasin any new espproach and does not lead
to new results. Solely the methods of presentation are quite differ-
ent from the ones found in the recent papers sbout this subject. It
is attempted to use methods which are conceptually simpler and intul-
tively easier to understand., Naturally this can only be done at the
expense of some logical rigor. It is hoped that our approach will be
helpful to clarify the concepts and to shed some light upon the rea-
sons for the strange and unexpected properties of nuclear matter,

The concept of nuclear matter 1s a generalization and an ldeali-
zation from certalin facts relating to the structure of nuclei., It is
believed that a large number A of Z protons and (A~Z) neutrons,
Z~A/2, in thelr lowest state of energy, would form a stable econfigu-
ration, if the Coulomb repulsion between the protons did not exist,

This hypothetical configuration is called nuclear matter; its proper-

tles are supposed to be lndependent of the number of constituents if
A is so large that surface effects can be neglected.

This configuration does not exist in reality., The Coulomb ef-
fects increase with the square of Z, and they become important before
the number A is large enough for the neglect of the surface effects,
In fact, the Coulomb force prevents the formation of any stable or

metastable nucleus when A 1s considerably higher than 200, However,
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it 1is posaible to understand some of the lmportant properties of com=
plex nucleil by assuming that they consist In first approximation of
this hypothetical nuclear matter and by introduecing the effects of the
surface end the Coulomb fleld as a subsequent step. The very center
of complex nuclel is a good sample of nuclear matter.

The propertles of nuclear matter can be expressed as follows:
The particle densityJP and the energy per par ticle € are both indepen-
dent of A and are approximately:

P =2.21 x 1038 particles/cm3
€ = -15 Mev

These numbers are the values for Z = A/2. For different values or %
the energy per particle 1s higher and the partlele denslty probably
k'lower. The number for/o is taken from the actual nuclear density at
"the center of complex nuclei. Hence, the above wvalue for/o is pro-
bablj.slightly too low, since, in actual nuclel, both the Coulomb ef=
fect and the devistions of Z from A/2 decrease the density. The value
for € 1s taken from the volume term of the semi-empirical mass formls
and fncludes, therefore, the corrections to the actual binding energy
(which 1s about 8 Mev) caused by the absence of the Coulomb field, by
the surface effects and by the reduction to the case 2 = 4/2,

Most striking are the dynamical properties of nuclear matter,
They can be described spproximately by considering it as a system of
independent particles enclosed in the volume which it occupies. This
means that, in first approximation, the system can be considered as
an assembly of A particles, each moving freely in a potential which
i1s independent of the positlon of the other particles. This dynamical
pleture has proved its validity as a first approximation by the suc~-

cesges of the independent-particle model of the nucleus.
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One of the fundamental problems of nuclear physics is the expla-
nation of the properties of nuclear matter on the basis of the forces
between the constituents., This problem is of o0ld standing. One of
its difficulties comes from the fact that the forces are not well
known. All one knows about them is that they are very short ranged,
rather "strong", and, on the whole, attractive since they give rise
to binding effects., Just these qualities seem at first sight to be
in contradictlon with the properties of nuclear matter., "Strong",
short-ranged forces do not seem to be compatible with the independent
particle aspect. In fact, the development of nuclear physics until
the advent of the shell model was under the impact of the idea that
such forces would give rise to a situation in which energy and momen-
tum are rapidly exchanged between the constituents and which would be
quite different from the actual one as described by the independent
particle model,

It was also recognized early in the history of this problem
that the stability of nuclear matter excludes the possibility of com-
pletely attractive ordinary forces between pairs of nucleons. If such
existed and could be approximasted by a square well potential of range
g'and depth VO, a system of A nucleons would collapse to a sphere of
radius b/2 and the energy per particle would be proportional to A for
large values of A. The collapsed state has such low energy because
the potential energy in the.collapsed state is proportional to the
number of pairs: A(A-l)/Z. This is not compensated by the kinetic
energy sihce‘the exclusion principle forces the kinetic energy at
the constant radius b/2 to rise only with the power A5/3° Hence, a
system of A nucleons wlth purely attractive pailr forces would not

give rise to nuclear matter., There must be a repulsive element some=
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Several years agoe the Torces between nucleons were largely un-
koown exeept for their overall effect at low energies, The low energy
zvczriments give information only about the forces in relative S-
atzies (singlet and triplet) and can only b2 used to give certain in-
tagral properties of these forces. In recent years, however, scat-
tering experiments at higher energies have given some more detailed
inTormation about the interaction between nucleons. Ws are satill far
frivm & comprehensive knowledge of the nuclear forces; however, it
sonms probable that, at the energies relevant for the nuclear problem,
“n2 interaction can be represented by a velocity-independent, but spin-
dependent, potential and a short-range spin-orbit force., It contains
two elements of repulsion. First, there seem to exist a strongly re-
rulaive core which prevents nucleons from coming nearer to each other
than ébout 0.4 or OoS_foh Second, the pofential has exchange charac-
ter, 1.e., it depends not only upon the relative spin orientation,
but eis¢e upon the symmetry of the quantum state in which the two nu-
cisons are in respect to each other, In particular, repulsive forces
e found between particlss in odd 3tat@g§ for certaln spin orienta-
tionge It will be seen how these two repuluive elements could give
riso to the saturation effects,

True enough, scattering experiments can only furnish informa=
tion about the forces between an isolated pair of nucleons. It is by
no means obvious that the forces are the same when the nucleons are
1mbsdded in nuclear matter, Any reasonable meson theoretic specula=
tion leads to the pfediction_of sdme change in the nuclear interac-

tisn, There is today np positive or negative indication as to such
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many pafticle influences. In view of the gbsence of any definite in-
formation, we will assume, however, that these effects do not play an
important role in our problem, This assumption is supported by the
fact that the propertles of nuclear matter seem to be explainable with-
out taking many-body forces into account, |

It will be shown in thls psper how the nuclear forces, as we
know them to exist between pairs, could give rise to the required pro-
perties of nuclear matter.

iI. ASSUMPTIONS ABOUT NUCLEAR FORCES

In order to reduce mathematical operations to e minimum, we will
describe the forces between a pair of nucleons in very simple terms,
which represent them with‘rather low accuracy and only'within the ener-
gy regicn which is of importance in the nucleus. We do not expect to
get quantitatively correct results from this starting point, but we
wlll be able to study the important quelitative features of the ap-
proach,

We first assume that the forces are “Sefberrforceso" That means
that their exchange character is such that there is no force in the
states of odd relative angular momentum, Actually the observations in-
dicate that there are forces also in the odd states, especiallﬁ in P=
states, They are small enough, however, to permit our 3implifying as-
sumption, especiaily when averaged ovér the different spin directions.

The forces in the states of even angular momentum will be descri-
ved as follows: They consist of a central force part and a tensor
force part. The central force is assumed to be spin.independent; it
is therefore the same for triplet and singlet states. The observed

difference‘between the forces in these two states 1s assumed to be due
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éntirely to the tensor force., We describe the central force by the

following potential V{r):

V(r) = o0 r <c
Wr)=¢m)c<rsb+c (1)
Vir) =0 c *bxr

This is a square well ptoentlial wlth a repulsive core. In order to

give rise to the correct singlet scattering at low energﬁ,we must put

ec + b = I’os = 2o7f
L2
_ lymib

The last relation expresses the fact that the singlet force gives
rise to a stationary state of zero binding_energyo The recent in-
terpfetations of the high-energy scattering data indicate a repulsivé
core of ¢ = Q.4 £, Hence we choogse: ¢ = 0.4 f, b =1.9 f, _
The tensor force, although quite strong, will be neglected in
. our treatmenﬁo The reason 1é'part1y simpliclity and partly fhe fact
that, in nuclear matter, the tensor force hes much less effect‘upon
the wave functlons and, therefore, on the energy, than in two-body
problems, The reason for this fact will be understoéd at a later:
stage. We must be prepgred, however, that we underestimate the bind-

ing energy of nuclear matter by neglecting fensor force.,
II1I, ASSUMPTIONS MADE IN CALCULATING THE ENERGY OF NUCLEAR MATTER

We now'proceed to calculate the energy of nuclear_matter ;nd‘the'
wave functions describing-it on the basis of the nuclear forces as as«
sumed in Section II., We consider a large plece of nuclear matter con=-
sisting of A particlea, A/E peutrons and A/2 protonqo Since we assume
that the nuolear forcea are spin independent, we can conqider the sys-

tem as consisting of four different speclea of particles: ' A/L neu=
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trons of either spin, A/l protons of elther spin. Only psir forces
are acting between the nucleons and, hence, the total energy of a sys-

tem of A partlcles will be given by

A 5 A A |
(el ) -E W% =) v(ik) | ¥ ) (2)
i=1 ' i=1 k=1 '
A '
Here —— \/ is the operator of the kinetic energy of the ith par-
2m 1

ticle and v(ik) is the operator of the potential energy between the
pair 1,k E 1s the expectation value of the Hamiltonian in the ground
state of the system, given by the wave function W, It is this wave
Tfunetion ¥ which we will study in some detaile We start out with the
simplest assumption in regard to the s truc ture éf the ground states.
We first regard the A particles as completely free within a volume
0.° The pafticles will then be found in single particle levels &
which are the eigen=-states in' the volume . These states are planse
waves with a momentum kg » In order to avoid confusion we use the
term "level" for single particle states and denote these levels with
greek letters o, S, etcs We will consider the proton and neutron
levels of each spin as different levels even if they have the same
momentum kg In each level a there can be not more than one parti-
cle according to the exclusion principle., The wave function for the
state of the total system can be written In the form of a Slater de-
terminant:

AL
¥ ch{gzg ,Pﬂi (ry) (3)

Here ¢ (ry) is the wave function of the ith particle in the level

di:
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= === e (4)
by~ T :
TT; is a product over all ¢a1 s the symbol f}, represents anti-sym-
metrization among equal particlesal‘yg is the solution of our pro=-
blem if there were no interactions at ail, and the energy of this

state would be:

2
. YR .2
E, = 2m Kq . (5)

where the sum goes over all occupied levels, The lowest energy state
for the case of equal numbers of protons and neutrons is the one
where the particles occupy all states up to the Fermi limit., Its en-

ergy is 5 :
| o= ald ! (6)

where kp 1s the "Ferml momentum", which is the highest occupled momen-
tum‘in_the.g_round_s__tateo In the case of four different kinds of par-

ticles, each kind numbering A/h; we get

1 '
=33, p=4 (7)
It is interesting to express the "Perml wave length" Ay in terms of
the average distance d = /031/3 .of the particlqs: |

Kp = (572 a = ouna e
In nuclear matter, therefore, we have d = 1,66f and XF = 0,675 T,
and €, = E /A = 27.3 Mev. | ‘

If nuclear forces are acting between the particles, the wave
function {3) and the energy (5) will be altered. In the extreme in-
‘dependent-p?rtidle model (I;PQM@) one atill paintains the wave funec-

tion (3), but one expresses the effeqﬁJof the interaction in the form

i
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of a potential W, in whicﬁ each particle moves indePendentlyo_ Be=
cause of the uniform nature of nuclear matter, this potential cannot
depend upon the space coordinates of the particles: ﬁowever, it may
depend upon their momentum p, . The total energy in the I.P.M., is

then no}longer given by (5), but by

CBropm,T Eo * %: W (pa) (9)
It is customary to spproximate the " momen tum dependence of W by a qua-

dratic functlon:

; m=m
2w = W +_];( ,eff)p2

(10)
1 o 2 me pp

Wipg ) = W, +p

whieh glves rise to the concept‘of effective mass? meffé The energy

of the level o can then be written

2

p .
€y = ?m“ + W, (11)

- “Teff.,

which leads to the form:
5 |
_ £2 2

Ep.y,. = A2 Zh_p S Vo) (12)

In our amnalysis of nuclear matter weEﬁill gd beyond the I.P.M,
Clearly thé wave function (3) is too simple an approximation for our
purpose., For example, the repulsive core in the nuclegr forces does
not permit two papticlés to come closer than its radiua c. However,
in (3) th;a probability of finding two particles of different kind at
any place is Independent of their distance. ‘

We therefore proceed one step further éhd introduce the "inde-
pendent-palr-model", which we denote with I.PA.M. Here we consider
the interaction betweenkany palr of particles as exactly as possible,
butin dolng 8o we neglect the interaction of all other particles

among themselves and with thé pair,
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The energy of the system 1las fﬁen wrltten in the form
E=Eo+%;§uaﬁ (13)
)
where & and g are occupled 1evels_and U«p 1s the energy correction
coming from the:interaction of a palr of particles in the.ievels a
and B, The sum is extended over aﬁﬁ’pairs of occupled levels., Each
Uap isrcalcﬁléted by assuming that there 1s interaction only between
the pair which occﬁp;es o and p., Hence Ugp 1s the correction to the
energy Eo for the hypothetical case that interactions exist only when
the particles are in the levels & and A and that the interaction is
zero for any particle which is not in o« or B . These levels can be
identified by the assymptotlic behavior of the wave function for large
dlstances, at which they correspond to two states of well-defined mo-
mentum,.

The energy corrections Uyp can be used within the framework
of the I.PA.M. for the determination of the average potentiel W in
which the particle moves., If a particle finds itself In the state «,
the interaction energy with all other particles mmst be %;Udﬁ o
Hence we get: ‘

Wpg ) = LUag oy
It 1s in the nature of infinite nuclear matter that W does not de-
pend on the position. But it will depend on the momentum Pg of the
particle,

As a further step towards a‘better approximation, we can im-
prove the I.PA.M. by making it self consistent. In this "self- con=
sistent f;BAquﬁ.we agalin consider the interaction between the par-
ticles in‘a given palr of levels by putting equal %o zero any inter-

action of g partiele in another:occupied level, However, we assume
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2ll particles to move in a momentum-dependent one~particle potential
W{p). This assumption will have an influence upon the values of Ugg.
We wlll try to choose W(p) 1n e self-consistent way; namely, that
the resulting Ugp reproduce the original choice with equation (1l).

The next section containslin greater detall the calculations of
the wave functions and of the energies on the basis of the I.PA.M,
The justification of the model will be discussed in Section V.,

IV. TWO PARTICLE INTERACTIONS IN A FERMI GAS

We now come to the problem which is fundemental to the I.PA.NM,
It is the treatment of the interaction of a pair of particles in a
Fermli gas. In the spirit of the independent pair approxiﬁation, we
intend to tfeat each Interaction separately. Hence, we introduce a
force which acts between a pair only when the rarticles are in the
levels @ and p of the Ferml distribution; ir one or both particles
are in any other of the occupied levels, there is no interactiono9
Hence, all levels~y # ,B are completely ﬁndistur‘oed by the inter-
action, and their wave functions are plane waves. The particles in
the levels o, f, however, are subjected to the nuclear forces and the
wave function of such a pair, !&érl, ra) will not be a product of
two plane waves any more; 1t ls our task to calculate this wave func-
tion and aiso the energy correction Uﬁp which this interaction pro-
duces.

In spite of the fact that the other particles are assumed not
to interact with the pair, they still have an important influence on
the interaction of the pair because of the Pauli principle, If the
ralr would be 1solated, it would perform a scattering process; starte

. =
ing with the momenta km and l_:‘ﬁ s 1t would end up with different mo-
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menta ﬁ} and an Jusﬁ this acattering is made impossible by the
fact that the levels with the momenta'ﬁy and'ﬁs are occupied by
other particles. Hence, a resl scattering cannot take place; at large
~distances the pérticles must have always the well-defined momenta'gu
and QA . Howsver, at small distances the Paull principle does not pre-
vent the wave function from being aistorted by the interaction.

The mathematical formulation of this interaction has.been given
by Bethe and Goldstone2 and -can be expressed in simple terms. Let us
start with the ordinary wave equation governing the scattering of an
iso;ated pair of particles;

(V&Z +'§é2 r 2+ k%)SV(?iFé) =g (Fl 7,)

' (15)
TR R, = '5-1%“_‘?1?2)5"(3"1?2)

Here ﬁ;,'fnlare the asymptotic wave vectors of the two particles, and
v(fl, r2)'is the poténtial of the forces between the two particles, as
given by (1). The solution of this equation expresses the scattering
of the two particles by tﬁe pofential Ve In partipular, the cross sec-

tion for the scattering into the end states ¥

Y and'ﬁs is proportio-

nal to the square of the matrlx element:

—p

BTy %y 5 By Ko)= comst. [[om (117 7, + BT JunE, e, a5,
(16)
This matrix element is the Fourler component of the right-hand sids
of (15} 1n respect to the final wave numbers ky and k
; If the pair is imbedded in a Fermi distribution, the wave equa-

tion (15) is no longer valid., Any scattering into occupied states
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must be excluded. According to Bethe and Goldston92 we replace (15)
by another equation, which contains this restriction. It 1s not very
different from (15}, All that is done'® 13 the elimination, from the
inhomogeneity J in (15}, of the Fourler components which correspond
to the levels occupied by the other particles. Inatead of (15) we
then get the "Bethe-Goldstone wave equation’t(B.-G; equation), which

we write in the following form:
2
h 2 2 = B
[Em M=+, )+ eaﬁ]gap = Qup (V Yo (17)

whose solution'vzp we call the B.-G. wave functlon. €g5 1is the elgen-
value and Q§$ 1s a projection operator which rejects all Fourier com-
ponents that are not outside the Fermi distribution; except the ones
corresponding'to the levels @ and p . Such an operator obviously is
defined as follows: If ¢ (ryr,) is an arbitrary function of r r

1722
we havela'

Qup¢ (F,F,) = u?;k,, kZ>k 0, (F))85(Fp) (v6] 91+ ¢(1)9p(2) (@Al ¢ ) (18)
with

dsl 0= [oy @) a3 ¢ BT @ @

Here ¢a(r) are the normallized plane wave elgenfunctions in the vol-
ume Q ¢

-

and the sums are taken over all elgenstates of the volume & with
IE}-6|> Kp. The right-hand side of (17) does not have any Fourier

L
components corresponding to any energetically allowed final scatter=

ing states, different from the initial state, and, therefore, all



scattering matrix elements (16) vanish. Thus, all phase shifts are
zero, and asymptotically, for [rl-r2|—+oo, the solution of (17) must

be equal to the unperttirbed (v=0)} solution.

“Hence, we get for Iri-ra [-;:66:13 _
1im (AR )—=0 (B) ¢, (B ;) if a,. are levels of unequal
1-51_-112|my¢ﬁ 1°2 a 1 ﬁ 2 ﬁ lh' .
‘ p&rtiC].eS (19)
| _,4/;15_‘ ((Pd (%)) ¢P (%,) - Qa‘(?2)¢p('x‘1)) if a,B are levels of equal_"
' particleslu

For small distances, however, the solution }f"ﬁ

In fact, for very small ddstances (Irl-rzl« ]LF) }ﬁp is equal to the so-

is different from (19)°

iutlon ¥ of the scattering probiem of the lsolated palr since, in
thét regioﬁ, only the‘high Fourier components above thevfermi distri-
bution are relevanﬁ. Hence the Ferml distribution limits the effects
of the interaction. It ailows only a modulation of the unperturbed
wave funétion at small distances. At large distances the wave func-~
tion assumes i1ts unperturbed form and'therefore has no scattered wave.

Let us introduce the difference

y&,}" Py (T1) 9p(Fy) a,p unequal particles
- (20)
glr ry)

= ‘Zﬁ né((ba (Fl}(bﬁ(Fe) - ¢a (52) ¢ﬁ('r?1)) @;8 equal particles

The distance lrl = r2'| beyond which g(r;r,) becomes negligible com-
pared to y'lﬁ will Be‘called the "healing distance”. We can picture
the effect of the interaction as a "wound" in the unperturbed wave
(19), whicl‘l must heal at larger distances; whereas, in the case of
the isolated palr, the wpound has permanent effects at large distances;;

the scattered wave. 'Obvioualy, the healing distance will be of the
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order of KF‘ The actual size of it is of great importance for the
vaelidity of the I.PA. model and will be discussed in Section V.
The eigenvalue E‘ﬁ of the B.-G. equation determines the energy

change which the interaction produces. It can be written in the form:
2
= -9 P .
o= CE 135 (92 +72) + Apvii2) ML,J (21)

-when the solutions ¥, are assumed to be normalized to unity. If there

(7]
were no interaction (v(1l2) = 0), we would get the asymptotic forms

(19} as solutions and

2 .
- . B 2 2 _
eup B (ka.+ ks ) for v = 0,

Hence, the,pnergy ¢orrection, due to 1nteraction, is given by

| 2
= _ At 2

-

it should be mentioned that }@ﬁ has no Fourler components correspond-

1ng to momenta within the Fermi distribution, except k kﬁ . Hence
mp y’ap ‘]{;ﬁ, and we get:
€up = (q’pl-—(v2+\7)+v(12)lw (23)

In the spirit of the_I,PA.M., we assume that each nucleon pair acts
independently from all others, and, therefore, in this model the
total energy of nuclear matter can be expressed in the ‘form (13),

with U,, determined by equations (22), (23).

op \
Wg now improvg our calculation by applying the "self-consistent

IaPﬁoﬁ.“' Here we assume that all particles move in a momentum-de-

pendent one-particle potential W(p). Hence the B.=G. equation will

be instead of (17):

2
Bz (V1% +V,2) +ulpy) + W(p,) - €ap i = " v UL (2y)
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where P and}>2‘are the momentum operators of the particles 1 and 2,

For the sake of simplicity we approximate the p-dependence of W by
the quadratic function (10) and get
(v2+v ) + 2w -Qp)ll’“P— dpvqx (25)
which differs from (17 only by the effective mass; obviously the con-
stant 2W is irrelevanto The eigenvalue & Pis gliven by
€up= ( Yoy I- am(V2+v2 )+ WP W (pp) + v [ Y
which, after introduction of an effective mass, becomes
€un= (Héﬁﬂ 2:;* Vz Va) + 20+ VILL,& (26)
The energy correction U&P caused by the interaction is the difference
between eﬁﬁand the value for v = 0O 5
Uy = Gp - w(P.‘) - W(Ps) - L af + Kﬁ ) 2n)
= (gl - 2m* (VE+75 + 15 + /f) +v %)
This,eipression enhblea us to determine the one~particle potential
W'(pﬁ), which would result f;om this calculaﬁ%on
W) =5, (28)
We assure self-consistency by trylng to choose W(p) such that
the resulting W'(p) is as close to 1t as possible., This 1s especially
simple when one uses the effective mass approximation for W(p) and
solves (25) for a given value of m#. One then obtains from (28) a
potentisl H'(m#,p), which 1s a function of p and of the velue m" used
in (24), (25). (26), 1In genersl, W'(m*,p) will not be a quadratic
funetion in p. One can, however, try to approximate W'(m ,p) by the
best parabola and then equate m® with the value one would get from
thls parabola. This 1eads.to the following equation for ms
1 (BW'(m*.p )y =1 _ 1

pr O ket T B (29)

If W* would be a quadratic function of p, the left side would be
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independent of p., In the general case one must choose a suitable
value of p, namely p*,,for the determination of m¥* by (29)s Since
the deviation of yV’ from the unperturbed form (19) comes from Four-
ier components above the Fermi momentum (but not too highly above),
we will choose p¥ = Ppe 'Hence (29), with p* = pF allows us to de-

termine the self-consistent value of m¥,

V. THE SOLUTIONS OF THE BETHE-GOLDSTONE EQUATION

The solving of the Bethe-Goldstone-equation (17) is more compli-
cated than the solving of the problem of an iaolated pair (Eq. (15))
on two accounts, One is the fact that the term Qq_ﬁ(vf) contains =
non~local potential operator Qﬂn'v, and the second is the fact that
Qiﬁv depends upon the momentum P = 5&-+’§b of the center-of-mass mo-
tion of the two particles. From the oehter of mass of a pair of par-
tlcles, the Fermi distribution does not look 1sotrbpic in momentum
space when B # 0, Hence, for F # 0, the relative sngular momentum
is not a constant of motion, and the problem does not decompose into
separate sub=states with a definite angular momentum,

The présent discussion, however, will be restricted to the case
7= 0, where such separation is possible, A more detailed calcula=-
tion of cases with P # 0 has shown that the main features of the so-
lutions are the same as in the case B = 0, Hénce, we only discuss
the case f = 0 and aﬁaume thaf the solutions for the general case
have similar properties, qu the case P=0 only the first compli~
cation remains, The equation (17).c#n then be expressed completely

in the relative coordinates T = 31 - ?é, and we get

. |
Ve ¥ = & (v(r) o) (30)
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Here QE is a projection operator, which removes from v(r)y¥(r) those
Fourler components whose wave number is less than kF15 and unequal

to E& and -§¢. These are the components which corréspohd to the re-
lative momenta of all ofher palrs of particleé within the Fermi dis-
tribution, as long as B = ﬁl + EZ = 0,

The equatlon (35) can be sepaﬁpted according to the relative
angular momentum guantum number, Here we will only.discuss the 8= 0
part. As long as we are only studying the L= o0 part, we have auto-
matically excluded pairs of equal particles. The latter pairs do not
have & relsive S-wave because of the requirement of antisymmetry.

For unequal pairs the S—wave equation becomes

2 42 . |
(B 42, 4 ) a(r) = & (v(r) w(r)) (31)

with u{r)/r being the ¢ =0 component of ¥(r) and E),'P;ﬁ the correspond-

ing projection operator. We note here wilthout further proof16 that

the following relation holds:

e v () = w) w () - £,e V(e ol g

(32)
(ginkF(r-r') sin kp(r+r')
kp(r=-r') kp(r+r?)

f(rrt) =

Al

The solution we are looking for has the asymptotic form of the

unperturbed solutions. The {= O part of the unperturbed relative

1im = ,N/Ek sin kr (33)
I’ — OO R

where k i3 the relative momentum of the palr under consideration.

motion 1s

The normalization is chosen such that the square integral of the
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function is unity in the normalization volume which we now choose as
e blg sphere with a radius R,

The differential equation (31) can be solved by different approx-
imation methods, which will not be treated in this paper. We will
only describe and discuss the solutlions for a few characteristic po-

tentisls, We begin with a repuylsive core alone and set:

]

v(r) oc r<c

(34)
Vir)

H

0 r>»ce

In particular, we choose ¢ = 0.k x 10'13 cm, whiceh is the probable
velue for the repulsive core in the nuclear interaction. Pigures 1
and 2 show the solutlons of (31) for two values of k, k= 0 and

k = %kpa The figures allow us to compare the actual solution u(r)
with two other functions. One is the unperturbed free particle wave

function uo(r), which is the solution of (31) for v = 0O

u(r) = Esin' kr {35)

The other 1s the soclution U&(r) for the corresponding problem of an
isolated pair;

2 42
B G+ 1) uy() = v(r) uy(r) (36)

For the potential (3l}) we have:

uy(r) = ,J%sin k(r=c)

The solution u(r) starts out at r = ¢, just like ui(r)° It then gets
~¢clogser to uo(r) and, after oscillating around'uo(r), becomes asymp-
totically identical withduo(r)g as required by {(33). Here we have
the”éraphical representation of the "healing"'of the wave function.

The potential changes the unperturbed wave function, In the case
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Ui(r)of en iscleted pair this change 1s maintained until infinite
distsnce in the form of & phase shift, In the B.-G, solution u(r),
the changs 1s quickly "healed) and the function approaches its une
pertrbed  form within a "healing distance™ of the order of Xg.

We riow discuss the solutions for the nuclear potentlal as as~

sumed in (1), which differs from (34) by the attractive part outside

the repulsive  core. As seen in Figures 3,4,5, the wave functions

u(1) again get close to the unperturbed wave function within a dis-
lance Xn from the core. In fact, they are almost identical with

the wave functions of the hard core problem (36). Why does the at-
tractive part of the potential not csuse any appreciable modulation
of the wave function? It certalnly would do so in the case of an
isolated pair aceording to Eq. (36). The reason lies in the fact
that the modulation of the wave function would contain mostly Fourier
componentswith wave numbers below the Ferml distributionl7, and

these eomiponents are not admitted in the B.-G. equation {they are oc~-

cupied by ¢ther particles).

It «iil be important for the understanding of nuclear dyamics
to realize that the wave function ul{r) of two interacting particles
is almost the same as 1f only the repulsive core were present and al-
soalmost the same as the free particle wave function uo(r) except

for the immediate neighborhood of the core. This is caused by a
"stifftness” of the wave function against the influence of the poten-

fial, a stiffness which comes from the effect of the other particles

viathe exclusion principle. It prevents any change of the wave func-

tion excepl into Fourier components which are not occuplied. In order

to illustrate this effect, we have plotted in Figures 6 and 7 the

difference g(r) = u(r) = u_(r) between the B,-0. wave function end



the unperturbed one and, as a comparison, also-the difference gi(r) =

= u,(r) - u {r) petween the-wave function ui(r) of the isolated pair
and u_(r). Obviously we ggﬁ;

si(r) = 2 8in % cos (kI’ + g ) | (37)

It 1s visible how much smaller g(r) is in comparison to gi(r) and

also how g(r) decreases with the distance,

VI. THE REASONS FOR THE VALIDITY OF THE INDEPEﬁDENT PAIR MODEL
AND THE SHELL MODEL

The study of the shape of the B.-G., wave functions allows one to
understand directly and simply what problems are involved in the dues-
tion of the ﬁélidity of the independent pair model and, in the last
instance, also of the surprisingly good vallidity of the shell model,
We do not intend to discuss the question of convergence of the cor=
rections to these models, a question which must be'claritied before
the validlty can be considered as established, All we intend to do
is to give some reasons why such validity might perhaps be plausible,

The main‘point arises from the fact that the B.-G. wave function
does not diffeﬁimuch from the free-particle wave function., It dif-
fers only when the distance of the particle is much lesé than the
average distance in the nucleus., This latter distance d =‘p’1/3 =
= (3n2/2)1/3 %F = 1,60f 1is marked upon the absclssas of Figures
3-8, and it is seen that the wave function u(r) does no longer de-
viate much from the free-particle solution uo(r) at that point and
beyond. This fact can be interpreted és follows: when one of the
partners of the palr makes a close encounter with a third particle,
the distance between the original pair is in the average of the or=-
der d, At that distance the wave function of the relstive motion is
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already "well healed"; 1t practically has assumed the value of the
free-particle solutions; thus most of the collisions with a third
particle take place under condlitions as if the original palr had no
interaction at all. This is Jjust the assu*p%ion of the I,PA;M;, and,
hence, 1t 1a plausible that this model represents a good approximatioﬁ°
The "healing" process is even better visible if one plots the
actual value of the (=0 part of the wave function Ws = u(r)/kr and
compares it with the free-particls value woa = ginkr/kr. This i&

18 in'?;ggrn328~apd 9, and i1t 1s easily seen that the "wound"

-

which the potential (msinly the core) inflicts upon the wave functions

dons

disappears quickly and that its effect is negligible at r = 4. It is
important to resl ize that, in a degenerate Fermi gas, multiple scat-
tering 1s impossible. No ascattered wave éan ever be formed after the
interaction of a palr, since the corresponding quantum states are all
~occupled., Hence, all that the potential can cause 1s a modulation of
the wave function at small distances., Ths I.PA.M, has a chance to be
a convergent method 1f the reglons of strong modulation are very small.
The absence of scattering in a Ferml gas has been early recognized
as an essential reason for the validity of the IoPAoMolgo The B.-G:
wave equation is the quantitative formulation of this quantative
idea. |

We have so far only discussed the S-part (€= 0) of the wave

fune tion ¥ The higher angular momenta are not of great impor~

Bo=Gs®
tance for our discussion here. The P-state wave function is not in-
fluenced at all since we have assumed that no forces act in odd
stetes, The nuclear forces are fully acting in D-states, but the

shielding effect of the centrifugal term is so strong that the in=
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fluence of the forces on the wave function 1s negligible anyway, even
before considering the effect of the exclusion prineciple., Hence,
both in the P and D statea, the wave function 1s practicéily equal to
the unperturbed one even for an lsolated pair, The interaction in an-
gular momenta states higher than D can be neglected completely.,

The same property of‘the wave functions also provides a plausi=-
bility argument for the validity of the shell model, It shows that,
in spite of the nuclear interaction, the wave functions are slmost
identical with the free particle solutions, apart from those regions
in thé.configuration space where two particles are very close together
at distances much smaller than the average distance d, Therefore, 1t
1s a good approximation to represent the nucleons in the nuoleus by
free-particle wave functlons except for those problems in which the
close encounter of two ﬁarticles play an essential role,ZO

The vallidity of the independent-particle approximation in nu=
clear matter is such an unexpected result that 1t mighf be useful at
this place to enumeratelthe factors that contribute to it on the ba-
sis of our present approach. The main cause for the approximate
free-particle shape of the wave functions is their "stiffness"
against deformation, Which is caused by the exclusion principle, It
1s difflcult for the wave function to change its form under the in-
fluence of the forces becdﬁse all adjacent Fourier components are oc-
cupied and, theréfore, unavallable for the change, However, this
stiffness 1s not unlimited. If the intefaction forces are strong
enough for bresking it, the I,PA.M. would no longer be valid, and
the characterisfic independent particle,aspects would disappear,

After all, we know of systems of Fermi partitles which do not show
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these properties. A typical example is solid ni@rogen.at zZero tepn
perature, which behaves rather like arerystal th;n a Fermi gas, Never-
thei%ss,“ib represents the lowest state of an assembly of Fermil par-
ticles (.the nitrogen atoms) . Therefore, we are justified to ask what
are the particular features of the nuclear interaction which are re-
.sponsible for the prOperties of nuclear matter,

It sppears from our analysis that three factors play an essential
role: the firstlis the exlstence of a repulsive core., It not enly
rrevents the nucleus from callapsing, as wlll be shown in the next
section, 1t is also small enough for allowing the B.-G. wave function
to "heal™ well within the distance d, The second factor 1s the1nature
of the attrsctive‘potentiala It contrlibutes to the validity of the
free-particle spproximatioﬁ msinly“because of its comparative weakness
and long range9\“This statement appears paradoxical, since the nu~
clear forces are cften regarded as particularly strong forces., But
even the simplest example of nuclear binding, the deuteron, shows
that theﬁnuclear'forge‘is justxabout the weakest one that would give
rise to a bound state. The weakness has two effects in the problem
of nuclear matter. Firsig it causes the nuclear density to be ra-
ther low, such that 4 is much larger than the core radius. Here the
absence of attraction In the P-states is of importance. This is
necessary for the requirement that the "healing®™ distance be smaller
than 4. A larger attractive potential would lead to higher squili=~
brium dbnsity. Second, the weakness together with the relatively
lohg: renge has the follewing affect- The medulation of the isolated
pair-wave function caused by the attractive part of the potential
'contains on}?'rather low Fourler components whose wave numbers are

mainly less than o. Therefore,. this modulation is greatly reduced
. s N
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and essentlally eliminated by the exclusion principle. If the for-
ces were mors strongly atiractive, they would modulate on the wave
function noticeably even within the Fermi distribution; andy hence,
the waie function would not be healed at the d%atance de

The 1nteraction‘bapueen nitrogen atoms is an example of forces
which do not give rise at zero temperature to a state similar to nu-
clear matter, .There is also a repulsive core at small dlstances and
an attractive potential beyond the core, but the attraction is so
strong that the average distance at the equilibrium density is not
mich larger than the radius of the repulsive core. The relatively
greater strength of attraction also manifests 1tself in the fact that
the N2 molecule posesses many rotational states, in contragt t6 the
nuclear situation in the deutbr6n° Hence, we do not expect tpe wave
function of a pair to be "healed" at the average distance., The cor=
rections to the I.PA.M. will be large,'and the dynamics of nitrogen
at low temperature will be of the "strong interaction® type, as we
know 1t in liquids or solids;f

It 1s Instructive to express the relevant-“strengﬁh" of inter-
action in the following way: The Qave number & which the depth Vo
of the attractive part of the potential impresses upon the wave

funetion of isolated particles is of the order of
n/
k AJ‘V#No/ﬁa

i1f this wave number is amaller than the Fermi wave number kF’ the at-
tractive potential will not be able to change the wave function ap-
preciably within s Fermi distribution. We introduce a strength fac-

tor f by the following relation (d is the average distance of the



particles)
2 2 2/3 g2
v = ¢ h._... "ka = f(«L_n ) .............ﬁ
0 m F 2 mde

and we can express the condition k <-kF, which is neceasary for the
valldlty of the I.PA.M. in the‘form f‘<:lo For nuclear matter we
obtain £~ %; for solid nitrogen we put approximately an1078 cm,
Vo~ 7 ev (dissociatlon energy qf'Nzg, and get £~250, These values
illustrate clearly the nstrength“ of' the biQding forces between atoms
and thq_“wegkneaa“ of the nuclear forces.

VIII. THE DETERMINATION OF THE NUCLEAR DENSITY AND BINDING ENERGY

Once the B.~G. wave function 13 determined, theWnucleéf bindling
energy can be calculated quite straightforwardlyo Equation (27) al-
lows us to caleulate Ugp , from which the one-particle potential
Wi(p) 1s found.ui§h (28) and the self-consistent value of the_effec-
tive mASQQQetarhined with (29). Then Equation (13) gives the total
ensrgy of nuclear-matter.in terma of the Uaﬁ o All ﬁagnitudes invol-
ved are functions of the Fermi momentum and, th@rafore, a funetion of
the density. .Thias enables us td £ind the density p for which the en-
ergx'E:has a minimum., These two values then are the density and en-
ergy of nuclear matter. -The determingtion of these expressions can
be simplified by meking use of some of the properties of yaﬁ,'which
we have discussed in Section V.  We have found that the YE# are not
very different from the free-particle wave functions, and, further-
~more, that they are almost identical with the solutions of the pro-
blem in which y(r)‘containa the repulsi&e core onlyo‘ The latter prop-
erty makes i1t easy to determine the contribution of the core to the

energy. Let us eall v, the part of. the potential v(b) which contains
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the core only and Va the attractive part.

vEv, o+, (L40)
vc=oo for r <c¢
Ve = 0 for r > ¢
=
Vy ¢ 3 (1 + PM)VO for ¢ <r <b
vA=O for r>b
PM i1s the Majorana exchange operator, We then can separate Uzs in

a core part and the rest. The part of Uuﬁ in (27) which‘responds to

the core is

U:ﬁ = (qfa_ﬁl s (Vi + vg"' ki-ﬁ' kﬁ) + Vo Iy’d_p)

(41)
We call Uc the contribution to the energy which comes from this part:

= c
U, =% %Um (42)

In view of what was sald before - -about y&ﬂ’

wi-th the energy correctlon of a nuclear Ferml gas of particles with

Uc is almost identical

mass m" and with repulsive cores only, since y%ﬁ is almost the.éqp-
rect wave function for that case., This energy can be calcﬁlated'
from EquationL(ul)“and 1s plotted in Figure 11. One can expand U,
as a power serles in k,, which starts with a cublc term as has been

21 22

done by Huang~~, Yang and Lee™ ", and Martin and deDominiciszB. The

result 1324

2.2
ESs
1 - . F, 2 2
A% " e 3; > (11-212)02 + 05260734000 (43)

In the relevant region, the terms beyond kg are small, and this ex~

pression gives a very good approximapion to the above curve.
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It should bg noted that Uc i1s purely a kinetic energy sincelthe
potentlal energy term in (L4l1) vanishes because ygp= 0 at and inside
the core. The kinetlc energy U:ﬁ comes from the additional curvature
above lts unperturbed form which is‘forced upon yQPLnear the core.
(See Pigures 1, 2, 3). It shows an 1ncrease of the average kinetie
energy, over ana above the well-known quadratic expression, %-gi Ke
of’ thé free Ferml gas. Physicaliy apeaking, the quadratic dependence
comes from the fact that the volume avallable for each particle de-
creases in proportion withupvlg the additional term U, is an expres-
slon of the fact that the volume avallable for each particle decreases
more rapidly than P_l when there are repulsive cores aroun@ the par-
ticles; in fasct, the available volume vanishes and Uc reaches infini-
ty whén_Pnl becomes 030

The part of U@ﬁ which comes from the atbractive potential vy and

which 18 not included in (43) is
(Yap | vyl ¥ip - (liky)

Since ?kéG is almost equal to the free-particle wave function, it is
possible to evaluate Uﬁﬁ by the Born spproximationg

¥ ‘
L EARRE A - (45)
where 4 1s the free particle wave function of the palr:

- =

yo = f sin (Kep). exXp [i(k + k )e ("'22:—)]

if oy p are levels of equal particles

'yo Sliexp [i k'r] .8Xp [1(k + k )o ( 2)] (46)
1f asp are levels of unequal particles and

X = {E;= 3%)/2 1s the relative momentum,
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It should be emphasized here that the valldity of the Born ap-
proximation for the evaluation of the asttractive part of the inter-
action energy 1s solely due to the influence of the fermi distribu-
tion, In the case of an isolated pair, the expression (45) would be
canpletely wrong. |

We find then the contribution to the energy:

=1 ). Ug, (47)

"2 4p
which 1s easy to calculate from (44) or (45). The Figure 11 gives

U, as a function of kF. The totel energy of nuclear matter is then

A
2
E=E, +U, +T,, E %"eﬁ kg
&

which is plotted in Figure 12. Here the self-consistent value of m
is used, the determination of which will be mentioned later. It
turns out that m* = 0.68 m for the equilibrium density.25 One ob=-
serves a minimum for kF = 1.35 x 1013cm’1, which is very near to the
correct value, The energy at that density is F/A = =6,9 Mev and con-

alsts of the following parts;

Eo = 22.8 Mev
1 - :
EUc 27.7 Mev

éUA = =57.4 Mév

The value of E/A is considerably less than the actual value of 15
Mev., However, the breakdown shows that the difference is only 1h%

- of thg contributlon of the attractive potential energy. It very pro-
bably comes from our leaving out the influence of the tensor force.
This neglecting of that force ls based upon our finding that the

wave functions are almost equal to the unperturbed ones. In this

case the contribution of the tensor force is zero, as it must be for
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any Bbrﬁ gpproximation. We cannot ekpect, however, that our calcula-
tions be as good as to exclude a 14% change of the potential energy
"valueq

The situation is somewhat better when we consider the values at
the obaerved density which corresponds to a value ky = 1.48 £t

Here we get

=
It

27.3 Mev

ol
#

38.4 Mev

i
-
H

=72,1 Mev

Hence the error made neglecting the tensor force 1s anly 12% of the
potential energy.

The density dependence of U and U gives some answers to the
© fundamental question: What keeps the nucleus together and what keeps
it frém collapsing? The expectation value UA of the attnactive po=
tantial increases its magnitude (it is negative) so steeply with in-
creasing density (with k3 for very high densities) that it would over-
come the free kinetic energy‘Eo, and they cause a collapse if 1t
| Wwere not for Uco. This is in agreement with the wellnknown theorem
which says that attractive Serber forces do not saturate.26 The ad-
ditional kinetic energyrUc coming\from the volume radﬁction of the
repulsive core, hoquer,_rises sufficiently fast wlth density so as
to prevent this collapse. Hence, the repulasive core is the expan-
ding element in nuclear matter. The attractive potentlal UA keeps
1t from flying apart, but 1t is weak enough for allowlng the equill-
brium to be at rather low density, at a density for which the aver-

age distance d 1s large compared to the core radius (d/cv S), The
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large ratioc d/¢ in turn makes 1t possible that the "healling" distance
of the Bo.-G., solution is small compared to d and, thus, is responsi-
ble for the validity of the independent particle approximation.

We do not report here the detailed calculations of Uc and U, .
Suffice it to say that the evaluation of (41) and (45) gives rise
to expressions which, to a very good approximation, depend only upon
the relatife momentum of the palr k = % | Ea-ﬁpl ahd upon Kpe Hence,

we can write

C,A

% Ue (k,kF) if a4p are levels for particles
of equal type
UELA = | (48)
1 Ot (k. k.) if «,p are levels for particles
L A i ‘of unequal type

The distinction between equal or unequsl palrs comes In because of

the fact that'%@,must be antisymmetric in the first case and, hence,
has no even orbital angular momentum parts. The factor A”! 1s intro-
duced in order to make the functions UC’A(k,kF) finite for A—oo.

The summation over the levels in (42) can then be performed by means
of an integral. For this purpose one needs the fugqpion-n(k)dk,
which is the number of pairs in a degenerate Fermi gas of N equal par-

ticles whose relative momentum is between k and k + dk:

2 : 2
n(k) @ =§ 12 - 3. 4 3 G)7) EHE (49)
F
We th t
e en ge kg

=

1 goh - J;[ [Uce"" (k) + 3 U9 R (i, 1) ] nOo)ax

The form (48) of qz;A also lends 1tself well for the evaluation

of the one-particle potential W(k,) and its dependence on the momen=-
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tum which is needed for the determination of m”. We, intnpduce an-
other function n(ka,k)d;:, which is the number of particle; in a de-
generate Fermi gas of N equal particles which have a reiative momen-

tum between k and k + dk with a given particle of fixed momentum kgt

2
N(kgk)dke = ¥ 12 (1 + N0ky,k)) B2
with
'U(k k) = 12 for k<% (kp = k)
F'km'uke
ik, fon Blkprlk,) < E{ R(kptka )

Evidently n(k)dk as given in (49) can be obtained from N(k,,k) by
integrating kg, over all, occupled #aluesq With the help of this func~
tion we obtain in line with (28)

i
Wilkq) = i—/ 0 0k, kp) + 3 T (k" k)| N (kgkt)der
o . :

. ' c .
where '\Ue,u = Ulg,u *+ Ug,u

This allowa us to determine the effective mass m" by mqfna of (29),
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APPENDIX I.

Consider a system of A particles, foﬁﬁ groups of A/l identical
particles, we first consider the case in which there is no interaction
between the particles. In this case the particles occupy single=-par-
ticle levels a,p, ..., which are described by normalized wave func-
tions QL(r). ~The lowest state of the system is characterized by the
- faet that, for each type of particle, the first A/l levels are occu-
pied. The wave function of this state is given by (3). We £ntroduée
the followlng symbol: In the lowest state of this system, & <F means
& is occupied, @ > F means o is not occupied,

We now introduce a two-particle interadtion Vap in the fol-
lowing fonm;27

Vap = & 7LD ag (1) g (a1)
Here i(ri,;k) l1s the two-particle nuclear potential, asa giscussed in
Section II, between the particles i1 and k. The operators qi(i) are
projection operators, They remove from every function to which 1t is

applied those Fourler components in the coordinate r, which corre-

1
spond to one=-particle states within the Fermi distribution except for

the levels ay
-F _ — | -
TWY = TZ;F (R0, ¥) P E) + (N Y (R (a2)

where

(P (0,91 = J§ @y
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We mainta,in that t;he ground state of the system with the interaction
(A1) is & .state in which only particles in the levels « and {8 inter-
act. This can be seen in the following way: The interaction (Al)
iél zerg whenever a particle ls in a level different .from a« and P
.The Z!.evels a,,.p themselves are influenced by the i\nwtera.ction, and their
wave funetion is changed., We therefore write the wave funetion of

the ground state in the form
g - A [ 170 9,30 9 () oo 9,G0 ] (a3)

where the synbol .Jq: me an s antiaymetrization in raapect to the coopr-
dinates of equal particles. This form expresses the fact that the
'}avelg };‘ O, p are the same as without interaction, but the levels a,p
;.re changed, Let us note that, beocause of the mtisymetrization,
’%‘-ﬁ cannot contain any Fouprier eomponenta within the Fermi distribu-
tion. axcept 9‘. and (Joﬁ

(9, Yop) =0 for Y4F and £ EsP  (AL)

As :a consequence Vg;pdi{‘_fe;'s, from _?a( ry) ‘_9;5 (ra‘) by Fourler compo-
‘nents whick are not contaifiéd in the Fermi distribution. Hence,

qI:L (1)Ymﬁ= %ﬁ 3 qﬁ (2)]@,; = 'l’mp' - (a5)

This relatloﬁ_'-shows that the interaction (Al) is equivalent to the
ord‘inary]nuc,'léar interaction for the levels a8, but vanlshes for all
other 1evels, as far as the ground state of the system is concerned.
Hence, the interaction (Al) fulfills the requirements which we have
asked for in t?:le I.PAM,

ij\,'e now derive g wav‘e equation for y"-ﬁ( rl,re). We take the

equation for the, total wave functlon (A3)
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(22 4+ V=BV = 0

whatTe ti = a(ﬂ2f2m3§7§ is the operator of the kinetic energy of the
i'h particle, We ther multiply this equation with @, which 1s the

complex conjugate of
i " ::; y
“3 ?y(r ?G(P [ ) ?m{*A’

snd Integrate over all coordinates except rysTye

We then get:

(5 + tp = €55 ) Yaplls2) = = v(1,2) Ypp(1,2)

f
- Z@ lf,rtl) %(en),a;vy@)

Y
Here the summation zai or 22 means a sum over all occupled levels
Y . .
Y0 4T except p,8 = and}bé-"f furthermere, we have
(. = W e i ;h.:: 2
wp 2;' 2m KT (A7)
i, %‘,:
o | vy z;ft?g, (3) fg (b v(3,0)¥(3,L) &, ar), (48) .

and the numbers 2. 2, 3, 4 otand for thae coordinates Tys oy To, Ty

We now use the Tollowing ldentities:

vil,2) Y {L.2)
J‘;?;((_?a) 7.3 V(? 2] {3@3 ; ?5 (2)(}’13' Vy)
“}GP§{3} 23 Y L5 6 AE: Py (110ro L v¥)

H

Zy;)(f; P, (11fs(2) olvy)

H

i
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where the summation ; without prime signifies a complete sum over

2ll levels, Then equation (A6) can be written simply as follows:

— 1 € |
- 2 ; 93195 (1) (y0) v %)

(tl+' & - 6@) ')Vaﬁ(l,2)

Y
(49)
= -q"(1) ¢§ (2) v(1,2)¥ _(1,2)
« p T ag
0o |
where Z. ; signifies the summation over all levels &,y >F
B

and also over 7=“¢, 6 =B, This is the wave equation for the two=
particle interaction imbedded in a Fermi gas and 1s ldentical with

equation (17). Evidently the operator Q’iﬁ

defined in (18) 1s equi-
valent to the product:

F

Up = Gg (1) (2)

The eigenvalue '€cm 1s glven by the expression:
€a.)3= ('yfmp[ tl + t2 + V'yap) | (A10)

if ,%ﬁ is normalizedo The pfbjection Oper?.tors are omitted in this
expression because of {A%). _

An alternatiire way to derive the equatlion (A9) is as- follows:
We prove that the wave function (A3) is an eigenfunction of the

Hamiltonian
H = h, +V h, = 2B .2
1 ap 7! i 2m i

when yf(rlra) fulfills the equation (A9). For this purpose we write

"HVY = E VY (A11)

and obaserve that

2 ey A
| {: B ¥ o= Al +5)¥0,2) 9003 ] v 5 DY
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We find

Alv 1,29 11,2 9,(3)...)
F P
A &11(1) dg(2) v (1,2)3"(1,2)} 507(3)...]

where the second ldentity comes from the fact that the antisymmetri-

Vag vV
(413)

zation removes any part of v{12)¥(12) which is not orthogonal to the
other occupied levels, We then can write (All) in the following
form, in view of (A7):

ﬂ[{hl + by + qg (1) qg(2) v .(1,2W<1,2)} (p,(s)...]

= ¢ Ay a2 903

It is obvioua that this equation is fulfilled if'f(la) is a solution
of (A9).

In this derivation one might think that (All) is fulfilled also
if‘?(la) obeys sn equation different from (A9). We could have chosen
the first form for V¢ﬂ“¥' in {(Al2), and this cholce would have given
squation (15) for‘yh which 13 the equation for isolated pairs. The
latter choice, however, 1s not admissible since the solutions of (15)
do not fulfill (Al) and, therefore, do not lead to the relation (A12)
for the kinetic energy, The second form of V&F"Qf in (Al3) 1s the
only one which leads to an equation for'y'fulfilling the conditions
(aly). |

We now discuss the asymptotic behavior of y&b. Pirst we write
(A9) in %he form

(tl +. t’g - €Q.}) %’a = -QF vy' prv‘f’

where Q? is the projection operator which excludes all states within

the Fermi distribution without exception, and Qay is the projection
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operator which singles out the levels o, only for both particles.

Evidently:
F _ F
%p = @+ Qup
We then can write (A9) in the form:

(b + 85 =€u¥%y T = @ (v )mlapl vH )P (1) ¢, (2) (a1ly)

We can express the first térm on the right side in the following way:

FlvYug) = vhy - JoR) - 3 @ (Fy - B v (H WY, (F FIaY o

where ' " ) “
6(F - #') = “ZLF P PP

This function 1s a delta function of finite width with & width of
the order Ap and vanishes at (r - pt )-»00 ., Hence QF(V‘{fan) vanishes
at (r - r')->c0, when v(12) 1s short ranged. One r'ecognizes then

easily from (All) that the asymptotiec form of %_ﬁ 132?
Kﬁ(lﬂ)—-ﬂ?‘x(l) %;,(2? for (% - Fz)-,oo

and one gets from (All), taken at (r; - r,)—oo0:

h2
Gup = (X |vyy,) = (k + k )

It 313 then more convenlent to write the equation (All) in the

form
(ty + b= ki - ;lyp - (V) * (] Vyap)('%(ﬂ )obop
The second term on the right side vanishes for large distances
(r - '2)° We can also neglect it for small distances in our deter-
mination of ya,p’ since (txﬁlvf’dﬁ) is infinitesimally small for a large

volume & of nuclear matter, In fact, it 1s of the order v b3/§}_ »

where v, and b are the depth and range of the potential., When this
B -
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term is neglected, the B. = G. equation (17) goea over into the form

(b) + by = k5 - k)W = - (v¥,) . (a15)

which is the form found in Reference (5).

One can use (Al5) or (17) for the détermination dfyip‘ It 1s,

of course, more convenient to work with (Al5),
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3
= (0,205 ),

which is due to higher cluster effacts (F. -lﬁa.rtin, private cmnicntion)

tince we are only considering two* body correlations.

We define our m" sccording to (28) so as to fit the function W(k) &t the

top of the Fermi distribution only. For an overall fit the value of m”
would be m* = 0.59m. The letber value should be comparsd with m* as used

in the literaturse. o
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We treat -"Ihere fhe case only in which the two levels o ,@ are levels belong-
ing to two different types of particles (sse footnote 11, page Fl). 1Ir s 13
beloligtto the same type, the derivation is very similar, Omé only must take

..care of the antisymmetrization.



FIGURE CAPTIONS

Figure 1. The wave functions of the relative motion in the s-state
of the two particles for the case of no interaction
'(ué(r)), for the case of a repulsive core interaction for
 hn 1solated pair (ui(r)) and for a pair embedded in a Fer-
mi distribution with ky = (u(r)). The relative momentum
k = 0,

Filgure 2. The wave functions of the relative motion in the s-state
of the two particle; for tha case of no Interaction
(uo(r)), for the case of a repulsive core interaction for
an isolated pair (ui(r) and for a pair embedded in a Fer-
mi distribution with kp = (u(r)). The relative momentuﬁ

o k = 0,5 Kpo '

Figure 3. The.wave function of the relative motion in the s-state
of two particles for the case of no interaction (u (r))
‘and for the case of the nuclear interaction {ul{r)) for
a pair embedded in & Fermi distribution ky = 1.48 £™%,
The relétive momentum is k = 0, The heavy ling indicates
the nuclear potentlal as a function of r, The average

_ distance d of the next neighbor is also indicated,

Flgure 4. The wave function of the relative motidn in the s=state
of two particles for the case of no interaction (uo(r))
and for the case of the nuclear interaction {(u{r) for a

pair embedded in a Fermi distribution k_ = 1.48 £°1,

F
The relative momentum is k = 0.3 k. The heavy line in-~
dicateg the nuclear potentlal as & function of r, The av-

erage distance d of the‘next‘neighhor i1s also indicated.



Figure 5,

Filgure 6,

Figure 7,

Figure 8.

Figure 9,

The wave function of the relative motion in the s=-state of
two particles for the case of no interaction (uo(r)) and
for the case of the nuclear interaction (ul(r)) for a pair
embedded in a Férmi distribution kF = 1.48 f-l. The re=-
latiﬁe momentum is k = 0.6 kp. The heavy line indicates
the nuclear potential ss a function of r. The average
distance d ¢of the next neighbor is also indlicsted.

The difference between the wave functiohs with and without
interaction {hard core} for an isoclated and for an imbed=
ded palr. The relative momentum is k = 0,3 kn. The heavy
line indicates the nuclear potentlial as a function of r,
The average dlstance d of the next neighbor is also indica-
ted. |

The difference between the wave functions with and without
interaction (hard core) for an isolated and for an embed-
ded pair, The relative momentum is k = 0,6 kFe The heavy
line indicates the nuclear potentisl as a function of r.
The average dlstance d of the néxt neighbor is also 1indl-
cated,

Full value u{r)/kr of the s-state wave function for a pair
embedded in a Fermi distribution (kF = 1,48 f) without and.
wlith Interaction. Relatlve momentum k = 0.3 kF° The heavy
line indicates the nuclear potential as a funection of r.
The average distance d of the next neighbor is also indica-
ted.,

Full value u({r)/kr of the s-state wave function for a pair
embedded in a Fermi distribution (kF = 1.48 f) without and



Figure 1“.
Figure 11{

Figure 12,

with interaction, Relative momentum k = 0.6 k. The
heavy line indicates the nuclear potential as a funetion

of r. The average distance d <;f the next neighbor is also
indicated.

The energy per particle due to theurepulsive“eore as a func~
tion of the density measured by ky. This 1s the correction
to the kinetic energy. |

The energy per particle due to the attractive part of the
nuclear potential as a function of the dengitﬁ-measured by
kF. This is the potential energy.

Total energy per particle as a function of the densiﬁy

measured by kE
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