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Using the transformation theory for the Heun equation, we find substitutions of variables which
preserve the form of the equation for the kernels of integral relations among solutions of the
Heun equation. These transformations lead to new kernels for the Heun equation, given by single
hypergeometric functions (Lambe-Ward-type kernels) and by products of two hypergeometric
functions (Erdélyi-type). Such kernels, by a limiting process, afford new kernels for the confluent
Heun equation as well.
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1. Introductory remarks

The group of transformations of variables which changes Heun’s equation into another version
of itself was initially established by the very Heun in 1889 [1] and fully accounted in 2007 by
Maier [2], who tabulated the 192 substitutions in detail by writing explicitly the transformations
of each parameter and variable of the equation. Firstly, we show that it is possible to construct
a similar table for the kernels of integral relations among solutions of the equation.

In the second place, we show that some of these transformations generate new kernels given
by hypergeometric functions when applied to the kernels found by Lambe and Ward in 1934 [3],
and new kernels in terms of products of hypergeometric functions when applied to the kernels
found by Erdélyi in 1942 [4]. Finally, by means of a limiting procedure we get new kernels also
for the confluent Heun equation (CHE) .

The transformations of the Heun equation and its integral relations suppose the usual alge-
braic form for the equation [1, 2, 5], namely,

d2H

dx2
+
[
γ

x
+

δ

x− 1
+

ε

x− a

]
dH

dx
+
[

αβx− q
x(x− 1)(x− a)

]
H = 0, [ε = α+ β + 1− γ − δ] (1)

where a ∈ C\{0, 1} and x = 0, 1, a,∞ are regular singular points with indicial exponents given
by {0, 1− γ}, {0, 1− δ}, {0, 1− ε} and {α, β}, respectively. The constants a, α, β, γ and δ are
called singularity parameters, whereas q is called accessory parameter since it is not associated
with the singular points or their indicial exponents.

By defining the operator Mx as

Mx = x(x− 1)(x− a)
∂2

∂x2
+
[
γ(x− 1)(x− a) + δx(x− a) + εx(x− 1)

] ∂
∂x

+ αβx (2)

and, by interpreting this as an ordinary derivative operator, the equation reads[
Mx − q

]
H(x) = 0, [a 6= 0 or 1], (3)

The invariance of the equation with respect to the replacement of α by β does not imply that
its solutions are symmetric in α and β; it simply means that the substitution of α for β leads
to another solution. The values a = 0 and a = 1 are excluded because in these cases there are
only three singular points and then the equation may be reduced to the Gauss hypergeometric
equation

u(1− u)
d2F

du2
+
[
c− (a + b + 1)u

]dF
du
− abF = 0, (4)
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where u = 0, 1,∞ are regular singular points with indicial exponents {0, 1− c}, {0, c− a− b}
and {a, b}, respectively.

By keeping α, γ and δ fixed, the confluence procedure is given by the limits

a, β, q →∞ such that
β

a
→ ε

a
→ −ρ, q

a
→ −σ, (5)

where ρ and σ are constants. This yields the CHE [5], or generalised spheroidal wave equation
[6],

x(x− 1)
d2H

dx2
+
[
− γ + (γ + δ)x+ ρx(x− 1)

]dH
dx

+ [αρx− σ]H = 0, (6)

where x = 0 and x = 1 are regular singularities, whereas x =∞ is an irregular singularity.
On the other hand, H(x) is defined by [3–5]

H(x) =
∫ y2

y1

w(x, y)G(x, y)H(y)dy =
∫ y2

y1

yγ−1(1− y)δ−1
(

1− y

a

)ε−1

G(x, y)H(y)dy, (7)

where H(x) represents a solution of equation (1). Then, H(x) will be a solution of the Heun
equation if: (i) the kernel G(x, y) is solution of the partial differential equation

[Mx −My] G(x, y) = 0, (8)

where My is obtained by setting x = y in the expression for Mx, (ii) the integral (7) exists and
(iii) the limits of integration are so chosen that the bilinear concomitant P(x, y), given by

P(x, y) = yγ(1− y)δ
(

1− y

a

)ε [
H(y)

∂G(x, y)
∂y

− G(x, y)
dH(y)
dy

]
, (9)

fulfills the condition P(x, y1) = P(x, y2). In Appendix A we show how these equations are
obtained from the general theory of integral relations [7].

By the choice given in Eq. (7) for the weight function w(x, y), equation (8) for the kernels
is expressed in terms of the operator Mx which appears in the Heun equation (1) and in terms
of the functionally identical operator My obtained by setting x = y in Mx. Then, in order to
establish the transformations of the kernels it is sufficient to demand that Mx and My transform
in the same way. For the Heun equation these transformations will be inferred from the Maier
transformations for the Heun equation.

By using suitable weight functions the above result holds also for the other equations of the
Heun family, that is, for confluent, double-confluent, biconfluent and triconfluent Heun equa-
tions. Then, the transformation for the kernels may be inferred from the known transformations
of each equation [8]. It seems that this connection has not been explored as yet [9–11].

However, the transformations become effective only if we know an initial kernel. For the Heun
equation, new kernels in terms of single hypergeometric functions will be generated from the
kernels found by Lambe and Ward [3], while kernels given by products of two hypergeometric
functions will arise from the ones found by Erdélyi [4]. These afford initial kernels for the CHE
by the limiting process (5). In addition to kernels given by confluent hypergeometric functions,
we find kernels given by hypergeometric functions, products of two confluent hypergeomet-
ric functions, and products of one confluent hypergeometric function and one hypergeometric
function.

In section 2, firstly we present the 8 so-called index or homotopic transformations which do
not change the independent variable x, and the 24 Möbius or homographic transformations
which result from linear fractional substitutions of the independent variable. Composition
of such substitutions gives the group of 192 transformations. After this, the transformations
are extended to the kernels of the equation, and these are used to generalise the kernels of
Lambe-Ward and Erdélyi.

In order to generate the full group by composition of homotopic and homographic trans-
formations, it is necessary to use the index transformations in Maier’s form. This remark is
important for avoiding incorrect results. For example, the forms given in Refs. [5] and [12] are
inappropriate as we shall explain in section 2.1.

The kernels for the CHE are obtained in section 3, where we introduce as well the transfor-
mations of Eq. (6) and its kernels. In section 4 we point out that even for the double-confluent
Heun equation (DCHE) it is possible to determine new kernels by using again a limiting pro-
cess, and discuss how to transform certain solutions of the Heun equation into solutions useful
for applications. Appendix A provides a derivation of Eqs. (8) and (9), while Appendix B lists
the Möbius transformations for kernels of the Heun equation.
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2. Heun’s equation

First we examine the transformations for the Heun equation, emphasising that it is not
allowed to permute the parameters αi and βi in the homotopic (index) transformations. Second,
we obtain a general prescription for the transformations which preserve the equation for the
kernels and write, explicitly, the index transformations for the kernels. In the third and fourth
subsections, respectively, we generalise the kernels given by hypergeometric functions and by
products of hypergeometric functions.

2.1. Transformations of Heun’s equation

There are 24 (including the identity) Möbius substitutions of the independent variable x
which leave the form of Heun’s equation invariant, in general after a change of the dependent
variable. They are given by fractional linear transformations x 7→ %(x) = (Ax+B)/(Cx+D),
AD 6= BC, which map three of the points 0, 1, a and∞ onto 0, 1, ∞. The expressions for %(x)
are displayed in the matrix x x

x−1
x

x−a 1− x x−1
x−a

a−x
a ; 1

x
x−1
x

x−a
x

1
1−x

x−a
x−1

a
a−x

x
a

(a−1)x
a(x−1)

(1−a)x
x−a

1−x
1−a

a(x−1)
x−a

a−x
a−1 ; a

x
a(x−1)
(a−1)x

x−a
(1−a)x

1−a
1−x

x−a
a(x−1)

a−1
a−x

 (10)

where the elements in each column are proportional to one another and, in each row, the
elements after the semicolon are the inverses of the elements before semicolon. For the identity,
and for (x − a)/(x − 1), a(x − 1)/(x − a) and a/x the other singular point is mapped onto a,
while for the remaining cases it changes to [2, 5]

1
a
, 1− a, 1

1− a
,

a

a− 1
,
a− 1
a

. (11)

Sometimes solutions for the Heun equation are denoted by H(x) = Hl(a, q;α, β, γ, δ;x),
where Hl means ‘Heun-local’, that is, a solution which converges in a region containing
only one of the four singular points [2, 5]. For brevity, we drop the letter l, writing
H(x) = H(a, q;α, β, γ, δ;x). Then, the Möbius substitutions permit onto map a solution H(x)
into new solutions according to

H(a, q;α, β, γ, δ;x) 7→ f(x)H
[
ã, q̃; α̃, β̃, γ̃, δ̃; %(x)

]
, (12)

where the prefactor f(x) symbolises the transformation, if any, of the dependent variable which
brings the differential equation with the variable %(x) into a Heun equation having parameters
ã, q̃, α̃, β̃, γ̃ and δ̃. Depending on the transformation considered, we have

f(x) = 1, x−α, (1− x)−α, (1− x/a)−α , or (13)

f(x) = 1, x−β , (1− x)−β , (1− x/a)−β , (14)

up to a multiplicative constant. The prefactor f(x) = 1 corresponds to the linear transforma-
tions, namely: %(x) = 1−x, (a−x)/a, x/a, (1−x)/(1− a) and (a−x)/(a− 1). The first form
(13) is the one that will be adopted in the present article.

On the other side, the index transformations do not change the independent variable. They
are given by 8 elementary power transformations of the dependent variable [2, 5], namely,

H(a, q;α, β, γ, δ;x) 7→ xτ1(1− x)τ2 (1− x/a)τ3 H(a, q̃; α̃, β̃, γ̃, δ̃;x), (15)

where τ1, τ2 and τ3 are the indicial exponents at 0, 1 and a, respectively, namely: τ1 = 0 or
1−γ, τ2 = 0 or 1− δ, and τ3 = 0 or 1− ε. Since there is no change of the independent variable,
the positions of the singular points remain fixed, in contrast with the fractional transformations.
For this reason, they are also called homotopic transformations.

The composition of these two types of transformations (elementary powers and fractional)
generates the group containing the 192 transformations given in Maier’s table [2]. We refer to
such transformations by Mi (i = 1, 2, · · · , 192) following the order in which they appear in the
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table, M1 being the identity transformation. Thence, by regarding the Mi as operators, the
effects of both transformations on a solution H(x) are represented by

MiH(x) = MiH(a, q;α, β, γ, δ;x) = fi(x)H [ai, qi;αi, βi, γi, δi; %i(x)] , (16)

where ai is given by a or one of the expressions written in (11), whereas %i(x) is one of the
elements of the matrix (10).

In Maier’s table the elementary power transformations appear in the entries M1 −M4 and
M25 −M28, but here they are denoted by Ti (i = 1, · · · , 8) according to the correspondence[

T1 T2 T3 T4 T5 T6 T7 T8

M1 M25 M2 M26 M3 M27 M4 M28

]
, (17)

where T1 is the identity: T1H(x)=H(a, q;α, β, γ; δ;x). The transformations T2, T3 and T5 are
given by

T2H(x) = x1−γH
[
a, q − (γ − 1)(δa+ ε);β − γ + 1, α− γ + 1, 2− γ, δ;x

]
,

T3H(x) = (1− x)1−δH
[
a, q − (δ − 1)γa;β − δ + 1, α− δ + 1, γ, 2− δ;x

]
,

T5H(x) =
[
1− (x/a)

]1−ε
H
[
a, q − γ(α+ β − γ − δ);−α+ γ + δ,−β + γ + δ, γ, δ;x

]
.

(18)

and are the generators of the other Ti. In these transformations we cannot change the order of
the parameters αi and βi, that is, we must read

for T2 : α2 = β − γ + 1, β2 = α− γ + 1;

for T3 : α3 = β − δ + 1, β3 = α− δ + 1;

for T5 : α5 = −α+ γ + δ, β5 = −β + γ + δ.

(19)

In effect, it is possible to obtain the 192 transformations only if T2, T3 and T5 transform the
prefactors x−α, (1− x)−α and (1− x/a)−α of the Möbius transformations into x−β , (1− x)−β
and (1 − x/a)−β , and vice-versa. For the other transformations, the positions of αi and βi
result from the compositions

T4H(x) = T2T3H(x), T6H(x) = T2T5H, T7H(x) = T3T5H(x), T8H = T2T3T5H(x), (20)

where the order of the operators Ti is irrelevant on the right-hand side since TiTj=TjTi. In
spite of this, for the three transformations Sleeman and Kuznetsov [12] writes αi and βi in the
inverse order, while Arscott [5] inverts the order in T2 and T3.

The above order for αi and βi is important regardless the composition among the two types
of transformations. This becomes apparent by considering an Erdélyi solution in series of
hypergeometric functions F (a,b; c;x), given by [13]

H1(x) =
∞∑
n=0

b(1)n F (n+ α,−n− α− 1 + γ + δ; γ;x) , (21)

where the coefficients b(1)n satisfy three-term recurrence relations. From this we can generate
a subgroup constituted by 8 solutions by writing Hi(x) = TiH1(x). In particular, the solution
with α in the place of β is

H3(x) = T3H1(x) = (1− x)1−δ
∞∑
n=0

b(3)n F (n+ β + 1− δ,−n− β + γ; γ;x)

=
∞∑
n=0

b(3)n F (n+ β,−n− β − 1 + γ + δ; γ;x) , (22)

where the last equality follows from Eq. (32) written later on. By interchanging α3 and β3 in
T3, we would obtain the identity H3(x) = H1(x) , that is, we would miss one solution at least.

As aforementioned, we take the Möbius transformations with prefactors given in Eqs. (13)
as the basic ones. Then, the substitutions (10) correspond to the following entries in Maier’s
table:[

M1 M5 M13 M49 M57 M101; M145 M53 M97 M149 M105 M157

M9 M21 M17 M61 M65 M109; M153 M69 M117 M161 M113 M165

]
, (23)

where each column presents the same prefactor.
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2.2. Transformations of kernel equation and notations

Since Eq. (8) is independent of the parameter q, a general kernel will be denoted by G(x, y)
= G(a;α, β, γ, δ;x, y). Then, the transformations which take the place of previous Möbius and
index transformations are given, respectively, by the mappings (symmetrical in x and y)

G [a;α, β, γ, δ;x, y] 7→ f(x)f(y)G
[
ã; α̃, β̃, γ̃, δ̃; %(x), %(y)

]
,

G [a;α, β, γ, δ;x, y] 7→ [xy]τ1 [(1− x)(1− y)]τ2
[(

1− x

a

)(
1− y

a

)]τ3
G
[
a; α̃, β̃, γ̃, δ̃;x, y

]
,

where the prefactors f(x) and f(y), as well as the fractional transformations %(x) and %(y), are
formally the same which occur in the transformations of the Heun equation. These substitutions
preserve the form of equation [Mx−My]G = 0 for the kernels because all the parameters of the
operators Mx and My transform as in the Heun equation, and constant terms corresponding to
the transformations of q cancel out. In terms of operators we rewrite these transformations as

KiG(x, y) = KiG(a;α, β, γ, δ;x, y) = fi(x)fi(y)G
[
ai;αi, βi, γi, δi; %i(x), %i(y)

]
, (24)

where Ki is obtained from the corresponding Mi of Eq. (16).
We split the operators Ki in two subgroups: the operators denoted by Ni correspond to

the 8 index transformations Ti, and the operators denoted by Ki correspond to the 24 Möbius
transformations. Thus, the homotopic transformations Ni for the kernels are

N1G(x, y) = G(x, y) = G [a;α, β, γ, δ;x, y] [Identity],

N2G(x, y) = (xy)1−γG
[
a;β − γ + 1, α− γ + 1, 2− γ, δ;x, y

]
.

N3G(x, y) = [(1− x)(1− y)]1−δG
[
a;β − δ + 1, α− δ + 1, γ, 2− δ;x, y

]
,

N4G(x, y) = (xy)1−γ [(1− x)(1− y]1−δ

× G
[
a;α− γ − δ + 2, β − γ − δ + 2, 2− γ, 2− δ;x, y

]
,

N5G(x, y) =
[(

1− x

a

)(
1− y

a

)]1−ε
G
[
a;−α+ γ + δ,−β + γ + δ, γ, δ;x, y

]
,

N6G(x, y) = (xy)1−γ
[(

1− x

a

)(
1− y

a

)]1−ε
× G

[
a;−β + δ + 1,−α+ δ + 1, 2− γ, δ;x; y

]
,

N7G(x, y) = [(1− x)(1− y)]1−δ
[(

1− x

a

)(
1− y

a

)]1−ε
× G

[
a;−β + γ + 1,−α+ γ + 1, γ, 2− δ;x, y

]
,

N8G(x, y) = (xy)1−γ [(1− x)(1− y)]1−δ
[(

1− x

a

)(
1− y

a

)]1−ε
× G

[
a; 2− α, 2− β, 2− γ, 2− δ;x, y

]
.

Notice that in fact N1 is the identity only if α 7→ α and β 7→ β. As in Ti, we cannot
permute αi and βi in N2, N3 and N5 because such transformations must change the exponents
α of the prefactors (27) (for fractional transformations) into β, and vice-versa. For the other
transformations, the above positions of αi and βi result from the compositions

N4G(x, y) = N2N3G(x, y), N6G(x, y) = N2N5G(x, y),

N7G(x, y) = N3N5G(x, y), N8G(x, y) = N2N3N5G(x, y),
(25)

where the order of the operators Ni is irrelevant on the right-hand side. Thus, N2, N3 and N5

are the generators of the index transformations for the kernels.
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On the other side, each of the 24 Möbius transformations Mi given in the matrix (23) is
associated to a kernel transformation denoted by Kj (j = 1, · · · , 12 for the first row and
j = 13, · · · , 24 for the second) as[

K1 K2 K3 K4 K5 K6; K7 K8 K9 K10 K11 K12

K13 K14 K15 K16 K17 K18; K19 K20 K21 K22 K23 K24

]
. (26)

As in the homotopic transformations, first we must find the transformation Mi for H(x) in
Maier’s table and, then, write the kernel transformation Ki by using the prescription given
in Eq. (24). The 24 expressions for Ki are written down in Appendix B and will be used in
following subsections. The prefactors for those transformations are

1, (zy)−α, [(1− x)(1− y)]−α ,
[(

1− x

a

)(
1− y

a

)]−α
. (27)

Transformations having prefactors with exponent β are generated from the ones of Appendix
B by applying N2 when the prefactor is (zy)−α, N3 when [(1− x)(1− y)]−α and N5 when
[(1− x/a) (1− y/a)]−α.

We could denote an initial kernel by G1
1(x, y), and by Gji (x, y) the kernels obtained from

G1
1(x, y) by using Ni and Kj , where

in Gji (x, y) :

{
j indicates Möbius transformation, Kj ,

i indicates index transformation, Ni,

being necessary to specify the transformation applied in the first place since in general index
and Möbius transformations do not commute. However, this notation is not sufficient because
we will consider a set of initial kernels rather than a single kernel. For the Lambe-Ward case,
we start with six kernels given by distinct hypergeometric functions and use the notation G

1(k)
1

where k runs from 1 to 6; for the Erdélyi case we take 36 products of hypergeometric functions
and then the initial set is denoted by G

1(k,l)
1 . Thence, the actual notation will be

G
j(k)
i (x, y) for Lambe-Ward-type kernels ; G

j(k,l)
i (x, y) for Erdélyi-type, (28)

where the indices inside parentheses are not affected by the application of the transformations
Ni and Kj .

The Lambe-Ward kernels G
1(k)
1 (x, y) defined in Eq. (34) and Erdélyi kernels G

1(k,l)
1 (x, y)

defined in Eq. (47) are the initial kernels which are obtained by solving directly the kernel
equation. We will find that Kj with j = 2, · · · , 6 are the only effective Möbius transformations.
These lead to five additional sets of Lambe-Ward-type kernels, denoted and obtained as

G
2(k)
1 = K2G

1(k)
1 , G

3(k)
1 = K3G

1(k)
1 , G

4(k)
1 = K4G

1(k)
1 ,

G
5(k)
1 = K5G

1(k)
1 , G

6(k)
1 = K6G

1(k)
1 , [k = 1, 2, · · · , 6].

(29)

Similarly, the new Erdélyi-type kernels are

G
2(k,l)
1 = K2G

1(k,l)
1 , G

3(k,l)
1 = K3G

1(k,l)
1 , G

4(k,l)
1 = K4G

1(k,l)
1 ,

G
5(k,l)
1 = K5G

1(k,l)
1 , G

6(k,l)
1 = K6G

1(k,l)
1 , [k, l = 1, 2, · · · , 6].

(30)

In each case, the subscript could assume eight values when we apply the homotopic transforma-
tions Ni. Nevertheless, we will find that only three of the Ni are effective due to fact that one
of the generators N2, N3, N5 becomes equivalent to the identity or two of them are equivalent
to each other. Thus, there are only four values for the subscripts.

2.3. Generalisation of Lambe-Ward’s kernels

The Lambe-Ward as well as the Erdélyi kernels are given by hypergeometric functions
F (a,b; c;u) = F (b, a; c;u). In fact, in the vicinity of the singular points 0, 1 and ∞, the
formal solutions for the hypergeometric equation (4) are [14], respectively,

F (1)(u) = F (a,b; c;u) , F (2)(u) = u1−cF (a + 1− c,b + 1− c; 2− c;u) ; (31a)
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F (3)(u) = F (a,b; a + b + 1− c; 1− u) ,

F (4)(u) = (1− u)c−a−b
F (c− a, c− b; 1 + c− a− b; 1− u) ;

(31b)

F (5)(u) = u−aF (a, a + 1− c; a + 1− b; 1/u) ,

F (6)(u) = u−bF (b + 1− c,b; b + 1− a; 1/u) .
(31c)

Each of these functions may be written in four forms by using the relations

F (a,b; c; u) = (1− u)c−a−bF (c− a, c− b; c; u), (32)

F (a,b; c; u) = (1− u)−aF [a, c− b; c; u/(u− 1)] . (33)

The Lambe and Ward kernels [3] in terms of single hypergeometric functions are obtained
by taking u = xy/a and G(x, y) = F (u)

in [Mx −My] G(x, y) = 0. Hence, F (u) satisfies equation (4) with a = α, b = β and c = γ.
Thus, the six formal kernels have the form

G
1(i)
1 (x, y) = F (i)

(xy
a

)
, [a = α, b = β, c = γ] (34)

In this manner, up to a multiplicative constant, the initial set of kernels is given by

G
1(1)
1 (x, y) = F

(
α, β; γ;

xy

a

)
,

G
1(2)
1 (x, y) = (xy)1−γF

(
α+ 1− γ, β + 1− γ; 2− γ;

xy

a

)
;

(35a)

G
1(3)
1 (x, y) = F

(
α, β;α+ β + 1− γ; 1− xy

a

)
,

G
1(4)
1 (x, y) =

(
1− xy

a

)γ−α−β
F
(
γ − α, γ − β; 1 + γ − α− β; 1− xy

a

)
;

(35b)

G
1(5)
1 (x, y) = (xy)−αF

(
α, α+ 1− γ;α+ 1− β;

a

xy

)
,

G
1(6)
1 (x, y) = (xy)−βF

(
β + 1− γ, β;β + 1− α;

a

xy

)
.

(35c)

By using this set of initial kernels, some of the kernel transformations become superfluous. In
effect, by the transformations Ni we could obtain a subgroup containing eight sets. However,
for the present case N2 is ineffective since

N2

(
G

1(1)
1 ,G

1(2)
1 ,G

1(3)
1 ,G

1(4)
1 ,G

1(5)
1 ,G

1(6)
1

)
=
(
G

1(2)
1 ,G

1(1)
1 ,G

1(3)
1 ,G

1(4)
1 ,G

1(6)
1 ,G

1(5)
1

)
,

that is, N2 simply rearranges in a different order the previous kernels. In this sense the generator
N2 is equivalent to the identity N1 and, so, the index transformations can generate only three
additional sets due to composition relations (25). In fact we find that

N3G
1(i)
1 ⇔ N4G

1(i)
1 , N5G

1(i)
1 ⇔ N6G

1(i)
1 , N7G

1(i)
1 ⇔ N8G

1(i)
1 .

Therefore, it is sufficient to use the transformations N3, N5 and N7 to produce three additional
sets, namely: G

1(k)
3 , G

1(k)
5 and G

1(k)
7 . The eight kernels G

1(1)
i and G

1(2)
i (i = 1, 3, 5, 7) coincide

with the ones given by Lambe and Ward. Now, we regard the generalisations arising from the
Möbius transformations Kj . By one side we find

K13

(
G

1(1)
1 ,G

1(2)
1 ,G

1(3)
1 ,G

1(4)
1 ,G

1(5)
1 ,G

1(6)
1

)
=
(
G

1(1)
1 ,G

1(2)
1 ,G

1(3)
1 ,G

1(4)
1 ,G

1(5)
1 ,G

1(6)
1

)
,

that is, the transformations K1 (identity) and K13 of the first column of (26) are equivalent, a
fact that holds for the transformations of any column. Thus we have to take into account only
the twelve transformations of the first row. However, we find as well that

K7

(
G

1(1)
1 ,G

1(2)
1 ,G

1(3)
1 ,G

1(4)
1 ,G

1(5)
1 ,G

1(6)
1

)
=
(
G

1(5)
1 ,G

1(6)
1 ,G

1(3)
1 ,G

1(4)
1 ,G

1(1)
1 ,G

1(2)
1

)
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that is, K7 rearranges the initial kernels. This could be expected because K1 7→ K7 corresponds
to the inversions (x, y) 7→ (1/x, 1/y) which are already incorporated into the original set. This is
the same for the other transformations corresponding to inverted mappings, that is, Ki ⇔ Ki+6

(i = 1, · · · , 6). Therefore, we may apply only the transformations K2, K3, K4, K5 and K6 on
G

1(k)
1 according to Eq. (29) in order to find new sets, each one containing six hypergeometric

functions. To determine which are the transformations Ni that are suitable to generate new
kernels, it is sufficient to regard the pair

(
G
j(1)
1 ,G

j(2)
1

)
; the other pairs may be obtained by

replacing the F (a,b; c;u) which appears in G
j(1)
1 by the hypergeometric functions written in

Eqs. (31b-c).
Thus, from K2 we find

G
2(1)
1 (x, y) = [(1− x)(1− y)]−α F

[
α, 1 + α− δ; γ;

(a− 1)xy
a(x− 1)(y − 1)

]
,

G
2(2)
1 (x, y) = [(1− x)(1− y)]γ−α−1 (xy)1−γ×

F
[
α+ 1− γ, 2 + α− γ − δ; 2− γ; (a−1)xy

a(x−1)(y−1)

]
,

(36)

together with the two pairs generated by using the hypergeometric functions (31b-c), as ex-
plained above. For this case, the generators N2 and N3 are equivalent to each other and,
consequently, the Ni afford only three additional sets. We find

N1G
2(i)
1 ⇔ N4G

2(i)
1 , N2G

2(i)
1 ⇔ N3G

2(i)
1 , N5G

2(i)
1 ⇔ N8G

1(i)
2 , N6G

1(i)
1 ⇔ N7G

1(i)
1 .

Thence we may use only the transformations N2, N5 and N6. On the other hand, by using K3,
we get

G
3(1)
1 (x, y) =

[(
1− x

a

)(
1− y

a

)]−α
F

[
α, γ + δ − β; γ;

(1− a)xy
(a− x)(a− y)

]
,

G
3(2)
1 (x, y) = [xy]1−γ

[(
1− x

a

)(
1− y

a

)]γ−1−α
×

F

[
α+ 1− γ, δ + 1− β; 2− γ;

(1− a)xy
(a− x)(a− y)

]
.

(37)

This time N1 ⇔ N6, N2 ⇔ N5, N3 ⇔ N8 and N4 ⇔ N7. Thus, the transformations N2, N3

and N4 are sufficient. The transformation K4 yields

G
4(1)
1 (x, y) = F

[
α, β; δ;

(x− 1)(y − 1)
1− a

]
,

G
4(2)
1 (x, y) = [(1− x)(1− y)]1−δ F

[
α+ 1− δ, β + 1− δ; 2− δ; (x− 1)(y − 1)

1− a

]
.

(38)

Since N1 ⇔ N3, N2 ⇔ N4, N5 ⇔ N7 and N6 ⇔ N8, we can choose only N2, N5 and N6. By
K6 we get

G
5(1)
1 (x, y) =

[(
1− x

a

)(
1− y

a

)]−α
F

[
α, γ + δ − β; δ;

a(x− 1)(y − 1)
(x− a)(y − a)

]
,

G
5(2)
1 (x, y) = [(1− x)(1− y)]1−δ

[(
1− x

a

)(
1− y

a

)]δ−1−α
×

F

[
α+ 1− δ, γ + 1− β; 2− δ; a(x− 1)(y − 1)

(x− a)(y − a)

]
,

(39)

together with the sets obtained by applying N2, N3 and N4, because N1 ⇔ N7, N2 ⇔ N8,
N3 ⇔ N5 and N4 ⇔ N6 for this subgroup. Finally, the transformation K6 leads to

G
6(1)
1 (x, y) = F

[
α, β; ε;

(x− a)(y − a)
a(a− 1)

]
,

G
6(2)
1 (x, y) =

[(
1− x

a

)(
1− y

a

)]1−ε
F

[
γ + δ − α, γ + δ − β; 2− ε; (x− a)(y − a)

a(a− 1)

]
,

(40)
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and the sets resulting from this by N2, N3 and N4 since now N1 ⇔ N5, N2 ⇔ N6, N3 ⇔ N7

and N4 ⇔ N8.
In summary, the substitutions of the independent variables that convert the kernel equation

(8) into a hypergeometric equation are (x, y) 7→ u(x, y), where u(x, y) is given by

xy

a
,

(a− 1)xy
a(x− 1)(y − 1)

,
(1− a)xy

(a− x)(a− y)
,

(x− 1)(y − 1)
1− a

,
a(x− 1)(y − 1)
(x− a)(y − a)

,
(x− a)(y − a)
a(a− 1)

. (41)

In general it is necessary to perform a substitution of the dependent variable as well.

2.4. Generalisation of Erdélyi’s kernels

These are given by products of hypergeometric functions containing an arbitrary separation
constant λ. When this constant is appropriately chosen, we recover the Lambe-Ward-type
kernels. The Erdélyi kernels are obtained by rewriting equation (8) in terms of the independent
variables [4]

ξ =
xy

a
, ζ =

(x− a)(y − a)
(1− a)(xy − a)

, (42)

and, then, by accomplishing separation of variables in the resulting equation. It turns out that

G(x, y) =
(
1− ξ

)−λ
P (ξ) Q(ζ), (43)

where P (ξ) and Q(ζ) satisfy the hypergeometric equation (4) with the following sets of param-
eters:

P (ξ) : a = α− λ, b = β − λ, c = γ;

Q(ζ) : a = λ, b = α+ β − γ − λ, c = ε.
(44)

To show this, firstly we perform the substitutions (42) in Eq. (4). We get the equation

(1− ξ)
{
ξ(1− ξ)∂

2G

∂ξ2
+
[
γ − (α+ β + 1)ξ

]∂G

∂ξ
− αβG

}
+

ζ(1− ζ)
∂2G

∂ζ2
+
[
ε− (δ + ε)ζ

]∂G

∂ζ
= 0,

which, by the separation of variables G(ξ, ζ) = P̄ (ξ)Q(ζ), becomes

(1− ξ)
P̄

{
ξ(1− ξ)d

2P̄

dξ2
+
[
γ − (γ + δ + ε)ξ

]dP̄
dξ
− αβP̄

}
+

1
Q

{
ζ(1− ζ)

d2Q

dζ2
+
[
ε− (δ + ε)ζ

]dQ
dζ

}
= 0.

Denoting the separation constant by λ(α+ β − γ − λ), we obtain

ζ(1− ζ)
d2Q

dζ2
+
[
ε− (δ + ε)ζ

]dQ
dζ
− λ(α+ β − γ − λ)Q = 0, (45)

ξ(1− ξ)d
2P̄

dξ2
+
[
γ − (γ + β + 1)ξ

]dP̄
dξ
−
[
αβ − λ(α+ β − γ − λ)

1− ξ

]
P̄ = 0.

The additional substitution P̄ = (1− ξ)−λP leads to

ξ(1− ξ)d
2P

dξ2
+
[
γ − (α+ β + 1− 2λ)ξ

]dP
dξ
− (α− λ)(β − λ)P = 0. (46)

In this manner, P (ξ) and Q(ζ) satisfy hypergeometric equations with the parameters given
in (44). If λ = 0, we can take Q(ζ) = constant in order to recover the Lambe-Ward
kernels, G

1(i)
1 . On the other hand, for λ = α and P (ξ) = constant, the resulting ker-

nels belong to the generalised Lambe-Ward kernels G
6(j)
i (x, y) which accompany the kernels
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(39), since by relation (33) the arguments of the hypergeometric functions take the form
u = (x− a)(y − a)/[a(x− 1)(y − 1)], 1− u or 1/u.

For P (ξ) we select two hypergeometric functions in the neighbourhood of each singular point,
as in the Lambe-Ward case. Since for Q(ζ) there are six possibilities as well, we write the initial
set as

G
1(k,l)
1 (x, y) =

(
1− ξ

)−λ
P (k)(ξ) Q(l)(ζ), (47)

where P (k)(ξ) and Q(l)(ζ) are obtained from the six hypergeometric functions (31a-c), having
parameters specified in (44). Explicitly, we find

G
1(1,l)
1 (x, y) =

(
1− xy

a

)−λ
F
[
α− λ, β − λ; γ;

xy

a

]
Q(l)(ζ),

G
1(2,l)
1 (x, y) = (xy)1−γ

(
1− xy

a

)−λ
F
[
α+ 1− γ − λ, β + 1− γ − λ; 2− γ;

xy

a

]
Q(l)(ζ);

(48a)

G
1(3,l)
1 (x, y) =

(
1− xy

a

)−λ
F
[
α− λ, β − λ; 1 + α+ β − γ − 2λ; 1− xy

a

]
Q(l)(ζ),

G
1(4,l)
1 (x, y) =

(
1− xy

a

)γ−α−β+λ

×

F
[
γ − α+ λ, γ − β + λ; 1 + γ − α− β + 2λ; 1− xy

a

]
Q(l)(ζ);

(48b)

G
1(5,l)
1 (x, y) = (xy)λ−α

(
1− xy

a

)−λ
F

[
α− λ, α+ 1− γ − λ; 1 + α− β;

a

xy

]
Q(l)(ζ),

G
1(6,l)
1 (x, y) = (xy)λ−β

(
1− xy

a

)−λ
F

[
β − λ, β + 1− γ − λ; 1 + β − α;

a

xy

]
Q(l)(ζ),

(48c)

where

Q(1)(ζ) = F

[
λ, α+ β − γ − λ; ε;

(x− a)(y − a)
(1− a)(xy − a)

]
,

Q(2)(ζ) =
[

(x− a)(y − a)
(1− a)(xy − a)

]1−ε
F

[
λ+ 1− ε, δ − λ; 2− ε; (x− a)(y − a)

(1− a)(xy − a)

]
,

Q(3)(ζ) = F

[
λ, α+ β − γ − λ; δ; 1− (x− a)(y − a)

(1− a)(xy − a)

]
,

Q(4)(ζ) =
[
1− (x− a)(y − a)

(1− a)(xy − a)

]1−δ
F

[
ε− λ, 1 + λ− δ; 2− δ; 1− (x− a)(y − a)

(1− a)(xy − a)

]
,

Q(5)(ζ) =
[

(x− a)(y − a)
(1− a)(xy − a)

]−λ
F

[
λ, 1 + λ− ε; 1 + 2λ− α− β;

(1− a)(xy − a)
(x− a)(y − a)

]
,

Q(6)(ζ) =
[

(x− a)(y − a)
(1− a)(xy − a)

]λ+γ−α−δ

× F

[
δ − λ, α+ β − γ + λ; 1− 2λ+ α+ β;

(1− a)(xy − a)
(x− a)(y − a)

]
. (48d)

We can generate additional kernels with the same arguments for the hypergeometric functions
by applying the index transformations Ni. However, as in the case of the Lambe-Ward kernels,
we find that

N1G
1(k,l)
1 ⇔ N2G

1(k,l)
1 , N3G

1(k,l)
1 ⇔ N4G

1(k,l)
1 , N5G

1(k,l)
1 ⇔ N6G

1(k,l)
1 , N7G

1(k,l)
1 ⇔ N8G

1(k,l)
1 .
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Thence, again it is sufficient to use the transformations N3, N5 and N7 in order to generate
the first subgroup of kernels.

The next step refers to the generalisation of the Erdélyi kernels by means of the Möbius trans-
formations Ki, which now change as well the arguments of the two hypergeometric functions.
We transform only the kernel G1(1,1)

1 whose explicit form is

G
1(1,1)
1 (x, y) =

(
1− xy

a

)−λ
F
[
α− λ, β − λ; γ;

xy

a

]
× F

[
λ, α+ β − γ − λ; ε;

(x− a)(y − a)
(1− a)(xy − a)

]
. (49)

The 36 kernels are obtained by replacing each hypergeometric function by the other expressions
given in Eqs. (31a-c), all of them with the same λ.

Again we can use only the transformations K2, K3, K4, K5 and K6, the same ones employed
in the Lambe-Ward case. In effect, K13 gives

K13G
1(1,1)
1 (x, y) =

(
1− xy

a

)−λ
F
[
α− λ, β − λ; γ;

xy

a

]
× F

[
λ, α+ β − γ − λ; δ;

a(x− 1)(y − 1)
(a− 1)(xy − a)

]
= G

1(1,3)
1 (x, y).

Considering the other kernels, we conclude that K13 is equivalent to the identity K1 and,
consequently, the kernels corresponding to the transformations of every column of matrix (26)
are equivalent to each another. In addition, as in Lambe-Ward case, we find Ki ⇔ Ki+6

(i = 1, · · · , 6).
Thus, applying K2, K3, K4, K5 and K6 on G

1(1,1)
1 , we find the kernels

G
2(1,1)
1 (x, y) = [(1− x)(1− y)]−α

[
1− (a− 1)xy

a(x− 1)(y − 1)

]−λ
× F

[
α− λ, 1 + α− δ − λ; γ;

(a− 1)xy
a(x− 1)(y − 1)

]

× F

[
λ, 1 + 2α− γ − δ − λ; ε;

(x− a)(y − a)
a(1− x− y) + xy

]
, (50)

G
3(1,1)
1 (x, y) =

[(
1− x

a

)(
1− y

a

)]−α [
1− (1− a)xy

(x− a)(y − a)

]−λ
× F

[
α− λ, γ + δ − β − λ; γ;

(1− a)xy
(a− x)(a− y)

]
× F

[
λ, α− β + δ − λ; δ;

(x− 1)(y − 1)
a+ xy − x− y

]
, (51)

G
4(1,1)
1 (x, y) =

[
1− (x− 1)(y − 1)

1− a

]−λ
F

[
α− λ, β − λ; γ;

(x− 1)(y − 1)
1− a

]

× F

[
λ, α− β − δ − λ; ε;

(x− a)(y − a)
a(a+ xy − x− y)

]
, (52)

G
5(1,1)
1 (x, y) =

[(
1− x

a

)(
1− y

a

)]−α [
1− a(x− 1)(y − 1)

(x− a)(y − a)

]−λ
× F

[
α− λ, γ + δ − β − λ; δ;

a(x− 1)(y − 1)
(x− a)(y − a)

]
× F

[
λ, α− β + γ − λ; γ;

xy

xy − a

]
, (53)

G
6(1,1)
1 (x, y) =

[
1− (x− a)(y − a)

a(a− 1)

]−λ
F

[
α− λ, β − λ; ε;

(x− a)(y − a)
a(a− 1)

]

× F

[
λ, γ + δ − 1− λ; δ;

a(x− 1)(y − 1)
a(1− x− y) + xy

]
. (54)
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The index transformations suitable for each set are: N2, N5 and N6 for G
2(k,l)
1 and G

4(k,l)
1 ; N2,

N3 and N4 for G
3(k,l)
1 , G

5(k,l)
1 and G

6(k,l)
1 . The previous kernels show that, in addition to the

Erdélyi substitutions (42) for the independent variables, there are five other choices for (ξ, ζ).

3. Confluent Heun equation

In this section we show that each transformation of the confluent Heun equation (CHE) is
associated with a transformation of the equation for its kernels. We also show that some kernels
of Heun’s equation lead to kernels for the CHE through the limits (5). For this end we rewrite
the CHE (6) as

[Mx − σ]H(x) = 0, Mx = x(x− 1)
∂2

∂x2
+
[
− γ + (γ + δ)x+ ρx(x− 1)

] ∂
∂x

+ αρx, (55)

where in the previous equation Mx is an ordinary differential operator. For the limits (5), the
integral (7) becomes

H(x) =
∫ y2

y1

eρy yγ−1(1− y)δ−1G(x, y)H(y)dy, (56)

where the exponential results from the limit of (1 − y/a)ε−1. Besides this, Eq. (8) for G(x, y)
takes the form

[Mx −My] G(x, y) = 0, (57)

while the expression (9) for the bilinear concomitant becomes

P(x, y) = eρy yγ(1− y)δ
[
H(y)

∂G(x, y)
∂y

− G(x, y)
dH(y)
dy

]
. (58)

First we discuss the transformations for the CHE (55) and its kernels (57) and, after this, we
explain how to get kernels for the CHE from the ones of the general equation (1).

3.1. Transformation of the confluent equation and its kernels

There are 16 variables substitutions which preserve the form of the CHE [8]. If H(x) =
H(σ; ρ, α, γ, δ;x) denotes one solution of the CHE (55), these transformations are summarised
in the rules T1, T2, T3 and T4 that operate as

T1H(x) = (1− x)1−δ H
[
σ − γ(1− δ); ρ, α+ 1− δ, γ, 2− δ;x

]
,

T2H(x) = x1−γ H
[
σ + (1− γ)(ρ− δ); ρ, α+ 1− γ, 2− γ, δ;x

]
,

T3H(x) = e−ρx H[σ − γρ;−ρ, γ + δ − α, γ, δ;x],

T4H(x) = H
[
σ − ρα;−ρ, α, δ, γ; 1− x

]
.

(59)

Compositions of these give the group having 16 elements.
On the other side, equation (57) for the kernels is written in terms of the same differ-

ential operator which appears in the CHE (6). Consequently, proceeding as in the case
of the general Heun equation, the corresponding rules Ki for transforming a given kernel
G(x, y) = G(ρ, α, γ, δ;x, y)) are

K1G(x, y) =
[
(1− x)(1− y)

]1−δ
G
[
ρ, α+ 1− δ, γ, 2− δ;x, y

]
,

K2G(x, y) = (xy)1−γ G
[
ρ, α+ 1− γ, 2− γ, δ;x, y

]
,

K3G(x, y) = e−ρ(x+y) G[−ρ, γ + δ − α, γ, δ;x, y],

K4G(x, y) = G
[
− ρ, α, δ, γ; 1− x, 1− y

]
.

(60)

These rules can be verified by substitutions of variables. However, they are useful to produce
new kernels when one knows an initial kernel for the CHE. In the following we obtain initial
kernels as limits of kernels for the Heun equation. Any kernel which can be generated by the
above transformations is omitted.
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3.2. “Lambe-Ward-type” kernels

The limits (5) applied to kernels of Sec. 2.3 give three kinds of kernels for the CHE, two
in terms of confluent hypergeometric functions and one in terms of Gauss hypergeometric
functions. The regular and irregular confluent hypergeometric functions, denoted by Φ(a, c; y)
and Ψ(a, c; y), respectively, are solutions of the equation

u
d2ϕ

du2
+ (c− u)

dϕ

du
− aϕ = 0. (61a)

The following types of solutions for Eq. (61a)

ϕ(1)(u) = Φ(a, c;u), ϕ(2)(u) = euu1−cΦ(1− a, 2− c;−u),

ϕ(3)(u) = Ψ(a, c;u), ϕ(4)(u) = euu1−cΨ(1− a, 2− c;−u),
(61b)

are all defined and distinct only if c is not an integer [14]. Alternative forms for these solutions
follow from the relations

Φ(a, c;u) = euΦ(c− a, c;−u), Ψ(a, c;u) = u1−cΨ(1 + a− c, 2− c;u). (61c)

In the present context, the above confluent hypergeometric functions result from the limits
[14]

lim
c→∞

F
(

a,b; c; 1− c
u

)
= lim

c→∞
F
(

a,b; c;− c
u

)
= uaΨ(a, a + 1− b;u),

lim
b→∞

F
(

a,b; c;
u

b

)
= Φ(a, c;u).

(62)

Sometimes, before applying these limits, it is necessary to use the relations (32) and/or (33)
and, in addition, multiply the kernels by suitable constants depending on the parameter a.
Furthermore, note that both a and β tend to infinity but such that β = −ρa, where ρ is
constant. For this reason we can write, for example,

F
(
α, β; γ;

xy

a

)
= F

(
α, β; γ;

−ρxy
β

)
,
(

1− xy

a

)−β
=
(

1 +
ρxy

β

)−β
and, thence, accomplish the limit β →∞ by keeping ρxy fixed.

Thus, the first set of section 2.3, G
1(i)
1 (x, y), gives the limits

G
1(1)
1 (x, y)→ Φ (α, γ;−ρxy) ,

G
1(2)
1 (x, y)→ e−ρxy (xy)1−γ Φ (1− α, 2− γ; ρxy) ,

G
1(3)
1 (x, y) and G

1(5)
1 (x, y)→ Ψ (α, γ;−ρxy) ,

G
1(4)
1 (x, y) and G

1(6)
1 (x, y)→ e−ρxy(xy)1−γ Ψ (1− α, 2− γ; ρxy) ,

which, by means of (61b), can be written as

G
(i)
1 (x, y) = ϕ(i)(u), with u = −ρxy, a = α, c = γ [i = 1, 2, 3, 4]. (63)

This initial set of kernels is really due to Lambe and Ward because it is given by confluent
hypergeometric functions whose arguments depend on the product xy as in [3]. The previous
transformations Ki produce new solutions of this type.

The limits of the set G
2(i)
1 (x, y), Sec. 2.3, gives six kernels in terms of Gauss hypergeometric

functions (31a-c), written as

G̃
(i)
1 (x, y) = [(1− x)(1− y)]−α F (i)(u), [i = 1, · · · , 6] (64)

with u =
xy

(x− 1)(y − 1)
, a = α, b = 1 + α− δ, a = γ.

We can also apply the transformations Kj in order to generate a group of kernels. Notice that
this group results from a generalisation of the Lambe-Ward kernels and, as far as we know, it
is new.
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Finally, another set of kernels is given by confluent hypergeometric functions (61b) whose
arguments are proportional to x+ y − 1. It is obtained as limits of the kernels (40) and reads

Ĝ
(i)
1 = ϕ(i)(u), with u = −ρ(x+ y − 1), a = α, c = γ + δ [i = 1, 2, 3, 4]. (65)

Other kernels follow from the transformations Ki. This group is also a result of a generalisation
of the Lambe-Ward kernels, but kernels having this form are already known in the literature
[9, 11].

3.3. “Erdélyi-type” kernels

By taking the limits of the Erdélyi-type kernels we find two groups of kernels for the CHE.
The group given by products of confluent hypergeometric functions has already appeared in
the literature [15], whereas the group given by products of hypergeometric and confluent hy-
pergeometric functions seems to be new. In the limit process we suppose that λ is kept fixed,
that is, we assume that λ does not depend on the parameters β and a of the Heun equation.

Thus, by taking the limit of the kernels G
1(k,l)
1 (x, y) given in (47), we get an initial set of

kernels given by

G
(i,j)
1 = ϕ(i)(ξ)ϕ̄(j)(ζ), [i, j = 1, 2, 3, 4] (66)

where ϕ(i)(ξ) and ϕ̄(j)(ζ) are the solutions (61b) for the confluent hypergeometric equation,
having the following arguments and parameters :

ϕi(ξ) : ξ = −ρxy, a = α− λ, c = γ; ϕ̄j(ζ) : ζ = ρ(x− 1)(y − 1), a = λ, c = δ. (67)

The four kernels given by products of regular functions Φ are

G
(1,1)
1 (x, y) = Φ [α− λ, γ;−ρxy] Φ [λ, δ; ρ(x− 1)(y − 1)] ,

G
(1,2)
1 (x, y) = eρ(x−1)(y−1) [(x− 1)(y − 1)]1−δ Φ [α− λ, γ;−ρxy]

× Φ [1− λ, 2− δ;−ρ(x− 1)(y − 1)] ,

G
(2,1)
1 (x, y) = e−ρxy(xy)1−γΦ [λ+ 1− α, 2− γ; ρxy] Φ [λ, δ; ρ(x− 1)(y − 1)] ,

G
(2,2)
1 (x, y) = e−ρ(x+y)(xy)1−γ [(x− 1)(y − 1)]1−δ Φ [λ+ 1− α, 2− γ; ρxy]

× Φ [1− λ, 2− δ;−ρ(x− 1)(y − 1)] .

Replacing one or both Φ by Ψ we get the set with 16 kernels. The other sets result from this
by the transformations Ki.

In the second place, the kernel G
6(1,1)
1 (x, y), Eq. (54), yields a kernel G̃(2,1)

1 (x, y) constituted
by a product of hypergeometric and confluent hypergeometric functions, namely,

G̃
(2,1)
1 (x, y) = (1− x− y)−λ Ψ [α− λ, γ + δ − 2λ; ρ(1− x− y)]

× F

[
λ, γ + δ − 1− λ; δ;

(x− 1)(y − 1)
1− x− y

]
.

By considering the limits of the full set G
6(k,l)
1 (x, y) we obtain the initial set

G̃
(i,j)
1 (x, y) = ϕ(i)(ξ)F (j)(ζ), [i = 1, · · · , 4; j = 1, · · · , 6] (68)

where ϕ(i) are the four solutions for confluent hypergeometric equation and where F (j) are the
six solutions for hypergeometric equation with the following arguments and parameters:

ϕ(i)(ξ) : ξ = ρ(1− x− y), a = α− λ, c = γ + δ − 2λ

F (j)(ζ) : ζ = (x−1)(y−1)
1−x−y , a = λ, b = γ + δ − 1− λ, c = δ.

(69)

The kernels G
2(k,l)
1 (x, y), Eq.(50), also lead to kernels given by products hypergeometric and

confluent hypergeometric functions, but we may show that these are connected with the previous
ones by the transformation K4.
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4. Concluding remarks

We have taken the following steps to deal with kernels for integral relations among solutions
of Heun equations:

• the use of an integral with a weight function w(x, y) which allows to write a given Heun
equation and the respective equation for the kernels in terms of operators functionally
identical, say, Mx and My;
• the use of the known transformations of the equation in order to get the actual form for

the transformations of the kernel equation;
• the generation of new kernels by applying the previous transformations to an initial kernel

or set of kernels.
• the use of a limiting procedure to generate kernels for the confluent Heun equation.

For the (general) Heun equation we have used Maier’s transformations, discarding as inappro-
priate the forms given in Refs. [5] and [12] for the homotopic transformations. As initial kernels
we have employed the ones found by Lambe and Ward, Eq. (34), and by Erdélyi, Eq. (47).

In this manner, in section 2 the transformations for integral relations have afforded several
new kernels for the Heun equation, given by a single hypergeometric function and by products of
two hypergeometric functions. We have seen that only six of the homographic transformations
for the kernels are effective, namely: K1, K2,· · · ,K6, where K1 is the identity. The fact these
are just the six first transformations of Appendix B is a consequence of manner in which we
have written the elements of matrix (10).

We have written only some of the possible kernels, but a wider list can be generated by
index transformations which lead to new kernels where the hypergeometric functions possess
the same argument but different parameters. In addition, from a kernel with a given argument,
new kernels follow from the fact that the hypergeometric equation formally admits solutions
with different arguments in the vicinity of each singular point.

In section 3, the confluence procedure (5) has led to five sets of initial kernels for the CHE,
three of them arising from generalisations of the Lambe-Ward and Erdélyi kernels by means
of Möbius transformations. This in association with the Leaver version for the CHE and the
concept of Whittaker-Ince limit suggest new kernels also for the double-confluent Heun equation
(DCHE) and for limiting cases of the CHE and DCHE. In effect, by substitutions of variables,
the CHE (6) can be written in the Leaver form [6], namely,

z(z − z0)
d2U

dz2
+ (B1 +B2z)

dU

dz
+
[
B3 − 2ηω(z − z0) + ω2z(z − z0)

]
U = 0, [ω 6= 0] (70)

where Bi, η and ω are constants, and z = 0 and z = z0 are the regular singular points. When
z0 = 0 (Leaver’s limit), this gives the DCHE

z2 d
2U

dz2
+ (B1 +B2z)

dU

dz
+
(
B3 − 2ηωz + ω2z2

)
U = 0, [B1 6= 0, ω 6= 0] , (71)

where now z = 0 and z = ∞ are irregular singularities. On the other side, these equations
admit the limit [16]

ω → 0, η →∞, such that 2ηω = −q, [Whittaker-Ince limit]

where q should not be confused with the parameter q of the Heun equation (1). The Whittaker-
Ince limit of the CHE and DCHE are, respectively, the equations

z(z − z0)
d2U

dz2
+ (B1 +B2z)

dU

dz
+ [B3 + q(z − z0)]U = 0, [q 6= 0] (72)

z2 d
2U

dz2
+ (B1 +B2z)

dU

dz
+ (B3 + qz)U = 0, [q 6= 0, B1 6= 0] (73)

which have a different type of singularity at x = ∞ as compared with the original CHE and
DCHE [16–18]. As the preceding limits connect the CHE with the DCHE and their respective
Whittaker-Ince limits, we may expect to find kernels for each of these out of kernels arising from
the Heun equation. Thus, by developing the results of section 3 we could unify the treatment of
these equations. We advance that we will find that the usual kernels for the Mathieu equation
[20] are particular cases of the kernels for Eq. (72).

The construction of new kernels can be envisaged as a first step for seeking new solutions for
the Heun equations by means of integral relations [19]. However, as in the case of the Mathieu
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equation [20], it is not easy to use this technique. Thus, in the following we focus on possibility
of using some of the Maier transformations to extend the solutions in series of hypergeometric
functions given by Svartholm in 1939 [21] and by Erdélyi in 1944 [13]. Also in this context, the
previous limits become relevant.

As a prior consideration, we note that there are three types of recurrence relations for the
series coefficients – not just one as given in the original articles and repeated since then [5, 12].
The two additional relations may be found by the procedure used in Appendix A of Ref. [22].
Then, by virtue of the new relations and by means of the homotopic transformations, we may
show that the Svartholm solutions include as particular cases the eight Fourier-type solutions
found by Ince in 1940 for the Lamé equation [12, 23].

On the other side, both the Svartholm and the Erdélyi solutions are valid only if the parameter
a satisfy the condition Re

√
1− (1/a) > 0 which is assured by requiring that a 6∈ [0, 1]. In

addition, the former solution is given by a single expansion in series of hypergeometric functions
and converges only over a finite region of the complex plane; however, the latter is in fact a
set of expansions in terms of hypergeometric functions which, by analytical continuation, may
cover the entire complex plane provided that a characteristic equation is fulfilled.

Then, Erdélyi’s solutions are candidates to solve a cosmological problem formulated by Kan-
towski [24] because in this case the variable x extend to infinity. Nevertheless, the problem
demands solutions valid also for a ∈ [0, 1]. These may be derived by applying on the Erdélyi
solutions one of the following linear transformations:

M9H(x) = H
(

1
a ,

q
a ;α, β, γ, ε; xa

)
, M61H(x) = H

(
1

1−a ,
q−αβ
a−1 ;α, β, δ, ε; x−1

a−1

)
,

M101H(x) = H
(
a−1
a , −q+αβaa ;α, β, ε, γ; a−xa

)
,

M109H(x) = H
(

a
a−1 ,

−q+αβa
a−1 ;α, β, ε, δ; a−xa−1

)
.

Hence we find, respectively, the conditions: a 6∈ [1,∞), a 6∈ (−∞, 0], a 6∈[1,∞) and a 6∈ (−∞, 0].
However, for each case it is necessary to reexamine the domains of convergence.

After these preliminaries, we conclude by adding that some of the Svartholm and Erdélyi
solutions – the solution (21), for example – lead to solutions for the CHE by means of the limits
(5). To prove this it is sufficient to divide the recurrence relations by the parameter a before
performing the limits. Furthermore, we can show as well that the solutions for the CHE in
the form (70) supply solutions for the DCHE (71) through the Leaver limit (z0 → 0). These
are additional reasons for choosing the Svartholm and Erdélyi solutions as a starting point for
further investigation.

Appendix A. Equations of the first section

Equations (8) and (9) as well as the condition P(x, y1) = P(x, y2) are obtained from the
general theory of integral relations [7] which is established for w(x, y) = 1, that is, for

H(x) =
∫ y2

y1

K(x, y)H(y)dy (A1)

where K(x, y) denotes the kernel. In this case the equation for K(x, y) is given in terms of the
operators Mx and M̄y, where M̄y is the adjoint operator [7] corresponding to My, that is,

M̄y = y(y − 1)(y − a)
∂2

∂y2
+
[
(2− γ)(y − 1)(y − a) + (2− δ)y(y − a) + (2− ε)y(y − 1)

] ∂
∂y

+
[
4− 2(α+ β + 1) + αβ

]
y + a(γ + δ − 2) + ε+ γ − 2.

By applying Mx to the integral (A1)
and supposing that the integration endpoints are independent of x, we find

MxH(x) =
∫ y2

y1

H(y)
[
Mx − M̄y

]
K(x, y)dy +

∫ y2

y1

H(y)M̄yK(x, y)dy.

Then, by requiring that the kernel satisfies the partial differential equation[
Mx − M̄y

]
K(x, y) = 0, (A2)
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the right side of of the previous integral reduces to
∫
H(y)M̄yK(x, y)dy. Using the Lagrange

identity

H(y)M̄yK(x, y) = K(x, y)MyH(y) +
∂

∂y
P(x, y)

(3)
= qK(x, y)H(y) +

∂

∂y
P(x, y),

where now P(x, y) is given by

P(x, y) = y(y − 1)(y − a)
[
H(y)

∂K(x, y)
∂y

−K(x, y)
dH(y)
dy

]
+
[
(1− γ)(y − 1)(y − a) + (1− δ)y(y − a) + (1− ε)y(y − 1)

]
H(y)K(x, y), (A3)

then we find that the integral yields

MxH(x) =
∫ y2

y1

[
qK(x, y)H(y) +

∂P(x, y)
∂y

]
dy

(A1)
⇐⇒ [Mx − q]H(x) = P(x, y)

∣∣∣y=y2
y=y1

. (A4)

Therefore, H(x) will be a solution of the Heun equation if K is solution of (A2), if the integral
(A1) exists and the limits of integration are so chosen that P(x, y1) = P(x, y2). Further, by
setting K(x, y) = w(x, y)G(x, y), where w(x, y) is defined in Eq. (7), we recover equations (8)
and (9). Notice that Eq. (A2) is inadequate to deal with the kernel transformations because
the operators Mx and M̄y do not present the same functional form.

Appendix B. Möbius transformations for kernels

As in the index transformations, firstly we find the Möbius transformations Mi for H(x) in
Maier’s table and, then, write the kernel transformation Ki in accordance with the rule (24).
Thus, the 24 expressions for the Ki of matrix (26) are the ones given below.

K1G(x, y) = G(x, y) = G [a;α, β, γ, δ;x, y] , [Identity].

K2G(x, y) = [(1− x)(1− y)]−α G

[
a

a− 1
;α, 1 + α− δ, γ, 1 + α− β;

x

x− 1
,

y

y − 1

]
.

K3G(x, y) =
[(

1− x

a

)(
1− y

a

)]−α
G

[
1

1− a
;α, γ + δ − β, γ, 1 + α− β;

x

x− a
,

y

y − a

]
.

K4G(x, y) = G [1− a;α, β, δ, γ; 1− x, 1− y] .

K5G(x, y) =
[(

1− x

a

)(
1− y

a

)]−α
G

[
1
a

;α, γ + δ − β, δ, 1 + α− β;
x− 1
x− a

,
y − 1
y − a

]
.

K6G(x, y) = G

[
a− 1
a

;α, β, ε, γ;
a− x
a

,
a− y
a

]
.

K7G(x, y) = (xy)−α G

[
1
a

;α, 1 + α− γ, 1 + α− β, δ; 1
x
,

1
y

]
.

K8G(x, y) = (xy)−α G

[
a− 1
a

;α, 1 + α− γ, δ, 1 + α− β;
x− 1
x

,
y − 1
y

]
.

K9G(x, y) = (xy)−α G

[
1− a;α, 1 + α− γ, ε, 1 + α− β;

x− a
x

,
y − a
y

]
.

K10G(x, y) = [(1− x)(1− y)]−α G

[
1

1− a
;α, 1 + α− δ, 1 + α− β, γ;

1
1− x

,
1

1− y

]
.
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K11G(x, y) = [(1− x) (1− y)]−αG

[
a;α, 1 + α− δ, ε, 1 + α− β;

x− a
x− 1

,
y − a
y − 1

]
.

K12G(x, y) =
[(

1− x

a

)(
1− y

a

)]−α
G

[
a

a− 1
;α, γ + δ − β, 1 + α− β, γ;

a

a− x
,

a

a− y

]
.

K13G(x, y) = G

[
1
a

;α, β, γ, ε;
x

a
,
y

a

]
.

K14G(x, y) = [(1− x)(1− y)]−α G

[
a− 1
a

;α, 1 + α− δ, γ, ε; (a− 1)x
a(x− 1)

,
(a− 1)y
a(y − 1)

]
.

K15G(x, y) =
[(

1− x

a

)(
1− y

a

)]−α
G

[
1− a;α, γ + δ − β, γ, δ; (1− a)x

x− a
,

(1− a)y
y − a

]
.

K16G(x, y) = G

[
1

1− a
;α, β, δ, ε;

1− x
1− a

,
1− y
1− a

]
.

K17G(x, y) =
[(

1− x

a

)(
1− y

a

)]−α
G

[
a;α, γ + δ − β, δ, γ;

a(x− 1)
x− a

,
a(y − 1)
y − a

]
.

K18G(x, y) = G

[
a

a− 1
;α, β, ε, δ;

a− x
a− 1

,
a− y
a− 1

]
.

K19G(x, y) = (xy)−α G

[
a;α, 1 + α− γ, 1 + α− β, ε; a

x
,
a

y

]
.

K20G(x, y) = (xy)−α G

[
a

a− 1
;α, 1 + α− γ, δ, ε; a(x− 1)

(a− 1)x
,
a(y − 1)
(a− 1)y

]
.

K21G(x, y) = (xy)−α G

[
1

1− a
;α, 1 + α− γ, ε, δ; x− a

(1− a)x
,
y − a

(1− a)y

]
.

K22G(x, y) = [(1− x)(1− y)]−α G

[
1− a;α, 1 + α− δ, 1 + α− β, ε; 1− a

1− x
,

1− a
1− y

]
.

K23G(x, y) = [(1− x) (1− y)]−αG

[
1
a

;α, 1 + α− δ, ε, γ;
x− a
a(x− 1)

,
y − a
a(y − 1)

]
.

K24G(x, y) =
[(

1− x

a

)(
1− y

a

)]−α
G

[
a− 1
a

;α, γ + δ − β, 1 + α− β, δ; 1− a
x− a

,
1− a
y − a

]
.
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