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ABSTRACT

The thermodynamic behavior of the inhomogeneous

Szekeres type cosmologies with a perfect fluid as source of
gravitation is examined. Since the matter motion is geodetic,
the absence of heat flow implies that the temperature is a
function of time alone. For a subclass approaching homogeneity
and isotropy at large cosmological times an expression for the
temperature is derived. It does not coincide with the law of
temperature satisfied by the FRW universes, even asympto-
tically. However, by assuming an equation of state explicitly

dependent of the space coordinates, it is shown that the
FRW thermodynamics may be recovered. In all cases the Euler

and Gibbs-Duhem relations are no longer valid.
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It has been conjectured that the present symmetric
phase of our universe is a final result of the evolution of
an initial highly inhomogeneous and anisotropic state (173),

This belief has had an important role in the search of more
general cosmological models evolving to the Friedmann-Robertson-
-Walker (FRW) universes. A remarkable set of solutions of the
Einstein Field Equations (EFE) fulfilling such a condition

is the class of inhomogeneous dust-filled universes found by

(4-6)

Szekeres . Generalizations of these models with pressure

are available in the literature '’ 11)

. These extended solutions
present at least cne subblass for which an homogeneous and
isotropic phase is established at large cosmological times.

In the present note we examine the thermodynamic
behavior of the Szekeres type models. It is shown that the
thermodynamic limit does not follow necessarily, however,
from the dynamic one. More clearly, if a class of perfect fluid
Szekergs' type cosmologies approaching the FRW ones is given
its thermodynamics do not evolve asymptotically, in general,
to the standard thermodynamics of the FRW universes. For the
sake of brevity, we shall consider only the parabolic subclass
of Szekeres type models of class II recently derived
by us(lz) .

The metric of such models is (in our units 8ﬂG=c=kB=1)

2 2 2

as? = at? -o2ax® - r? (dy?+y?

az% (1
where the function Q (t,x,y.,z) takes the form

Q = AR + ROS P (2)



CBPF-NF-001/89

with the functions A(x,y.,2), S(x,t) and R{t) given by

A= (Acosz + vsinz)y + w ’ (3)
S = u(R/Ry) (3y=4)/2 ’ (4)
3y/2 -

R = R, I:l + 3—.} (t-to)] ’ (5)

where A, v, w and u are arbitrary functions of x, R0 and

t, are constants and Y _is a parameter which may be identified,
for large cosmological times, with the "adiabatic index" of

the asymptotic equation of state p = (y-1)p . This space-time

contains a perfect fluid whose isotropic pressure in the comoving

frame (uOt = 6“0) takes the form

p =31 (go/r)3Y . (6)
Ro

and its net energy density, heuristically considered in the

Ref. (12) as originated from a two fluid mixture, is

o= Bp -1+ 2 BT, M

which may also, for further reference, be rewritten in the

following forms:

= P 1 - - 82X
p=gog [+ 222 ARQ)I ' (7a)
and _
=‘—g..... —_— - - _jul
p y-1 :gl-+ (y=-1) (1 Q)| . {(7b)

Here, we assume the fluid to be simple., If vy =1 (p = 0),
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these spacetimes reduce to a particular case of the dust-filled

(4,5)

Szekeres parabelic models . Note also that the functions

R and p are the same ones present in the FRW flat models(13)

with a "gamma-law". Actually, both if S vanishes (Q = AR) or

if the limit of large cosmclogical times (R >> Ro) is reached,

the FRW flat models in Szekereé' type coordinates are recoveredtlz).
Next we compute the temperature distribution for the

spacetimes described by eqs. (1)-({(7). First we remark that since

there is no heat flow (qa = 0), the matter motion being geodetic
{14-15}

(aB = 0), the heat conducting equation of Eckart (semi-
=-colon denotes covariant derivative)
a af '
q = xh (T'B - Tas) ’ (8)
I 4

implies that the temperature of any Szekeres' type model with

perfeét fluid is a function of time t alone. Particularly, for

the models of class II, since R = R(t) it follows that T = T(R)

as in the FRW case. We now recall that combining the motion

equations of the fluid, contained in the conservation laws
TGBFB =0 , (9)
(m®),, =0 , (10)

H

where n is the particle number density, with the Gibbs 1aw(15)

nTQo = dp - (EﬁE) dn ' (11)

where ¢ is the specific entropy (per particle), one finds

that the temperature of a perfect fluid model satisfies at a
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point X = (x,y,z)

-k 2, (12)

K|w3e

where an overdot means comoving time derivative and the quanti-
ties p and p were taken as functions of the thermodynamics
variables T and n.

In the standard FRW models with p = (vy-1)p, since
n/n = -3R/R » eq. (12} gives

T =T

FRW

3(y-1)
] ’ r. (13)

0 [Ro".‘_‘
where T0 is the temperature at R = RO' In the case v = 1,

this solution yields the expected limiting result for dust

T = T0 = const ., (13a)

For the Szekeres type models it is necessary to
establish the equation of state defined by the expressions (6)
and (7) for p and p which are, in principle, functions of
T and n. First one needs to find n(i,t). In the background (1),

from the conservation law (10), one may write

n = LXg,2) (14)
OR |

where the arbitrary function f is found by considering that

if Q> AR, n + Nppw = no(RolR)B. Eence,

“0“03
ne_0 (15)
OR
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It should be noticed that, as the energy density, the term
n/n in eq. (10) may be rewritten using (2}, (4) and (15) in

the following forms:

n/n = -3R/R :‘21+ (3—5—") %B] ' (16)
= -3R/R |1 + (&% - é‘-‘)] . (16a)
& 2 0
_ _at/n [BR _ AR
= -3k/R [T+ (1 Q)] . (16b)

As will be shown, the two sets of equations (7-7b) and (16-16b)
play corresponding roles with respect to the possible thermo-
dynamic behaviors presented by the models.

First, let us consider the conventional procedure. Note
that since p and T are functions only of the time, instead
of p = p(n,T) one may take p = p(n,p). Now, using egs. (2),
(4), (6) and (15), the terms %? and 1 - %? present in egs.
.(7—7b) may be computed. Moreover, one can see that such an
equation of state not explicitly dependent on ;, will be

obtained only if we use (7) and not (7a) or (7b). In this case

eqg. (7) gives 1
, 1-<

p=p+%1lnp ¥ ’ (17)

where
1/y
N [3(1-11] , (18)
n, Rg

is a constant. A similar procedure for (16) gives

im= - PR+ e Y], (19)
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- =f

or using (17)
(20)

/= - 3Y 28 R
n/n = 2 (gg)n R *
Substituting the above result into (12), a straightforward in-

tegration yields
(21)

3vy/2
T =T, _[no./ R]

This decay temperature law furnishes the thermal behavior of

the considered Szekeres' type models during all of its evolution.

Of course, it does not evolve to the standard FRW result (cf.
(13)). In particular, it gives a rather unexpected result,

eq.
namely: the temperature of the dust-filled Szekeres parabolic
model approaching the respective FRW one scale with R-3/2
paradoxical result

instead of being constant.
As an attempt to circumvent this

i.e., to try to recover the standard law of temperature obeyed
by the FRW models, we assume next that the equation of state in
an inhomogeneous background may also depend explicitly of the
p = p(§,n,p). Now, using

space coordinates‘lS) in the form
egs. (2), (4), (6) and (15), the couple of egs. (7b) and (16b)

can be rewritten as
(22)

p = ;%—1- I:?l + (y-2) Bnp-”z:l
(23)

and
- 3% I:l + (3—;3) Bnp-“z] .

ﬁ/n =
where the function B(§) is
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- MY 3(y-1)

(24)
AngR,

It thus follows that ﬁ/n = —3(?-1)(3—) % and, from eq..(12),
the FRW temperature law (13) is feadlly recovered.

Seemingly, we solved the paradox, since in this case
the dynamic and thermodynamic limits are made consistent with
each other. However, the particular cases studied suggest
that we may consider other % dependent p's. Thus, we introduce

a yY-dependent parameter b such that the sets (7-7b) and (16-16b)

may be rewritten in the following unified forms:

- B 1-b) AR _Q:I
= 5 E:+ YD 5+ (-2 (1 - T (25)
and

ﬁ/n=-3-§|}+(1-b)§03+(-‘21-b)(1-é-§zl; (26)

from which the particular decomposition (7-7b) and (16-16b) are
recovered by taking b = %, 1 and 0 respectively. Of course,
{(25) and (26) is only a more general decomposition of p and
n/n in terms of %? and 1 - %?, which do not alter their
values, but lead to distinct equ?tions of state when such terms

are expressed as functions of p, n and of the space coordinates.

In fact, in this case the equation of state is

ED+Y(Y I-1) °onp “1/Y 4 {y-2b) Bnp’”ﬂ r (27)

with o and B defined respectively by (18) and (24) . Also
from {(26) and (27)
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= |- 1

=-3e-mgd § . (28)

n

Thus, combining (12), (27) and (28) one obtains

]3('\’-1'))

v =1, [Ry/R , (29)

which generalizes egs. (13) and (21) for b equal 1 and y/2 res-
pectively. In addition, if b = 0 eq. (29) yields

T = TO [ROIR] . (30)

which, as one can easily see, corresponds exactly to temperature

law generated by the decompositions (7b) and (16b).

We see now that the equation of state (27) does not
depend explicitly on the space coordinates only if b = v/2, the
first case considefed. If this condition is relaxed there is now
an infinite (one-pafametric) class of possible tempe}ature dis-

tributions corresponding to the possible choice of b. For b = 1,

the FRW temperature law is recovered. It seems to us

that this indétermination of the temperature law

has its origin in two facts: (i) In the Szekeres type one

fluid models no simple equation of state conecting p and p may,
without loss of generality, be imposed E priori in order to.
integrate the EFE. In fact, the equation of state (27) has

been derived using the particle number density after the inte-
gration and, as in the standard FRW solutions, n does not play
any dynamical role. (ii) The energy conservation law (contained
in the EFE) is always satisfied regardless the value of b. This

condition implies that the specific entropyremains constant along
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each fluid line for any value of the b parameter and time

dependence of T.
We remark that the usual local form of the Euler re-

(17)

lation {(zero chemical potential}, ¢ = e¥p , is not valid

nT
in any of these models. This is more easily seen looking to its
counterpart, the so-called Gibbs-Duhem relation

8p _ | ptp
i T . (31)

The above equation cannot be satisfied because p depends of
the space coordinates whereas p and T do not. In fact, if
b =1, for instance, by integrating the Gibbs law (11) one finds,

except for a possible additive constant, that

= p~
° = {2-VinT (32)

whose constant value, ¢ = ““_EITT , may be easily checked by
substituting the expressiogng§0 p, p, n and T into (32). It
coincides with the value of ¢ for tﬁe FRW models with a
"gamma-law". |

Finally, it should be noticed that we consider here
only the class of one-fluid Szekeres like parabolic models which
smoothly approach the FRW limit regardless of the value of y. Of
course in the framework of a two-fluid interpretation as suggested

in Ref. (12), it is possible that the thermodynamics of these

models may be free of the anomalies here found.
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