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Polarized deuteron beams have been recently abiained from
nuclear scattering experiments ( O. Chamberlain et al., 1954 ). In
these experiments & high energy deuteron beam, emerging unpolar-
ized from the cyclotron, becomes partially polarized when scatter-
ed by a first target. The state of polarization 1is investlgated by
mean of another scattering by a second target which plays the role
of analyser. It has bheen found that the angular digtribution in

the double scattering experiment has the form (R Tripp et ale«1955):

G'=G;+a+bcosj>+ ¢ oS 2 4 (1)

where Ub is the cross gection for single scattering, and ﬂp is

the azimuthal angle of the direction of the second scattering. The
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magnitude of a o1d ¢ resultzd in all experiments of the order of
experimental errorce.

Theoretical analysis of this problem have been made on
quite general grounds ( L. Wolfenstein and J. Ashkin, 1952) and for
mula (1) has been vroved ( W, Lakin, 1955). However general argu~-
ments doesn't exist which, in all casesz, account for the smallness
cf 2 and ¢ .

We conceived that the method of phase shifts for the de-
termination of the scattering matrix might give more information on

this respect.

3]

I the present paper this method is developed for the

RS

scattering of spin one particles by spin zero nuclei. The scatter-
ing matrix is obtained by an extengion 5f Lepore's method for spin
1/2 particles ( L. V. Levore, 1935C ). Cross sections for single and
double scattering are abtained and arguments are given to justify

the smallness of tho above montlioned terms.

DETERMINATTON OI" THE SACATTERING MATRIX
We look fer & solution of the scattering problem, proc-
ceding exactly in the sawme way as Levpore does, by writing the wave

]

function for the pariicle in tihe assymptotic form:

! — 4 S il
= (29+1)1/2 it A?ELHYOX .
X iy kr 0 U anc
{0 s
This is the snalogous to formula (10) of his paper. Here
X is a three éomponent vectolr wnich represents the spin state

inc



of the incident bern and T 7  are the felleowing projecticn opera-

Lors:
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The coeflicients A@ - ~ust be so determined that the o
tal  wave function 1:presents assymptoticaly an incident plane wa

7e plus an oubgoing suherical wave,

T,

This condifion recuives Uhote
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Fron this .equation and Identity: (3) we gets

Therefore the assymptotlc scattered wave iss

ei(kr - 0 1n 2kr)

~s £(ey X
sc T C ):K“inc *
where
Ve i 8E
V2 . e - 1 S
A LTTE TR . ®
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is the scattering matrix.
#ﬁ— , . AT I \2
The operators N contain terms in S.L and ( S.L )
which, when applicd to Lezendre polinomials, may be replaced by

the fellowing zxpressions:

L = 2848008 ) £+ 0 = 11(8.7 doine =Be , (5)
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where 2 and 4y arc the unit vectors on the directions of
Ed g . . -
Xy and Iy the incident and scattered wave vectors, and n  is
the normnl %o the plane of scattering:

—_) . —

n sin@ = OILA Lo e (7)

We now introduce the symmetric second rank tensor:

_ 1 o 2
Qijh 5 (Sl Sj + Dj Sl ) - -------3 i3 0 {8)
s0 definesd thot:
1j _
Q4 5 $ 0 . (9)

Then we can write:
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cose



The scottering matrix may now be vrittens

£(0)= 4 - = mm (¢ sin @)-1(8.5")5ing(5.._%)-
-Q ( nt nd sin*g a(j + am ad g ) (11)
13 Scos0 o Y1t/

Here the coefficients A, B, C are the following lineay

1y independent functions of cos® :

B= 1< [(14- Ql )eié';l singgw—g-g-i—%—ei‘i smt;: -
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Jor what follows it is more convenient to write the scag
tering matrix in a different form by separating a factor

— — )
e which makes the state vector to vrotate  through
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an o angle 6 , oboub the normal axis to Lhe plane of scattering,

The regsult is:

l’ b T - .
f(@)ni%%(l)+l?) ~1 % gin © (S, n)+ L( %%.( o C)-—D) NN
e 1045.3)
- Cal aqu¢d o (13)

D=A+0C cos @,

E2A+Bcosg—~a—§O—§(CSin29), (1)
=2 (5 cos& - B) + C.

It can be noticed that the matrix £ s as should e
expected, is invariant under time reversal that is under the fal

lwing substitutions:
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CROSS OECTION AND DENSITY MATRIX

The state of polirization of the incident beam, may be
described, following von leumnnts formalism, by o density matrix
? & . F Y
' +
= qP: X2 Wwhich is the sum of the projectio at -
f)o 217(1}]‘7%_ hoils t S cf © projection operators o

ver all The spin stotes of the particles, multiplied by the pro-
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bab¥lity to find it in the corresponding state.
After the scattering process each stato T&i will be
transformed into f(@)ﬁkmi end the differential, cross section  is

then given by
g = Tr. (f((pof+)ﬂTr.((30f+_i') (16)

It is the overage value of the operater f T £ in the
incident. beams
The density matrix of the scattered boam igs:
£ P f

()-n G(‘) . (17)

In order o caleculate {Jwe must obtain f4ff .

After some computaicion this is found to be:

£Fr = ]Dl"a é ({F, Q) é} T sin” "6- ( F,i E sin©)}{ Zun ) -
1 5o i . . 5 . .
- [-—5( ,C) ey a + (0, Isin®) of bl - "sin“6n* nd ] Gy5+ (18]
Here we introduce the definitions:
— -3 — -~ ~ -
bO = nOAJJ bl= -~ 29An
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the last relation being cquivalent to:

]

T=--(2D~ ginto. 08 60@} IB(2 . (19)
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Let <Si> o and <Qij>o be respectively the mean values of Si

and Qij in the incicent be2m. The cross section will Dbe found

immediatelysy—+taking the Tverzge value-of expression { 18 ):

1

2 _
G=10]"+ =(F,0)+ 5 sin®

‘0 -( F, iBsino )(3) -1 =

- [-—J.é-—( F,C) ol o.g +{C, Esin0) a b ~I'sin® o n? nJ} <Qi:]>o’(20)

Let us now consider the case of unpolarized incident

I .
beam, Then f)= ?? ond  cross section reduces tod
0

U=|DIZ+=—:§L-(F30J+%~1‘*'-sin2@. (21)

On the otier hand the density motrix becones:




The expression for £ f' can be deduced from that for
£* 1 hy using the invorionce under time reversal., Denoting with

primes, quantities refering to time reversed states, that is,sub

jected %o the substitutions ( 15 ) we may write:

T o | (23)

Therefore £ £  is found from the expression (18) by

introducing there, the substitutions ( 15 ).
We thug obtoin for the mean values of the operators 34

and Qij in the scattered besm ths fellowing expressions:

(8) ; =- ~2=(#, iEsin0) 3,
e L 13
(g = -5 [ F (500 af-5 87
-( E sin®, G) a%_bi ~ f‘sin%@( ntnd - & Bjj) ];

We see thot the spin vector is normal to the  plane of
scattering and is 2 principal direction of the tensori this is
A general result which may be easily deduced fron invariance

arguments.



ANALISTS OF POLARIZATION BY DOUBLE SCATTERING,

The properties of the polarized beam may be investigated
by a second scattering cvent. The differential cross section
will not have axial symmetry about the direction of propagation;
it will depend on the tngle 31 between the planes of the first
and second scabberings. Consider single and double scattering of
unpolarized beams. We dencte the cross section for single scatte
ring at an angle © , by (J(®) and that for the second event
in o double scattering, by G(Ql, @2,f?) where 9, is the first
scattering angle ond (QB’TP ) are the polar angles of the se-
cond scattering direction. The value of G(Gl, 92, ﬁP } may be
computed from ( 20 ), toking into account ( 21 ) and ( 24 } and

cbgerving that the incident direction is now, the directign '31 s

of the scattered hsgam.

—

Chopsing d; as x-axis and ¥ as z-axis, we find:

(o1, 65, P )= %J{l 23 [% ) ), H(F G 6,

1
- 2 (a2 {8y) ) cos Y 4 == ( <O~33>1“<Q22)1) (@33)2

- <Q22>2) cos'Z‘fE } l(25)

where <Si>2 ond <&ij>h are the average values that  the

corresponding operators acquire in a single scattering beam at



= le-
an angle 9, .
In obtrining the cross section in the form given by

{25) we used the following relotions computed from (24):

it

(85) == 2 (¥, 13 sive) /3¢

!

<Q11>*-'?§-LF, c) - I"sin‘?‘O]/Bﬂ ,
(Q1,)= (& sine, c)/3( ,

<Q33> (22>—- T sin’ {-)/ .

Formula ( 25 ) wag first derived by Lakin, but there

was &n  error in the sign of the second term of hig cosj) coef

fiecient,

CONCLUDING REMARIS

There is ermerimental mesures of the eross section

. . . . 12 ,
for single and double scttering in O and  others nucleus :

for the second event the cross section behaves like it is pre

dicted by formula ( 25 ), in what concerns the ﬁf dependence, but
within the experimental crrors the berms ¢51> and (KQ33> -

129 have not vet been conoluslvely ﬂbserved. It is possible
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that thesc terms really exist but are small in the experi

mental conditions ueed untill now, Indeed, inspection of the ex-

L]
Ps

pressions ( 20 ) shovs thot the second of these ternms is propor -

Iy

r) - L .
tional to sin™8 ; therefore its effect on the cross section
will be quite dnsensitive, if at lenst one of the scattering an
gles dis sufficiently smnll, s seems to be the experimental si-
tuation,

On the other hand the value of <Qll> apart from a

. . 2 A L

term In  sin”8 contoins another one veg. = —§m( F, C).
The smalliness of this term may be exploined, assuning an

-
1

( g. L ) spin-orbi: coupling. The energies of the states with th e
stme angular momentum are split, by amounts proporiional to Q +1,
6, -1, corresponding respectively to the eigenfunctions of
the total anguloar mncwentum with j==-@ + 1, J ==P, J = ?- l; It
the spin-orbit intercction is considered as a perturbation and
the phase shifts ore developed in power series of the correction

5
i

term 1t gives rise, then we find C=0 in first approximation,
This result which was also  obtained using Born appro-
ximation seems to justify the smallness of <Q11>. The coeffi

cient of cos?f is proportionnl to- SjIl@1 sin®, ond under the

above assumption the vector term predominates over the tensor
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one; the sign of <thoh coefficient will decide nbout the corre-
ctness of this statenent,

The avhilable experimental data are nob sufficient for
a more detoiled discussion and we hope that new experiments eg
pecially at larger ongles will give more information ~bout this

subject.
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