
CBPF-NF-002/03

Quaternionic and Octonionic Spinors.
A Classification

H.L. Carrion, M. Rojas and F. Toppan

CBPF - CCP
Rua Dr. Xavier Sigaud 150, cep 22290-180 Rio de Janeiro (RJ)

Brazil

Abstract

Quaternionic and octonionic realizations of Clifford algebras and spinors are classified and
explicitly constructed in terms of recursive formulas. The most general free dynamics in arbi-
trary signature space-times for both quaternionic and octonionic spinors is presented. In the
octonionic case we further provide a systematic list of results and tables expressing, e.g., the
relations of the octonionic Clifford algebras with the G2 cosets over the Lorentz algebras, the
identities satisfied by the higher-rank antisymmetric octonionic tensors and so on. Applica-
tions of these results range from the classification of octonionic generalized supersymmetries,
the construction of octonionic superstrings, as well as the investigations concerning the recently
discovered octonionic M-superalgebra and its superconformal extension.

Key-words: Clifford algebras, division algebras, generalized supersymmetries.

E-mails: hleny@cbpf.br, mrojas@cbpf.br, toppan@cbpf.br



CBPF-NF-002/03 1

1 Introduction.

The unification program aiming at a unified description of the known interactions as well as a
consistent quantum formulation for gravity, nowadays mostly points towards higher-dimensional
supersymmetric theories. At present the most promising, however still conjectural, candidate
should live in eleven dimensions and goes under the name of M-theory [1]. The theoretical
(and phenomenological) consistency requirements put on any possible candidate for unification
necessarily lead to a systematic investigation of the properties of Clifford algebras and spinors
in space-times of arbitrary dimension and signature. Exploring in full generality the existence
of specific algebraic relations (such as the identities necessary to prove the k-symmetry invari-
ance in the GS formulation of the superstring, see [2]), which are technically relevant in the
model construction, is a necessary preliminary mathematical step before any attempt to model
building.

From a mathematical point of view, Clifford algebras have been classified in the sixties
(see [3]). Some twenty years later the relation between supersymmetry and division algebras
was analyzed in [4]. A systematic and very convenient presentation in physicists’ notation
of the classification for Clifford algebras and spinors, based on the three associative division
algebras of the real, complex and quaternionic numbers (R, C and H), can be found in [5].
This relatively old subject has been revived recently in a series of work ([6]). The aim in
this case was the classification (once again based on the R, C, H division algebras) of the
generalized supersymmetries admitting the presence of tensorial bosonic central charges and
going therefore beyond the standard H9LS scheme [7]. The real-valued M-algebra underlining
the M-theory is the most celebrated and possibly the most physically relevant example in this
class of generalized supersymmetries. In the last few months it was pointed out in [8] and [9]
that the M-algebra admits a consistent octonionic restriction with surprising properties, which
will be discussed in the following.

The first attempt of introducing octonions in physics goes back to the works of Jordan
[10]. More recently, and in connection with the specific program of unification through super-
symmetry, we can cite a series of works [11, 12] devoted to the octonionic description of the
superstring. Already in [4] some mathematical results concerning the relations of the octonions
with the Lorentz and Jordan algebras are mentioned, while a more developed investigation
of this topic is presented in [13]. Moreover, in several different works (see e.g. [14, 15]) the
octonionic characterization of the seven sphere S7 (regarded as a compactification space for the
eleven-dimensional maximal supergravity) and the analysis of its properties were investigated.

Octonions are non-associative and can not be represented through matrices with the stan-
dard matrix product. Octonionic realizations of Clifford algebras have peculiar properties, the
most noticeable perhaps is the fact that they do not generate the corresponding Lorentz group,
but only its coset over G2, the group of automorphisms of the octonions [14].

This work is devoted to a systematic investigation of the properties of the quaternionic and
the octonionic realizations of the Clifford algebras. More specifically, in the first part we clas-
sify such realizations, also furnishing recursive algorithms to explicitly construct them. Later,
quaternionic and octonionic spinors are introduced. The notion of Weyl projection, whenever
applicable, for these two classes of spinors is defined. The consistency conditions for the ex-
istence of a free dynamics for quaternionic and octonionic spinors are fully investigated and
classified. We produce a whole set of tables expressing the allowed space-times admitting ki-
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netic or pseudokinetic, as well as massive or pseudomassive, terms in the free-spinors lagrangian.
These results can be considered as quaternionic and octonionic extensions of previous classifica-
tion schemes available for real-valued spinors, see [16]. Since quaternionic Clifford algebras and
spinors can always be represented through real-valued matrices and column vectors, the tables
presented in the quaternionic case can be recovered from suitably constraining the real-valued
case in order to admit a quaternionic structure. The situation however is entirely different,
for the motivations that we already recalled, in the octonionic case. Furthermore, we eluci-
date the connection of the octonionic realizations of Clifford algebras with the G2 cosets of the
Lorentz groups. We also produce highly non-trivial tables expressing identities for higher rank
antisymmetric octonionic tensors. Some of these identities already found application in the
investigations concerning the octonionic generalized supersymmetries. As a particular example
we can mention that, in the already recalled octonionic M-theory, the octonionic 5-brane sector
is identified with the octonionic M1 and M2 sectors.

The classification of the consistency conditions for the free octonionic dynamics should be
regarded as a first preliminary step towards the investigation of octonionic supersymmetric dy-
namical systems associated to the generalized octonionic supersymmetries. It is worth stressing
the fact that, for what concerns the latter, for the time being just examples of such superal-
gebras, the ones seemingly more attractive on physical grounds, have been analyzed so far. A
classification scheme is still in progress.

The paper is organized as follows. In the next section we review [5] the classification of Clif-
ford algebras and spinors in terms of the associative division algebras. In section 3 we present
a systematic construction of the irreducible representations for real-valued Clifford algebras.
This paves us the way to introduce in section 4 the explicit construction of the associative
quaternionic and the non-associative octonionic realizations of the Clifford algebras. In section
5 we introduce the necessary conventions to introduce the dynamics for real, quaternionic and
octonionic spinors. In section 6 the results of [16] concerning the classification of the most
general free dynamics for real spinors in arbitrary signature space-times are reviewed. In sec-
tion 7 and 8 these results are extended to, respectively, quaternionic and octonionic spinors.
Section 9 is devoted to present a list of identities, due to the non-associativity of the octo-
nions, involving higher-rank antisymmetric octonionic tensors. In the next section (10) some
applications of these last results to octonionic generalized supersymmetries and M-theory are
mentioned. Finally, in the Conclusions, we point out possible future developments of the line
of investigation here presented.

2 On Clifford algebras and division algebras.

For later convenience we review in this section, following [5], the classification of the Clifford
algebras associated to the R,C, H associative division algebras.

The most general irreducible real matrix representations of the Clifford algebra

ΓµΓν + ΓµΓν = 2ηµν , (2.1)

with ηµν being a diagonal matrix of (p, q) signature (i.e. p positive, +1, and q negative, −1,
diagonal entries), can be classified according to the property of the most general S matrix
commuting with all the Γ’s ([S,Γµ] = 0 for all µ). If the most general S is a multiple of
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the identity, we get the normal (R) case. Otherwise, S can be the sum of two matrices, the
second one multiple of the square root of −1 (this is the almost complex, C case) or the linear
combination of 4 matrices closing the quaternionic algebra (this is the H case). According to
[5] the real irreducible representations are of R, C, H type, according to the following table,
whose entries represent the values p− q mod 8

R C H
0, 2 4, 6
1 3, 7 5

The real irreducible representation is always unique unless p − q mod 8 = 1, 5. In these
signatures two inequivalent real representations are present, the second one recovered by flipping
the sign of all Γ’s (Γµ �→ −Γµ).

Furthermore, in the given signatures p− q mod 8 = 0, 4, 6, 7, without loss of generality, the
Γµ matrices can be chosen block-antidiagonal (generalized Weyl-type matrices), i.e. of the form

Γµ =

(
0 σµ

σ̃µ 0

)
(2.2)

In these signatures it is therefore possible to introduce the Weyl-projected spinors, whose
number of components is half of the size of the corresponding Γ-matrices.1

The division algebra characteristic for spinors (of R, C, H type) can be found in [6].
It is useful to illustrate our discussion presenting a table with the division algebra charac-

teristic and number of real components for both Clifford algebras (Γ) and fundamental spinors
(Ψ), at least in the specific case of the Minkowskian spacetimes up to 11 dimensions. We obtain
the following table

(p, q) Γ Ψ (p, q) Γ Ψ
(1, 0) R, 1 R, 1 (0, 1) C, 2 R, 1
(1, 1) R, 2 R, 1 (1, 1) R, 2 R, 1
(1, 2) C, 4 R, 2 (2, 1) R, 2 R, 2
(1, 3) H, 8 C, 4 (3, 1) R, 4 C, 4
(1, 4) H, 8 H, 8 (4, 1) C, 8 H, 8
(1, 5) H, 16 H, 8 (5, 1) H, 16 H, 8
(1, 6) C, 16 H, 16 (6, 1) H, 16 H, 16
(1, 7) R, 16 C, 16 (7, 1) H, 32 C, 16
(1, 8) R, 16 R, 16 (8, 1) C, 32 R, 16
(1, 9) R, 32 R, 16 (9, 1) R, 32 R, 16
(1, 10) C, 64 R, 32 (10, 1) R, 32 R, 32

It should be noticed that, as far as Clifford algebras are concerned, the above table is not
symmetric under the exchange (p, q) ↔ (q, p) (the simplest example is the one-dimensional
Clifford algebra with negative eigenvalue, represented by a 2 × 2 real matrix). On the other

1It is worth mentioning here that our notion of generalized Weyl spinors differs from the one usually adopted,
since the latter is employed in connection with complex-valued Clifford algebras, while we are working here with
real-valued Clifford algebras. This point will be extensively discussed in the next section.
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hand, the properties of spinors are invariant (in some of the cases, for the signatures allowing
it, the Weyl projection is required). As a consequence, the theories under consideration can be
equivalently described either working with the (p, q) or with the (q, p) signatures.

For what concerns the generalized supersymmetry algebras, it should be pointed out that
the notion of spin algebra, generalizing the standard notion of spin covering and based on the
division algebra structure of spinors alone, has been introduced in [6]. On the other hand,
a different prescription for constructing generalized supersymmetries is also possible and has
been advocated in [8]. It requires matching the division algebra structures of both spinors and
Clifford algebras. According to the above table, e.g., in the 5-dimensional case a quaternionic
structure can be imposed on the supersymmetry since both spinors and Clifford algebras are-
quaternionic. On the other hand in, let’s say, the Minkowskian 7-dimensional case, at most a
complex structure can be imposed, because this is the minimal structure shared both by spinors
and Gamma matrices (see [8] for details). We will come back later on this issue. For the time
being, let us just present another table concerning the constraint generated by division-algebra
structures on generalized supersymmetries. For the sake of clarity we will discuss fundamental
spinors admitting 32 real components (as in the maximal supergravity or the 11-dimensionalM-
theory). Let us suppose that they admit a real, complex, quaternionic2 or even an octonionic (as
discussed later) division algebra structure. Accordingly, the supersymmetry generators Qa can
be represented, respectively, as 32-dimensional real column vectors, 16-dimensional complex, 8-
dimensional quaternionic or 4-dimensional octonionic spinors. The generalized supersymmetry
algebra

{Qa, Qb
∗} = Zab, (2.3)

where Qa
∗ denotes the principal conjugation in the given division algebra, admits a hermitian

r.h.s. (Zab = Z∗
ba), given by a hermitian matrix Zab of, respectively, 32×32 real, 16×16 complex,

8× 8 quaternionic or 4× 4 octonionic-valued entries. Due to the hermiticity condition, in the
different cases, the maximal number � of independent components for Zab is given by

Ψ �
R (32) 528
C (16) 256
H (8) 120
O (4) 52

It should be noticed that 528 is the number of saturated independent bosonic components
in the M-algebra, deriving from the real structure of 11-dimensional Minkowskian spinors. As
it will be apparent in the following, an octonionic structure can be imposed on Minkowskian
11-dimensional spinors, leading to an alternative, octonionic version of the M-algebra with only
52 independent bosonic components.

2as this is the case, e.g., for the 64-component Euclidean D = 11 spinors. Quaternionic 32-component spinors
exist for instance in the (3, 7) signature.
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3 Clifford algebras revisited. Classification and explicit

constructions.

For our purposes it is convenient to review the classification of the irreducible representations
of Clifford algebras from another point of view, making explicit an algorithm allowing to single
out, in arbitrary signature space-times, a representative in each irreducible class of representa-
tions of Clifford’s gamma matrices. As recalled in the previous section, the class of irreducible
representations is unique apart special signatures, where two inequivalent irreducible represen-
tations are linked by sign flipping (Γµ ↔ −Γµ). The explicit construction presented here is
the right tool allowing us to introduce, in the next section, the quaternionic and octonionic
realizations for Clifford algebras and spinors.

Our construction goes as follows. At first we prove that starting from a given D spacetime-
dimensional representation of Clifford’s Gamma matrices, we can recursively construct D + 2
spacetime dimensional Clifford Gamma matrices with the help of two recursive algorithms.
Indeed, it is a simple exercise to verify that if γi’s denotes the d-dimensional Gamma matrices
of a D = p + q spacetime with (p, q) signature (namely, providing a representation for the
C(p, q) Clifford algebra) then 2d-dimensional D + 2 Gamma matrices (denoted as Γj) of a
D + 2 spacetime are produced according to either

Γj ≡
(

0 γi

γi 0

)
,

(
0 1d

−1d 0

)
,

(
1d 0
0 −1d

)

(p, q) �→ (p+ 1, q + 1). (3.4)

or

Γj ≡
(

0 γi

−γi 0

)
,

(
0 1d

1d 0

)
,

(
1d 0
0 −1d

)

(p, q) �→ (q + 2, p). (3.5)

It is immediate to notice, e.g., that the two-dimensional real-valued Pauli matrices τA, τ1, τ2

which realize the Clifford algebra C(2, 1) are obtained by applying either (3.4) or (3.5) to the
number 1, i.e. the one-dimensional realization of C(1, 0). We have indeed

τA =

(
0 1
−1 0

)
, τ1 =

(
0 1
1 0

)
, τ2 =

(
1 0
0 −1

)
. (3.6)

All Clifford algebras are obtained by recursively applying the algorithms (3.4) and (3.5) to the
Clifford algebra C(1, 0) (≡ 1) and the Clifford algebras of the series C(0, 3 + 4m) (with m
non-negative integer), which must be previously known. This is in accordance with the scheme
illustrated in the table below.
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Table with the maximal Clifford algebras (up to d = 256).

1 ∗ 2 ∗ 4 ∗ 8 ∗ 16 ∗ 32 ∗ 64 ∗ 128 ∗ 256 ∗

(1, 0) ⇒ (2, 1) ⇒ (3,2) ⇒ (4,3) ⇒ (5,4) ⇒ (6,5) ⇒ (7,6) ⇒ (8,7) ⇒ (9,8) ⇒

(1,4) → (2,5) → (3,6) → (4,7) → (5,8) → (6,9) →
↗

(0,3)

↘

(5,0) → (6,1) → (7,2) → (8,3) → (9,4) → (10,5) →

(1,8) → (2,9) → (3,10) → (4,11) → (5,12) →
↗

(0,7)

↘

(9,0) → (10,1) → (11,2) → (12,3) → (13,4) →

(1,12) → (2,13) →
↗

(0,11)

↘

(13,0) → (14,1) →

(1,16) →
↗

(0,15)

↘

(17,0) →

(3.7)

Concerning the previous table, some remarks are in order. The columns are labeled by the
matrix size d of the maximal Clifford algebras. Their signature is denoted by the (p, q) pairs.
Furthermore, the underlined Clifford algebras in the table can be named as “primitive maximal
Clifford algebras”. The remaining maximal Clifford algebras appearing in the table are the
“maximal descendant Clifford algebras”. They are obtained from the primitive maximal Clifford
algebras by iteratively applying the two recursive algorithms (3.4) and (3.5). Moreover, any
non-maximal Clifford algebra is obtained from a given maximal Clifford algebra by deleting
a certain number of Gamma matrices (as an example, Clifford algebras in even-dimensional
spacetimes are always non-maximal).

It is immediately clear from the above construction that the maximal Clifford algebras are
encountered if and only if the condition

p− q = 1, 5 mod 8 (3.8)

is matched.
The notion of Clifford’s algebra of generalized Weyl type, namely satisfying the (2.2) con-

dition, has already been introduced. All maximal Clifford’s algebras, both primitive and de-
scendant, are not of generalized Weyl type. As already recalled, the notion of generalized Weyl
spinors is based on the real-valued representations of Clifford algebras which, for purpose of
classification, are more convenient to use w.r.t. the complex Clifford algebras that one in general
deals with. For this reason generalized Weyl spinors exist also in odd-dimensional space-time,
see formula (2.2), while standard Weyl spinors only exist in even-dimensional spacetimes. This
can be understood by analyzing a single example. The real irrep C(0, 7), with all negative signs,
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is 8-dimensional, see table (3.7), while the real irrep C(7, 0) is 16-dimensional, but of gener-
alized Weyl type (2.2). Accordingly, the Euclidean 8-dimensional fundamental spinors can be
understood either as the 8-dimensional “Non-Weyl” spinors of C(0, 7), or the 8-dimensional
“Weyl-projected” C(7, 0) spinors. In the complex case, the sign flipping C(0, 7) �→ C(7, 0) can
be realized by multiplying all Gamma matrices by the imaginary unit “i”. No doubling of the
matrix size of the Γ’s is found and the notion of Weyl spinors cannot be applied. One faces a
similar situation in the one-dimensional spacetime. In the complex case we can realize C(1, 0)
with 1 and C(0, 1) with i (both one-dimensional). On the other hand, in the real case, C(0, 1)

can only be realized through the 2-dimensional irrep

(
0 1
−1 0

)
, which is block-antidiagonal.

Throughout the text Weyl (Non-Weyl) spinors are always referred to the (2.2) property with
respect to real-valued Clifford algebras. The non-maximal Clifford algebras are of Weyl type if
and only if they are produced from a maximal Clifford algebra by deleting at least one temporal
Gamma matrix which, without loss of generality, can always be chosen the one with diagonal
entries.

Let us discuss now explicitly how non-maximal Clifford algebras are produced from the
corresponding maximal Clifford algebras. The construction goes as follows. We illustrate at
first the example of the non-maximal Clifford algebras obtained from the 2-dimensional maximal
Clifford irrep C(2, 1) furnished by the three matrices τ1, τ2, τA given in (3.6). If we restrict the
Clifford algebra to τ1, τa, i.e. if we delete τ2 from the previous set, we get the 2-dimensional
irrep C(1, 1). If we further delete τ1 we are left with τA only, which provides the 2-dimensional
irrep C(0, 1) discussed above. On the other hand, deleting τA from C(2, 1) leaves us with τ1,
τ2, the 2-dimensional irrep C(2, 0).

To summarize, from the 2-dimensional irrep of the “maximal Clifford algebra” C(2, 1) we
obtain the 2-dimensional irreps of the non-maximal Clifford algebras C(1, 1), C(0, 1) and C(2, 0)
through a “Γ-matrices deleting procedure”. Please notice that, through deleting, we cannot
obtain from C(1, 2) the irrep C(1, 0), since the latter is one-dimensional.

In full generality, non-maximal Clifford algebras are produced from the corresponding max-
imal Clifford algebras according to the following table, which specifies the number of time-like
or space-like Gamma matrices that should be deleted, as well as the generalized Weyl (W )
character or not (NW ) of the given non-maximal Clifford algebra. We get

W NW
(0 mod 8) ⊂ (1 mod 8) (2 mod 8) ⊂ (1 mod 8)
(p, q) ⇐ (p+ 1, q) (p, q) ⇐ (p, q + 1)

(4 mod 8) ⊂ (5 mod 8) (3 mod 8) ⊂ (1 mod 8)
(p, q) ⇐ (p+ 1, q) (p, q) ⇐ (p, q + 2)

(6 mod 8) ⊂ (1 mod 8)
(p, q) ⇐ (p+ 3, q)

(7 mod 8) ⊂ (1 mod 8)
(p, q) ⇐ (p+ 2, q)

(3.9)

In the above entries x mod 8 specifies the mod 8 residue of t− s for any given (t, s) spacetime.
The non-maximal Clifford algebras are denoted by p ≡ t, q ≡ s, while the maximal Clifford
algebras are denoted by (p′, q′), with p′ ≥ p, q′ ≥ q. The differences p′ − p, q′ − q denote how
many Clifford gamma matrices (of time-like or respectively space-like type) have to be deleted
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from a given maximal Clifford algebra to produce the irrep of the corresponding non-maximal
Clifford algebra. To be specific, e.g., the 6 mod 8 non-maximal Clifford algebra C(6, 0) is
obtained from the maximal Clifford algebra C(9, 0), whose matrix size is 16 according to (3.7),
by deleting three gamma matrices.

To complete our discussion what is left is specifying the construction of the primitive max-
imal Clifford algebras for both the C(0, 3 + 8n) (which can be named as “quaternionic series”,
due to its connection with this division algebra, as we will see in the next section), as well as the
“octonionic” series C(0, 7 + 8n). The answer can be provided with the help of the three Pauli
matrices (3.6). We construct at first the 4 × 4 matrices realizing the Clifford algebra C(0, 3)
and the 8× 8 matrices realizing the Clifford algebra C(0, 7). They are given, respectively, by

C(0, 3) ≡
τA ⊗ τ1,
τA ⊗ τ2,
12 ⊗ τA.

(3.10)

and

C(0, 7) ≡

τA ⊗ τ1 ⊗ 12,
τA ⊗ τ2 ⊗ 12,
12 ⊗ τA ⊗ τ1,
12 ⊗ τA ⊗ τ2,
τ1 ⊗ 12 ⊗ τA,
τ2 ⊗ 12 ⊗ τA,
τA ⊗ τA ⊗ τA.

(3.11)

The three matrices of C(0, 3) will be denoted as τ i, = 1, 2, 3. The seven matrices of C(0, 7) will
be denoted as τ̃i, i = 1, 2, . . . , 7.

In order to construct the remaining Clifford algebras of the two series we need at first to
apply the (3.4) algorithm to C(0, 7) and construct the 16× 16 matrices realizing C(1, 8) (the
matrix with positive signature is denoted as γ9, γ9

2 = 1, while the eight matrices with negative
signatures are denoted as γj , j = 1, 2 . . . , 8, with γj

2 = −1). We are now in the position
to explicitly construct the whole series of primitive maximal Clifford algebras C(0, 3 + 8n),
C(0, 7 + 8n) through the formulas

C(0, 3 + 8n) ≡

τ i ⊗ γ9 ⊗ . . . . . . . . .⊗ γ9,
14 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
14 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
14 ⊗ γ9 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
. . . . . . . . . ,
14 ⊗ γ9 ⊗ . . . . . . ⊗γ9 ⊗ γj,

(3.12)

and similarly

C(0, 7 + 8n) ≡

τ̃i ⊗ γ9 ⊗ . . . . . . . . .⊗ γ9,
18 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
18 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
18 ⊗ γ9 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
. . . . . . . . . ,
18 ⊗ γ9 ⊗ . . . . . . ⊗γ9 ⊗ γj,

(3.13)
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Please notice that the tensor product of the 16-dimensional representation is taken n times.
The total size of the (3.12) matrix representations is then 4× 16n, while the total size of (3.13)
is 8× 16n.

With the help of the formulas presented in this section we are able to systematically con-
struct a set of representatives of the real irreducible representations of Clifford algebras in
arbitrary space-times and signatures.

4 Quaternionic and octonionic realizations of Clifford al-

gebras.

In this section we discuss the relations of Clifford algebras with the division algebras of the
quaternions (and of the octonions), from a slightly different point of view w.r.t. the one
expressed in Section 2.

The relation can be understood as follows. At first we notice that the three matrices
appearing in C(0, 3) can also be expressed in terms of the imaginary quaternions τi satisfying

τi · τj = −δij + εijkτk. (4.14)

As a consequence, the whole set of maximal primitive Clifford algebras C(0, 3+ 8n), as well as
their maximal descendants, can be represented with quaternionic-valued matrices. In its turn
the spinors have to be interpreted now as quaternionic-valued column vectors.

Similarly, there exists an alternative realization for the Clifford algebra C(0, 7), obtained by
identifying its seven generators with the seven imaginary octonions (for an updated review on
the octonions see e.g. [17]) satisfying the algebraic relation

τi · τj = −δij + Cijkτk, (4.15)

for i, j, k = 1, · · · , 7 and Cijk the totally antisymmetric octonionic structure constants given by

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1 (4.16)

and vanishing otherwise. This octonionic realization of the seven-dimensional Euclidean Clifford
algebra will be denoted as CO(0, 7). Due to the non-associative character of the (4.15) octonionic
product (the weaker condition of alternativity is satisfied, see [18]), the octonionic realization
cannot be represented as an ordinary matrix product and is therefore a distinct and inequivalent
realization of this Euclidean Clifford algebra with respect to the one previously considered
(3.11). Please notice that, by iteratively applying the two lifting algorithms to CO(0, 7), we
obtain matrix realizations (with octonionic-valued entries) for the maximal Clifford algebras of
the series C(n, 7 + n) and C(8 + n, n− 1), for positive integral values of n (n = 1, 2, . . .). The
dimensionality of the corresponding octonionic-valued matrices is 2n × 2n. For completeness
we should point out that the construction (3.13) leading to the primitive maximal Clifford
algebras C(0, 7+8n), can be carried on with the help of an octonionic-valued realization of the
γ9 matrix. As a consequence, realizations of C(0, 7+8n) and their descendants can be produced
acting on column spinors, whose entries are tensor products of octonions. In any case, in the
following, we will focus on the single octonionic realizations CO(n, 7+n) and CO(9+n, n) (here
n = 0, 1, 2, . . .) which are of relevance in the context of the M-theory.
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One should be aware of the properties of the non-associative realizations of Clifford algebras.
In the octonionic case the commutators Σµν = [Γµ,Γν ] are no longer the generators of the
Lorentz group. They correspond instead to the generators of the coset SO(p, q)/G2, being G2

the 14-dimensional exceptional Lie algebra of automorphisms of the octonions. As an example,
in the Euclidean 7-dimensional case, these commutators give rise to 7 = 21 − 14 generators,
isomorphic to the imaginary octonions. Indeed

[τi, τj ] = 2Cijkτk. (4.17)

The alternativity property satisfied by the octonions implies that the seven-dimensional com-
mutator algebra among imaginary octonions is not a Lie algebra, the Jacobi identity being
replaced by a weaker condition that endorses (4.17) with the structure of a Malcev algebra (see
[18]).

Such an algebra admits a nice geometrical interpretation [14, 15]. Indeed, the normed 1
unitary octonions X = x0 + xiτi (with x0 and xi, for i = 1, . . . , 7, real and the summation over
repeated indices understood), i.e. restricted by the condition

X† ·X = 1, (4.18)

describe the seven-sphere S7. The latter is a parallelizable manifold with a quasi (due to the lack
of associativity) group structure. Here X† denotes the principal conjugation for the octonions,
namely

X† = x0 − xiτi. (4.19)

On the seven sphere, infinitesimal homogeneous transformations which play the role of the
Lorentz algebra can be introduced through

δX = a ·X, (4.20)

with a an infinitesimal constant octonion. The requirement of preserving the unitary norm
(4.18) implies the vanishing of the a0 component, so that a ≡ aiτi. Therefore, the above
commutator algebra (4.17), generated by the seven τi, can be interpreted as the algebra of
“quasi” Lorentz transformations acting on the seven sphere S7. At least in this specific example
we discovered a nice geometrical setting underlining the use of the octonionic realization of the
CO(0, 7) Clifford algebra. While the associative (3.11) representation of the seven dimensional
Clifford algebra is required for describing the Euclidean 7-dimensional flat space, the non-
associative realization describes the geometry of S7.

5 On real, quaternionic and octonionic spinors.

In this section we introduce (following [4], where real and complex spinors were treated), the
necessary ingredients and conventions to introduce the spinorial dynamics. Quaternionic and
octonionic spinors are considered as well.

In [4] three matrices (only two of them independent) A, B, C, associated to the three con-
jugations (hermitian, complex and transposition) acting on Gamma matrices, were introduced.
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In the case of the restriction to real-valued Gamma matrices, only one matrix (conventionally
denoted as A, see [16]) needs to be introduced. A plays the role of Γ0 in the Minkowskian case
and serves to introduce barred spinors. In a (t, s) spacetime A is, up to a sign, the product of
the time-like Gamma matrices and satisfies the relations

AΓµAT = ξΓµT ,

AT = αA, (5.21)

with

ξ = (−1)t−1,

α = (−1)t(t−1)/2, (5.22)

as it can be easily checked.
In both the quaternionic and octonionic case, two real-valued matrices, conventionally de-

noted as A and C, can be introduced. As before, A plays the role of Γ0 and is used to define
barred spinors (ψ = ψ†A). A and C satisfy the set of relations

AΓµA
† = ξΓ†

µ,

CΓµC
† = δΓT

µ ,

CT = ρC,

A† = αA,

AT = σCAC†, (5.23)

where “†” denotes the combination of matrix transposition and principal conjugation in the
division algebra (see (4.19)). The signs α, ξ, δ, ρ, σ will be specified below.

The matrix A is always given by the product of the temporal Γ’s (regardless of the order),
while up to two inequivalent C matrices can be found, given by the product (again, regardless
of the order) of respectively all symmetric (CS) or all antisymmetric (CA) Gamma matrices (in
special cases CS, CA collapse to the single matrix C).

For maximal Clifford algebras (in the sense specified in Section 3) of a (t, s) space-time, the
set of signs is given by

α = (−1)t(t−1)/2,

ξ = (−1)t−1,

δ = (−1)t

ρ = (−1)t(t+1)/2,

σ = sin(
|t− s|π

2
)(−1)

t(t+1)
2

+1, (5.24)

as it can be checked with straightforward computations. Please notice that the matrix C is
unique in this case.

The maximal quaternionic Clifford algebras are those satisfying the

t− s = 5 mod 8 (5.25)
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condition, while the maximal octonionic Clifford algebras are the subclass of

t− s = 1 mod 8 (5.26)

maximal Clifford algebras, obtained after erasing the series corresponding to the first row in
table (3.7) (i.e. t = s+ 1).

Just like the real case, non-maximal Clifford algebras are obtained after erasing a certain
number of Gamma matrices. The quaternionic equivalent of table (3.9) is given, in the quater-
nionic case, by

W NW
(4 mod 8) ⊂ (5 mod 8) (6 mod 8) ⊂ (5 mod 8)
(p, q) ⇐ (p+ 1, q) (p, q) ⇐ (p, q + 1)

(3 mod 8) ⊂ (5 mod 8) (7 mod 8) ⊂ (5 mod 8)
(p, q) ⇐ (p+ 2, q) (p, q) ⇐ (p, q + 2)

(2 mod 8) ⊂ (5 mod 8) (0 mod 8) ⊂ (5 mod 8)
(p, q) ⇐ (p+ 3, q) (p, q) ⇐ (p, q + 3)

(1 mod 8) ⊂ (5 mod 8)
(p, q) ⇐ (p+ 4, q)

(5.27)

while, in the octonionic case, we have the table

W NW
(0 mod 8) ⊂ (1 mod 8) (2 mod 8) ⊂ (1 mod 8)
(p, q) ⇐ (p+ 1, q) (p, q) ⇐ (p, q + 1)

(7 mod 8) ⊂ (1 mod 8) (3 mod 8) ⊂ (1 mod 8)
(p, q) ⇐ (p+ 2, q) (p, q) ⇐ (p, q + 2)

(6 mod 8) ⊂ (1 mod 8) (4 mod 8) ⊂ (1 mod 8)
(p, q) ⇐ (p+ 3, q) (p, q) ⇐ (p, q + 3)

(5 mod 8) ⊂ (1 mod 8)
(p, q) ⇐ (p+ 4, q)

(5.28)

Please notice that the symbols appearing in the two tables above have already been explained
when introduced the (3.9) table.

We should mention that, to be consistent, in, let’s say, the octonionic realization of a non-
maximal Clifford algebra, all the seven matrices proportional to the imaginary octonions must
be present. Stated otherwise, the deleted matrices from the corresponding maximal Clifford
algebra are all real-valued.

For completeness, let us right down the values of the signs entering (5.23) for the quaternionic
and octonionic non-maximal Clifford algebra cases obtained by deleting a single Gamma matrix.
In all four cases below two inequivalent C matrices are present and the suffix (S orA) specifies
whether CS or CA is involved, while the signs α, ξ are given by (5.22). Furthermore, in all four
cases below we get

δS = (−1)t,

δA = (−1)t+1. (5.29)
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The remaining signs are given by
i) in the quaternionic 4 mod 8 (W) case,

ρS = (−1)t(t+1)/2,

ρA = −(−1)t(t−1)/2,

σS = sin((t− s)
3π

8
)(−1)

t(t+1)
2 ,

σA = sin((t− s)
3π

8
)(−1)

t(t−1)
2 ,

ii) in the quaternionic 6 mod 8 (NW) case,

ρS = (−1)t(t+1)/2,

ρA = (−1)t(t−1)/2,

σS = sin(|t− s|3π/4)(−1)t(t+1)/2+1,

σA = sin(|t− s|3π/4)(−1)t(t−1)/2+1,

iii) in the octonionic 0 mod 8 (W) case,

ρS = (−1)t(t+1)/2,

ρA = −(−1)t(t−1)/2,

σS = sin((t− s)
3π

16
)(−1)t(t+1)/2,

σA = sin((t− s)
3π

16
)(−1)t(t−1)/2,

iv) and finally in the octonionic 2 mod 8 (NW) case,

ρS = (−1)t(t+1)/2,

ρA = (−1)t(t−1)/2,

σS = sin(|t− s|π
4
)(−1)

t(t+1)
2

+1,

σA = sin(|t− s|π
4
)(−1)

t(t−1)
2

+1.

We remind that in the Weyl (W ) case, the projectors P± can be introduced through

P± =
1

2
(12d ± Γ),

Γ =

(
1d 0
0 −1d

)
(5.30)

and chiral (antichiral) spinors can be defined through

Ψ± = P±Ψ. (5.31)
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It is worth ending this section writing down, symbolically, the most general spinorial terms in
a free lagrangian which can possibly (depending on the signature and dimensionality of the
space-time) be encountered in our theories. It is sufficient to list such terms in the octonionic
case. One trivially realizes how to employ the same symbols in the quaternionic and real cases
as well.

Different massive terms can be found in the Weyl (W ) case, i.e.3

M// = tr(Ψ†
+AΨ+),

M⊥ = tr(Ψ†
+AΨ− +Ψ†

−AΨ+),

M//T,S = tr(Ψ†
+AΓT,SΨ+),

M⊥T,S = tr(Ψ†
+AΓT,SΨ− +Ψ†

−AΓT,SΨ+),

M//J = tr(Ψ†
+AJΨ+),

M⊥J = tr(Ψ†
+AJΨ− +Ψ†

−AJΨ+),

M//F = tr(Ψ†
+AFΨ+),

M⊥F = tr(Ψ†
+AFΨ− +Ψ†

−AFΨ+), (5.32)

where ΓT , ΓS denote, in a non-maximal Clifford algebra case, the presence of an external
(deleted from the set of maximal Gamma’s) Gamma matrix of time, or respectively, space-like
type. Similarly, J denotes the product of two such matrices, either time-like or space-like,
while F denotes the product of three external matrices. No other massive symbols need to
be introduced, as it will appear from the tables given in the following. In a NW -case, similar
symbols can be introduced. However, since in this case no chiral (antichiral) spinors are defined,
full spinors are present in the r.h.s. and the “//” and “⊥” suffices must be dropped.

In full analogy, the set of symbols in a Weyl (W ) kinetic case are given by4

K// =
1

2
tr[(Ψ†

+AΓ
µ)∂µΨ+] +

1

2
tr[Ψ†

+(AΓ
µ∂µΨ+)],

K⊥ =
1

2
tr[(Ψ†

+AΓ
µ)∂µΨ−] +

1

2
tr[Ψ†

+(AΓ
µ∂µΨ−)] +

1

2
tr[(Ψ†

−AΓ
µ)∂µΨ+] +

1

2
tr[Ψ†

−(AΓ
µ∂µΨ+)],

K//T,S =
1

2
tr[(Ψ†

+AΓ
µΓT,S)∂µΨ+] +

1

2
tr[Ψ†

+(AΓ
µΓT,S∂µΨ+)],

K⊥T,S =
1

2
tr[(Ψ†

+AΓ
µΓT,S)∂µΨ−] +

1

2
tr[Ψ†

+(AΓ
µΓT,S∂µΨ−)] +

1

2
tr[(Ψ†

−AΓ
µΓT,S)∂µΨ+] +

1

2
tr[Ψ†

−(AΓ
µΓT,S∂µΨ+)]

K//J =
1

2
tr[(Ψ†

+AΓ
µJ)∂µΨ+] +

1

2
tr[Ψ†

+(AΓ
µJ∂µΨ+)],

K⊥J =
1

2
tr[(Ψ†

+AΓ
µJ)∂µΨ−] +

1

2
tr[Ψ†

+(AΓ
µJ∂µΨ−)] +

3here “tr” denotes the projection onto the octonionic identity, tr(x0 + xiτi) = x0. It coincides with the
standard trace when we are restricting to the quaternionic subcase.

4as before, analogous symbols are employed in the NW -case, by dropping the suffices “//” and “⊥”.
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1

2
tr[(Ψ†

−AΓ
µJ)∂µΨ+] +

1

2
tr[Ψ†

−(AΓ
µJ∂µΨ+)],

K//F =
1

2
tr[(Ψ†

+AΓ
µF )∂µΨ+] +

1

2
tr[Ψ†

+(AΓ
µF∂µΨ+)],

K⊥F =
1

2
tr[(Ψ†

+AΓ
µF )∂µΨ−] +

1

2
tr[Ψ†

+(AΓ
µF∂µΨ−)] +

1

2
tr[(Ψ†

−AΓ
µF )∂µΨ+] +

1

2
tr[Ψ†

−(AΓ
µF∂µΨ+)]. (5.33)

Please notice that, due to the non-associativity of the octonions, in the kinetic case we have
to correctly specify the order in which the operations are taken. There is no such problem
in the massive case since the matrices ΓT , ΓS, J and F can always be chosen, without loss
of generality, real. Therefore in (5.32) at most bilinear octonionic terms are present and the
non-associativity of the octonions plays no role.

6 The real case revisited.

In reference [16] the Majorana condition for complex spinors was analyzed and the list of dif-
ferent signature spacetimes allowing for kinetic, pseudokinetic, massive and/or pseudomassive
terms in the free-Majorana spinors lagrangians were presented. A slight generalization of these
results can be produced in this section, based of the classification of real spinors that we have
previously discussed (we notice,en passant, that the spinors we are dealing with here are, by
construction, real, so that no Majorana condition, referring to a previous complex structure,
needs to be imposed).

It is just a matter of lengthy, but straightforward computations, to produce a set of tables of
the allowed, non-vanishing, free kinetic and massive terms in each given signature space-times.
In the following tables, the columns are labeled by t mod 4, while the rows by t−s mod 8. The
entries represent, simbolically, the allowed kinetic and/or massive terms (the precise meaning
of the symbols is discussed at the end of the previous section). An empty space means that,
neither a kinetic, nor a massive term is allowed for the corresponding space-time.

The first table is produced for the real NW case. We get

0 1 2 3

1 K K,M M
2 MS K K, KS, M KS, M, MS

3 MS1, MS2, MJ , KJ K,MJ K, KS1,KS2,M KS1,KS2,KJ ,M, MS1,MS2

5 K K,M M

(6.34)

The second table is for the real W (Weyl) case. We have in this case

0 1 2 3

0 K// M//, K⊥ M⊥
4 K// M//, K⊥ M⊥
6 K//T1, K//T2, M//J , K//, M//T1,M//T2, M//, K⊥, M⊥T1, K//J , M⊥

K⊥J K⊥T1, K⊥T2, M⊥J M⊥T2

7 K//T K//, M//T ,K⊥T M//, K⊥, M⊥T M⊥

(6.35)
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7 Quaternionic spinors and their free dynamics. A clas-

sification.

In this section we present the tables of allowed free kinetic and massive terms for quaternionic
spinors. As in the previous section, the columns are labeled by t mod 4 and the rows by
t− s mod 8, while the symbols used in the entries are explained at the end of section 5.

In the NW case we have

0 1 2 3

0 KJj
, KF , MSj

, MJj
K, KF , MJj

K, KSj
, M , MF KSj

, KJj
, M , MSj

, MF

5 K K, M M
6 MS K K, KS, M KS, M , MS

7 KJ , MSi
,MJ K, MJ K, KSi

, M KSi
,KJ , M , MSi

(7.36)

In the W (Weyl) case we have

0 1 2 3

1
K//Tj

, K⊥Jj
,

M//Jj

K//, K⊥Tj
,

M//F ,M//Jj
,M⊥Jj

K//F , K⊥,
M//,M⊥F ,M⊥Tj

K⊥F , K//Jj
,

M⊥

2
K//Ti

, K⊥J ,
M//J

K//, K⊥Ti
,

M//Ti
,M⊥J

K⊥,
M//,M⊥Ti

K//J ,
M⊥

3 K//T
K//, K⊥T ,
M//T

K⊥,
M//,M⊥T M⊥

4 K//
K⊥,
M// M⊥

(7.37)

Please notice that in the two tables above the suffix “j” denotes the existence of three in-
equivalent choices for the corresponding matrices (e.g., the three distinct space-like matrices
Sj), while the suffix “i” denotes the existence of two inequivalent choices. As previously dis-
cussed, this is in accordance with the signature of the given space-time. Therefore, the let’s
say, t − s = 0 mod 8, t = 2 mod 4 spacetime admits, besides the K kinetic term, three extra
kinetic terms KSj

associated to the three external space-like Gamma matrices Sj , j = 1, 2, 3,
existing in this case.

8 Octonionic spinors and their free dynamics. A classi-

fication.

Here we present the tables of allowed free kinetic and massive terms for octonionic spinors. As
in the two previous sections, the columns are labeled by t mod 4 and the rows by t− s mod 8,
while the symbols used in the entries are explained at the end of section 5.
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In the NW case we have

0 1 2 3

1 K K, M M
2 MS K K, KS, M KS, M , MS

3 KJ ,MSi
,MJ K, MJ K, KSi

, M KSi
, KJ , M , MSi

4 KJj
, KF , MSj

, MJj
K, KF , MJj

, MF K, KSj
, M , MF KSj

, KJj
, M , MSj

(8.38)

In the W (Weyl) case we have

0 1 2 3

0 K//
K⊥,
M// M⊥

5
K//Tj

, K⊥Jj
,

M//Jj
,M⊥F

K//, K⊥Tj
,

M//Tj
,M⊥Jj

K⊥, K//F ,
M//,M⊥Tj

K//Jj
, K⊥F ,

M⊥,M//F

6
K//Ti

, K⊥J ,
M//J ,

K//, K⊥Ti
,

M//Ti
,M⊥J

K⊥,
M//,M⊥Ti

K//J ,
M⊥

7 K//T
K//, K⊥T ,
M//T

K⊥,
M//,M⊥T M⊥

(8.39)

As in the previous section, the suffices “i” and “j” takes two and respectively three distinct
values. With these last tables we completed the classification of the allowed free lagrangians
for spinors in different space-times.

9 Identities for higher rank antisymmetric octonionic

tensors.

As we have seen in the previous sections, octonionic spinors are associated with octonionic
Clifford algebras. In their turn, these ones are given by the maximal octonionic Clifford algebras,
specified by the two sets of octonionic realizations for the signatures

CO(m, 7 + 8n+m) , CO(9 + 8n+m,m), (9.40)

with n,m ≥ 0, together with the class of octonionic non-maximal Clifford algebras obtained
from (9.40) by deleting a certain number of real-valued Gamma matrices. The reality restriction
on these extra Gamma matrices (which cannot therefore contain imaginary octonions) puts a
constraint on the space-time signatures admitting an octonionic description. For later conve-
nience, it is useful to present the list of the whole class of octonionic space-times recovered from
the maximal Clifford algebras of space-time dimension D = t+ s up to D = 13. The following
table can be produced, with the columns labeled by D, the dimensionality of the spacetime.
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The maximal Clifford algebras are underlined. In each entry the octonionic dimensionality dΨ

of the fundamental spinors is also reported. The signatures admitting, for each given spacetime
dimension D, spinors of minimal octonionic dimensionality are denoted with a “∗”. Finally, the
chain of reductions from a given maximal Clifford algebra is sketchily reported (please notice
that the chain of reductions is not necessarily unique, for instance the (10, 1) signature can be
produced by erasing a single Gamma matrix either from (11, 1) or from (10, 2)). We get

7 8 9 10 11 12 13
(0, 7)∗, 1
(7, 0)∗, 1 (8, 0)∗, 1 (9, 0)∗, 2

(0, 8)∗, 1 (1, 8)∗, 2

(7, 1), 2 (8, 1)∗, 2
(10, 0), 4
(9, 1)∗, 2

(10, 1)∗, 4

(0, 9)∗, 2
(2, 7), 4

(1, 9)∗, 2
(2, 8), 4

(2, 9)∗, 4

(7, 2), 4 (8, 2), 4
(11, 0), 8
(9, 2)∗, 4

(11, 1), 8
(10, 2)∗, 4

(11, 2)∗, 8

(0, 10), 4
(3, 7), 8

(1, 10)∗, 4
(3, 8), 8

(2, 10)∗, 4
(3, 9), 8

(3, 10)∗, 8

(9.41)

We have already recalled in section 4 that for the (t, s) space-times allowing an octonionic de-
scription, due to octonionic non-associative identities, the algebra generated by the commuta-
tors between Gamma matrices is not the SO(t, s) Lorentz algebra, but its G2 coset SO(t, s)/G2

[14]. We present here a generalization of this result consisting of a list of higher-rank antisym-
metric octonionic tensorial identities. It is worth mentioning that these identities have striking
applications which we shall discuss in the next section.

The identities under consideration are applicable to the space-time signatures which, for a
given total dimension D, admit spinors of minimal octonionic dimensionality (up to D = 13,
these are the signatures denoted with a “∗” in the table above). The generalization of this
construction to dimensions D > 14 is straightforward. Here however, both for simplicity and
for physical relevance, we limit ourselves to discuss such identities up to D = 13, namely for
the following spacetimes

D = 7 (0, 7), (7, 0)
D = 8 (0, 8), (8, 0)
D = 9 (0, 9), (9, 0), (1, 8), (8, 1)
D = 10 (1, 9), (9, 1)
D = 11 (1, 10), (10, 1), (2, 9), (9, 2)
D = 12 (2, 10), (10, 2)
D = 13 (3, 10), (10, 3), (2, 11), (11, 2)

(9.42)

Please notice that in D = 8, 10, 12 dimensions we are dealing with fundamental Weyl spinors.
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It is worth mentioning that the above table has been complemented, for D = 13, with the
non-maximal octonionic Clifford algebras (10, 3), (2, 11), arising from the maximal ones at the
level D = 15.

In the above cases for D = 7, 8 the fundamental spinors are 1 (octonionic)-dimensional,
2-dimensional for D = 9, 10, four-dimensional for D = 11, 12 and finally 8-dimensional for
D = 13. The total number of octonionic hermitian H (antihermitian A) components in a
squared matrix of dΨ size is therefore given by

H A
D = 7, 8 1 7
D = 9, 10 10 22
D = 11, 12 52 76
D = 13 232 280

(9.43)

The antisymmetric product of k > 2 octonionic Γ-matrices must be consistently specified
to take into account the non-associativity of the octonions. As we soon motivate, the correct
prescription is taking the antisymmetrized product of k octonionic matrices Γi (i = 1, 2, . . . , k)
to be given by

[Γ1 · Γ2 · . . . · Γk] ≡ 1

k!

∑
perm.

(−1)εi1...ik (Γi1 · Γi2 . . . · Γik), (9.44)

where (Γ1 · Γ2 . . . · Γk) denotes the symmetric product

(Γ1 · Γ2 · . . . · Γk) ≡ 1

2
(.((Γ1Γ2)Γ3 . . .)Γk) +

1

2
(Γ1(Γ2(. . .Γk)).). (9.45)

The usefulness of this prescription is due to the fact that the product

A[Γ1 · Γ2 · . . . · Γk], (9.46)

with A the matrix (product of the time-like Gamma matrices) introduced in section 5 has a
definite (anti)-hermiticity property. The different (9.46) tensors, for different choices of the
Gamma’s, are all hermitian or antihermitian, depending only on the value of k (not of the Γ’s
themselves).

In the presence of the Weyl spinors, the above (9.46) tensors can be bracketed with the P+

projection operator, see (5.30), to give

P+A[Γ1 · Γ2 · . . . · Γk]P+. (9.47)

Once taken into account, from the algorithmic table (3.7) applied to the octonionic Clifford
algebras, that out of the D Gamma matrices, 7 are proportional to the imaginary octonions,
while the remainingD−7 are purely real, it is a matter of straightforward computations to check
the number of independent octonionic components both for (9.46) (in the NW spacetimes) and
for (9.47) (in the Weyl spacetimes).



CBPF-NF-002/03 20

In odd-dimensions D we get the table, whose columns are labeled by the antisymmetric
tensors rank k,

0 1 2 3 4 5 6 7 8 9 10 11 12 13
D = 7 1 7 7 1 1 7 7 1
D = 9 1 9 22 22 10 10 22 22 9 1
D = 11 1 11 41 75 76 52 52 76 75 41 11 1
D = 13 1 13 64 168 267 279 232 232 279 267 168 64 13 1

(9.48)

The hermitian components are underlined.
Similarly, in the even-dimensional Weyl case, we have

0 1 2 3 4 5 6 7 8 9 10 11 12
D = 8 1 0 7 0 1 + 1 0 7 0 1
D = 10 0 10 0 22 0 10 + 10 0 22 0 10 0
D = 12 1 0 52 0 75 0 52 + 52 0 75 0 52 0 1

(9.49)

The above tables show the existence of identities relating higher-rank antisymmetric octonionic
tensors. Let us discuss a specific example, which is perhaps the most physically relevant. In
D = 11 dimensions the 52 independent components of an octonionic hermitian (4× 4) matrix
can be expressed either as a rank-5 antisymmetric tensors (simbolically denoted as “M5”), or as
the combination of the 11 rank-1 (M1) and the 41 rank-2 (M2) tensors. The relation between
M1 +M2 and M5 can be made explicit as follows. The 11 vectorial indices µ are split into 4
real indices, labeled by a, b, c, . . . and 7 octonionic indices labeled by i, j, k, . . .. We get, on one
side,

4 M1a

7 M1i

6 M2[ab]

4× 7 = 28 M2[ai]

7 M2[ij] ≡ M2i

while, on the other side,

7 M5[abcdi] ≡ M5i

4× 7 = 28 M5[abcij] ≡ M5[ai]

6 M5[abijk] ≡ M5[ab]

4 M5[aijkl] ≡ M5a

7 M5[ijklm] ≡ M̃5i
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which shows the equivalence of the two sectors, as far as the tensorial properties are concerned.
Please notice that the correct total number of 52 independent components is recovered

52 = 2× 7 + 28 + 6 + 4. (9.50)

The octonionic equivalence of different antisymmetric tensors can be symbolically expressed,
in odd space-time dimensions, through

D = 7 M0 ≡ M3
D = 9 M0 +M1 ≡ M4
D = 11 M1 +M2 ≡ M5
D = 13 M2 +M3 ≡ M6
D = 15 M3 +M4 ≡ M0 +M7

(9.51)

We end up this section by commenting that, for non-minimal spinors, the dependance
on the rank k alone of the hermitian or antihermitian character of (9.46) and (9.47) is not
mantained. To be explicit, in D = 8 space-time dimension, the spinors associated to the (1, 7)
signature are non-minimal (the number of their components is twice the number of components
for fundamental (8, 0) and (0, 8) spinors). The (1, 7) Clifford algebra is obtained from the (1, 8)
Clifford algebra after deleting a spacelike matrix ΓS. For what concerns tensors, e.g. two sets
of vectors are found, the ones obtained from Γµ (µ a vector index in (1, 7)) are hermitian, while
the ones obtained from the commutators [Γµ,Γs] are antihermitian.

10 An application of the octonionic spinors. The octo-

nionic M-algebra and the generalized supersymme-

tries.

We shortly review here what is perhaps the most promising application of the octonionic spinors,
i.e. their connection with the octonionic M-algebra (and superconformal M algebra, see [8, 9]),
a specific example of a generalized octonionic supersymmetry. The identities for antisymmetric
octonionic tensors play in this case a special role.

The generalized space-time supersymmetries are the ones going beyond the standard H9LS
scheme [7]. This implies that the bosonic sector of the Poincaré or conformal superalgebra no
longer can be expressed as the tensor product structure Bgeom ⊕ Bint, where Bgeom describes
space-time Poincaré or conformal algebras and the remaining generators spanning Bint are
Lorentz-scalars.

In the particular case of the Minkowskian D = 11 dimensions, where the M-theory should
be found, the following construction is allowed. The spinors are real and have 32 components.

As recalled in section 2, by taking the anticommutator of two such spinors the most general
expected result consists of a 32× 32 symmetric matrix with 32 + 32·31

2
= 528 components. On

the other hand, the standard supertranslation algebra underlining the maximal supergravity
contains only the 11 bosonic Poincaré generators and by no means the r.h.s. saturates the
total number of 528. The extra generators that should be expected in the right hand side
are obtained by taking the totally antisymmetrized product of k Gamma matrices (the total
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number of such objects is given by the Newton binomial

(
D
k

)
). Imposing on the most general

32×32 matrix the further requirement of being symmetric, the total number of 528 is obtained
by summing the k = 1, k = 2 and k = 5 sectors, so that 528 = 11+55+462. The most general
supersymmetry algebra in D = 11 can therefore be presented as

{Qa, Qb} = (AΓµ)abP
µ + (AΓ[µν])abZ

[µν] + (AΓ[µ1...µ5])abZ
[µ1...µ5] (10.52)

(where A is the real matrix introduced in section 5).
Z [µν] and Z [µ1...µ5] are tensorial central charges, of rank 2 and 5 respectively. These two

extra central terms on the right hand side correspond to extended objects [19, 20], the p-
branes. The algebra (10.52) is called the M-algebra. It provides the generalization of the
ordinary supersymmetry algebra recovered by setting Z [µν] ≡ Z [µ1...µ5] ≡ 0.

On the other hand, in the same 11-dimensional Minkowskian spacetime, we can impose, as
we have seen, an octonionic structure, with fundamental spinors assumed to be 4-component
octonionic valued. The generalized supersymmetry algebra (2.3) admits on the r.h.s. a her-
mitian 4 × 4 octonionic-valued matrix with up to 52 independent components. They can be
expressed, from the previous section results, either as the 11 + 41 bosonic generators entering

Zab = P µ(AΓµ)ab + Zµν
O (AΓµν)ab, (10.53)

or as the 52 bosonic generators entering

Zab = Z
[µ1...µ5]
O (AΓµ1...µ5

)ab . (10.54)

Differently from the real case, the sectors specified by (10.53) and (10.54) are not independent[8],
leading to an unexpected and far from trivial new structure in the octonionic M-algebra.

The octonionic results contained in the present paper should be regarded as the necessary
background towards a classification of the octonionic generalized supersymmetries which is at
present still missing.

It is worth mentioning that the equation (2.3) with Zab given by (10.53) corresponds to just
an octonionic supertranslation algebra. However in [9] its octonionic superconformal algebra
has been explicitly computed. It is the octonionic counterpart of the OSp(1, 64) generalized
superconformal algebra of the M-theory. This superalgebra contains in particular an SO(2, 11)
bosonic subalgebra which, by dimensional reduction to SO(2, 10) and further Inonü-Wigner
contraction, produces Poincaré in 11 dimensions. Even if the Inonü-Wigner contraction has
not been explicitly written down in the octonionic case, it is nevertheless a completely straight-
forward procedure to be carried out. As already recalled, in the octonionic case the Lorentz
algebra is broken, but not arbitrarily. We obtain in its place the G2 coset, SO(p, q)/G2. At least
in special cases, the latter admits a geometrical interpretation (the seven-dimensional case is
associated with the seven-sphere S7, described by unit octonions, see the discussion contained
in the section 4).

The higher-rank antisymmetric octonionic tensor identities have been classified for the first
time in the present paper (a very special case was used, but not explicitly written, in [8]). Not
only in the physical, even in the mathematical literature these identities have not been discussed
(at least, no obvious reference can be found). We feel that a careful investigation is deserved to
check whether octonionic spinors indeed play a role in association with M-theory, as well as the
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arising of exceptional structures, exceptional Lie and Jordan algebras, in this context. On the
other hand, octonionic spinors have already found application in the context of string theory
(see e.g. [11]). It is quite natural to find out, as done here, the consistency conditions for the
octonionic spinors free dynamics. Due to the lack of associativity of the octonions, octonionic
spinors have never been systematically investigated as in the present paper. However, it is
worth remembering that our results can find immediate application in connection with field
theories defined on the seven sphere S7 (or, higher-dimensional field theories admitting the
seven sphere S7 as a compactification space).

Finally, for what concerns the 1D octonionic supersymmetries [21] applied to octonionic
quantum mechanics, a classification is now available [22].

11 Conclusions.

In this paper we made a systematic investigation of real, quaternionic and octonionic-valued
Clifford algebras and spinors, presenting their classification, as well as constructive formulas
to iteratively produce them. Tables have been given with the most general free dynamics
satisfied by real, quaternionic and octonionic spinors in each space-time which supports them.
All kinetic and massive terms have been listed.

For what concerns the octonionic case, by far the most intriguing due to the non-associativity,
we further presented the systematic construction and derived a series of tables expressing the
identities among higher rank antisymmetric octonionic tensors. We motivated this line of re-
search with the attempt at classifying the generalized octonionic supersymmetries. A first
example, hopefully physically relevant, consists of the octonionic M-algebra, with its striking
properties induced by the mentioned identities.

For what concerns the quaternionic spinors, they also can appear in connection with gen-
eralized supersymmetries. One can read, e.g., from the results here presented, that in the
Euclidean D = 11 dimensions quaternionic-valued spinors are allowed. It looks promising to
employ them to construct a quaternionic Euclidean version of the M algebra (we are in fact
planning to address this problem in the future).

Coming back to the octonionic spinors, we mention a further list of topics where they can
possibly find application. At the end of section 3 we pointed out that the octonionic realization
of the 7-dimensional Euclidean Clifford algebra is related with the geometry of the seven sphere
S7. A question, which deserves being investigated, can be raised. Is the octonionic description
of the M-theory somehow related to the particular compactification of the 11-dimensional
M-theory down to AdS4 × S7? This compactification corresponds to a natural solution for
the 11-dimensional supergravity [23]. It would be interesting to check whether the tensorial
identities found in the octonionic construction find a counterpart also in the AdS4 ×S7 special
compactification geometry. On the other hand, one should try to understand the physical
implications of the octonionic M-algebra also from a purely algebraic point of view. Being
expressed by a 4-dimensional octonionic matrix, it is outside a Jordan algebra scheme [24].
This raises the question of its quantum-mechanical consistency, which implies understanding
whether, and to which extent, is it possible to adapt the prescription of [24] to the present
situation.

It is worth mentioning a different dynamical system [25], which can be called a “Jordan Ma-
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trix Chern-Simon theory”, proposed as a unique model, being associated with the exceptional
Jordan algebra J3(O) of 3× 3 hermitian octonionic matrices. In this context it seems relevant
addressing, for octonionic fields, the status of the spin-statistic theorem, in order to carefully
revise it. Throughout this paper we have assumed the octonionic spinors being Grassmann,
anticommuting fields. However, it cannot be a priori excluded that in the octonionic case this
assumption could be relaxed.

We finally mention that the octonions can be held responsible for the existence of a bunch
of exceptional structures in Mathematics. As an example the 5 exceptional Lie algebras can all
be produced from the octonions via the Tits’ construction [26]. A lot of activity is currently
devoted to explore the relevance for Physics of these exceptional structures [27], see also [28].
The octonions seem the right tool to investigate such connections, see e.g. [29]. The recognized
importance of this line of research strongly motivated us to systematically present here the
fundamental properties of octonionic fields and spinors, as well as their non-trivial relations, as
the ones discussed in section 9.
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