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ABSTRACT

The purpose of the present work is to give a certain systema-
tization through the discussion of results already known and
the presentation of new ones. In section 2 we give a brief re
view of the necessary mathematical background. The theory of
perturbation of Friedmann-like Universes is presented in sec-
tion 3., The reduction of Einstein's equations for homogeneous
Universes to an autonomous planar system of differential equa
tions is done in section 4. Finally in section 5 the alterna-
tive gravitational non-minimal coupling and its consequences

to cosmology are discussed.
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1, INTRODUCTION

Classical Relativistic Cosmology has been, in recent
years, a very active subject. Many authors have revised some
of its main topics. However, the range of this subject 1is so
large that it is far from being exhausted. In this vein,we will
present here some topics which were not fully discussed previ-
ously. We limit our analysis to three subjects: the theory of
perturbation of expanding universes (the quasi-Maxwellian ver-
sion); the qualitative analysis of irreversible cosmos and the
properties of universes filled with scalar and vector fields
coupled non-minimally to gravity.

The theory of perturbation attracted the attention
of many cosmologists which have tried to related the observed
inhomogenities to small disturbances present in our universe.
Here we limit our analysis to the discussion of the quasi-Max-
wellian equations of motion. The reason for this is twofold.
Firstly, as we shall see, such method presents many advantages
over the conventional one, at least for those background geome
tries which are conformally flat. Secondly, it permits a
straightforward generalization for alternative gauge-like the-
ories of gravitation. Indeed, the quasi-Maxwellian approach of
gravity is based on the fact that we can interpret Bianchi i-
dentities as true equations of motion for a given set of metric

o BuVv

initial conditions. Using the curvature tensor R we write

R“B“V;V = JoBe (1)

Different choices for the current J*PM yi1l give origin to dis



tinct theories of gravitation. In this work we limit our dis-

cussion to the choice

JusuzTuu;B'TuB;u—%— [guaT,B_guBT,a] (2)
which, as we shall see in section 2, is a necessary condition
for the equivalence of system (1) to Eintein's equation. How-
ever, distinct models for the current J@Bp have been proposed
either suggested as a consequence of quantum fluctuations of
the geometry | Novello, 1978] or dictated by other reasons
[Camenzind,1977]. We then turn our analysis to the influence of
viscosity on the behavior of the Universe at large. The whole
system of Eintein's equations can be reduced (in the case of
homogeneous and isotropic universes) to a planar autonomous dy
namical system. We discuss the qualitative features of this
system, the generic properties of the solutions and their sta-
bility. In section 5 we deal with some consequences of non-
minimal coupling of both scalar and vector fields to gravity.
We present the mechanism of spontaneous symmetry breaking and,
as a consequence, the generation of repulsive gravitational
forces induced by a scalar field. As a consequence of
the non-minimal coupling of electromagnetic fields to gravita-
tion the equation of motion obeyed by photons becomes non-
linear. We then examine an Universe filled with such non-linear
photons and find out that this allows cosmological solutions

devoid of singularities to exist.



2. SOME MATHEMATICAL TOOLS OF'GENERAL'RELATIVITY»

The purpose of the present section is to give a gen-
eral overview of some of the most important techniques which
will be used in the investigation of cosmological questions in
subsequent sections of this work., Although we do not intend to
extend this presentation very further, we have tried to make it
as self-contained as possible. Here and there we have pointed out

in the literature those papers/books in which further material

can be found.

2.1 - NOTATIONS AND DEFINITIONS

We list here some of the symbols which are used in

the text.

guv metric tensor

greek indices 0, 1, 2, 3
latin indices 1, 2, 3

an Minkowskii metric tensor with standard form

Tlu\)= (+1, _19 _19 -1)

nu four-velocity (normalized nunvg“v= 1)

Conformal Weyl tensor

WaBuv
RaBuv Riemann curvature tensor
Christofell symbols
a -1 _oo -

r 2 (guo,vq'gvo,u guv,o)

s simple derivative (¥ - -jﬂ%)
? oX

. . . o o
; co-variant derivative (¢, = ¥ + 7@

€
s M > U €l v

\7Oc alternative index for the co-variant derivative



o _ pO _ o +7% 79 1% O
R Buv TBu.v FBv,u ov " uB ou VB
_ pa
Ruv—'R nov
naBuv completely anti-symmetric tensor

€uBuv completely anti-symmetric pseudo tensor

g determinant of 8y

F ox dual of the anti-symmetric tensor Fu

v v

Euv electric part of Weyl tensor

Hpv magnetic part of Weyl tensor

TaBuv Super energy-momentum tensor of gravity
Tuv energy-momentum tensor of matter

huv projected tensor

0 expansion factor

Ouv shear
wuv vorticity
v racceleration



2.2 - THE WEYL TENSOR, PROPERTIES -

The description of that part of the geometry, the evolu

tion of which is not coupled directly to matter in Einstein's

. We
Buv

in terms of the curvature tensor RuBuv and 1its

theory is represented by the conformal Weyl tensor Wa

define W
o Buv

contraction Rqu R and, R= R”u by means of the expression

uov

WaBuv= RaBuv - HuBuv *% R 8aBuv o (1)
in which
gaBuVE gau ng RN gBu (2)
H . =+ {R +R, g -R _g. R, g }
oBpv 2 oM ng Bveou ov SRy Bu Sav”*

(3)

The conformal tensor has all the symmetries of the cur-
vature tensor, namely

Wusuv= _Wasuv= -WuBuv= wuvaB'

Besides, it  is completely trace-free. Thus, it has
only ten (10) independent components. We can decompose the
Weyl tensor with respect to an arbitrary observer which moves
with velocity n¥ (normalized nunuguv= 1) in electric (Euv)and

magnetic (Huv) parts defined by analogy to the electromagnet-

ic field:



- MV
EaB_ WuuBV n"n (4a)

- W HpV 4b
HaB Wuqu n'n’, (4b)

The star operator represents the dual, defined by means
of the Levi-civita completelly anti-symmetric pseudo tensor

Euvpo by the expression

* p—

1 €T
Wuupo 2 Nau WSTQO ’ (5)

in which

naquE ’-g 8ocupo (6)

and g= detguv,

aBUV

We then have for n the value

naBuv= -1 _aBuv
/-g

We remark that although the Levi-Civita symbol is a pseudo-

tensor, the dual object nuvpo is a true tensor. This is due ta

the fact that v/-g is also a pseudo quantity which transforms

with the inverse power of the Jacobian,making up for the Jaco-

bian dependence of =« .
uvVpo

For later use and for completeness we recall here some

properties of n and g

oBuv afpuv’

We have

oVpE _gove

n MaBe” ~Sxap (7)



in which the symbol 6238 represents the determinant construc

ted with a”v,

o o o
Sy 6@ 56
ovp _ VgV gV
SAaB 6A o B (8)
p P P
SA S 68
_ P <OV V Op O PV
= 66 Gxa 66 SAQ + dB Gxa ,
in which
5 %
ov _ _ o0V _ O oV
Sxa = | v v|= Sa % 7 Sq Oy
S §
A ol
By contraction we obtain
OVEA_ _289V (9)
NaBeA n - aB
and contracting once more
novek n = -68° (10)
Bve <
Finally ,
OVEA -
n gver~ 24 (11)

Let us come back to the Weyl tensor. From the properties

of symmetry of W we show that the dual operation is inde-

aBuv
pendent of the pair on which it is applied. Indeed, we have
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*
x = N . 12
“&Buv WuBuv WaBuV (12)
It is worth to remark that this property is not, in gen
eral, valid for the Riemann curvature tensor.

Indeed, taking the dual of on the first and on

RaBuv
the second pair of indices we obtain

1

* - * = o * =_ Rwn
RuBuv Rquv ZHaBuv+ 2 napr ? (13)
in which we have used the fact that
gasuv= gaBﬁv= naBuv (14)

Consequently, n -gaBuv’WhiCh could be used as an

= * =
&Buv nuBuv
alternative equivalent way to define the metric ‘bi-tensor

gqﬁuv'

Then the necessary and sufficient condition to have in-

dependence of the order of the application of the dual, that

is,
* =
RuBuv Rasﬁv i
is contained in the relation

= L )
HuBﬁv 4 Rnasuv ?

or, taking the dual (in pv) of this expression = and noting

that taking twice the dual on the same anti-symmetric pair of
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indices is equivalent to a mere change of sign, we obtain

= 1
Hogpw™ 7 R8

*

o Buv

which is satisfied if Ruv is proportional to the metric tensor,

that is, for the class of geometry which is called Einstein
spaces:
_ 1

Incidentally, we remark that from (13) we can write

1

e R

R**...

asiv. Raguv™ “Wagpy (15)

gugu\) ’
which is a useful property to convert double dual of Riemann
tensor in terms of the invariant decomposition tensors of the

curvature.

We remark that although the trace of the dual curvature
tensor vanishes, the trace of the double dual does not.Indeed,

taking the trace of (13) and (15) gives

R g%H= 0 (16a)

*
afBuv

ou_ o1
R&B;v g = RBv 5 Rng . (16b)

So much for the basic properties of the curvature tensor.

Let us go back to the Weyl decomposition in terms of the elec-

tric and magnetic tensor E

uv

and H .
Hv
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From definitions (4) it follows:

v= 0 (17)

H n= 0 (18)

MV _
Huv g = 0.

A simple inspection on equations (4a) and (4b) shows that

the dual operation is equivalent to the map

> H (19a)

> -E (19b)

Such transformation, which is very similar to the rota-
tion of the plane of polarization of an electromagnetic wave,

is a special case of the so-called dual rotation.
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2.3 - DUAL ROTATION AND INVARIANTS OF THE METRIC

We define the operator of dual rotation as an abstract
map of the electric and magnetic parts of Weyl tensor gener-

ated by a rotation in the plane ( H Thus defined, this

Ev)’

map constitutes a one-parameter continuous group. We have:

E .,
nv

E! cosh sinb E
uv Hv
= . (20)

H' -sinb cosf H
uv TRV

The dual map (19) is the special case 6= w/2.

Let us define the complex quantity Zuvpc as:

*

ZuVQoz Wuvpod-lwuvpo . (21)

Multiply this expression by zHVP0 +o obtain

UVpo_ .
Zuvpo % = Z(Il+ 112),

in which I1 and I2 are the second order invariants

- 0B v
= W wH - (22)

I.= woB v

= v g (23)

The norm of Zu 8 vanishes, that is,

Vo
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(a bar means complex conjugate)
Besides the two invariants I1 and IZ of second order,
with the Weyl tensor one can construct two more invariants 13

and I of third order:

43

- 0B UV po
IS‘ W " W 00 W B (24)

WoB MY yPO (25)

I4E uv PO oB

The third order relation takes the form:

aB uv =po_,= 0
T v z 00 Y7 aB

and for the triple product one obtains the identity:

uv 0o of_ .
Lyg o Iy Igg = A(Iz*iIn).

The dual rotation (20) can be written directly in terms

of wuBuv:

*

? = .
W 08UV cosb Wunv4-51ne W@Buv (26)
or more concisely interms of I :
o Buv
] = —ie
Liaguwv™ € Zaguv:

The main interest on dual rotation is related to the fact

that it constitutes an exact symmetry of Einstein's theory of



gravity in the absence of sources for the geometry. This situ
ation 1s very similar to the case of Electrodynamics in the ab-
sence of charge. We will discuss this result later on, after
the presentation of Einstein's equation in quasi-Maxwellian
formulation.

The four scalars Il’ IZ’ IS’ I4 are invariants construct
ed uniquely with the Weyl tensor. They can be associated to
pure gravitational fields (that is, to those regions of space
time free of any other kind of energy except of gravitational
origin).

However, the total number of functional independent in
variants which can be constructed as functions of the metric
are in number of 14. Besides the above four ones, the remaining
ten are constructed with products containing contractions of
curvature tensor, that is, with the irreducible objects
C = Ru

uv
completeness.

N %r Rguv and R. We ennumerate them here, just for
*
Let us define the quantities Duv and Duv by the expres-

sions

= aB
Do Wogug C (27a)

* _ * CX'B
Dyy= Woug C°F - (27b)

We write below the remaining 10 invarians
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2.4 - DUAL IDENTITIES

In the study of the anti-symmetric electromagnetic ten
soT fuv we generally use two important identities involving
fuv and its dual f;v, in order to simplify certains expres-
sions. These identities are:

A f o fux £f7v Hv (28a)
x VA_ oA 1
fuv £ "= fuv £f = 5 B guv , (28b)

in which the invariants A and B are given by

=L uA
Az £, f

-1 U
As a simple example of the use of these invariants we
can consider the stress-energy tensor of the electromagnetic

field, given by

_ a 1 aB
T f £f + 3 guv fuB f ,

which can be re-written using (28) in a manifestly dual symme

tric form
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The similarities of the properties of Weyl conformal ten

sor Wu and Maxwell tensor fuv induce us to suspect that sim

WuBuv

Buv

ilar relations should exist relating and its dual, Two

C )

of these relations were known from long date due to Lanczos

¢ )

and Debever and are the following:

po_ & oo Xpoo_ 1
Wupuo WB A WupAo W u Y, 8 Ilguk gaB(Zga)

W woPro- g

apio B i 1188 (29b)

in which I,= W WoEBHY
aRuv

Recently, Novello and Duarte have exhibited a set of four

identities constructed not only with quadratic products Oflvaeuv

but also with cubic terms. These last identities have not ana-
log in the case of electrodynamics, once triple products of

f
v

duced to zero.

can be simplified by means of the above identities and re-

Indeed, we have for instance:

V Au_ v Au_ VU, FAVEI (TR
fuv f A f fuv{f A f I1 g’} (fﬁv:fk)f =
R AL
> I2 guA f = 0
v *Au —.l._ Hv =
fuv f A 7= > fuv g I2 0

and so on.
The complete set of identities of double and triple prod

ucts of Weyl tensor are (for the proofs of these identities we
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quote Novello and Duarte (1980))

Wapuo WBQAO"%apAo %Bpug - I1 gxu guB (30)
W(qpuc WEIPAT 7 WO&OUU%B)DAG = 2higy e
W WP T g g
Wuva ﬁaesp - %apﬁv aefp
Wopn Ve - 21, 6} (31)
Wy o VR = 21 6 (32)
R e AT o T ALt S )
WuueB WETXY kauu_ %ﬁGET %EBAYWXYUQ=8 IsgBT
(34)
Wooes wHOAY Wy, S = 41 g, (35)
WuasB %UQAY kaeT - 414 gBT (36)
WuaeB WETAY %XYUd.P‘NuaET WEBAY ﬁxyua= 814 gBT
(37)

If we consider the definition (Bel ) of the super tensor

VpOo . .. . .
T}'l P we can use these identities in order to re-write

in a form which is analogous to the expression of the

momentum tensor of the electromagnet.c case.

THVPO

energy-
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This gives

TaBAu= WupAG WBpg*_%apAG WBQU
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2.5 - FUNDAMENTAL KINEMATICAL QUANTITIES

A curve I'(s) defined on a 4-dimensional Riemannian man-~
ifold M4 is the result of a linear mapping carrying elements
of a sub-set S of R! into a region of My. Let n(s) be the tan
gent vector to the curve T, and s be a parameter on the curve,
A congruence is defined in M4 if instead of an isolated curve
I'(s) there exists a whole set of distinct trajetories charac-
terized by a new parameter p which selects a curve of congru-
ence. Thus the congruence will be represented by two parame-
ters s and p and will be noted T(s,p).

The congruence is time-like if the vectors H(s) of the
curves which belong to TI'(s,p) are time-like. We consider here

only time-like congruences, the vector K(s) being normalized:
nH nV g = +1, (40)

The metric gy and the vector n of M4 induce a projec-
tor tensor huv which separates any geometric (tensorial) ob-
ject of My in terms of quantities defined along T plus quanti
ties defined on the 3-dimensional space H orthogonal to n. We

write

h =g - n n_. (41)
This tensor huv satisfies the properties of symmetry

h, = h,, (42a)
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. . . >
it is orthogonal to s,
»

T

h n =0 (42b)
and is a true projector
h "= h ", (42c)

Such quantity huv can thus be identified with the metric
induced by gy on the hypersurface H. Indeed,we can write for

the fundamental distance between two arbitrary points of M4:

as?= g, &M ax’= n @ a¥ v (n) ax™)? (43)

which separates the length ds into a pure spatial part (hu v M dxv) 1 /2
plus a time interval dt= n, ax¥ by the identification of the
time-coordinate t with the parameter defined on T'(s).

Given any vector A" we can define its restriction on H,

noted A", by setting
A=h" A, (44)
o

The covariant derivative in H operates on objects thus

defined by (44 through the expression

<1
=)
]

h ®h”™v A, (45)

-

The quantity AQHE Va Au is indeed a quantity completely



- 23 -

contained in H, in the sense that its contraction with the vec

tor n vanishes identically:

a“:
n AOHJ 0
Wy -
n Aau 0.
Thus, we have
o € A 0 _ > X L0
Va AB h hB (Ap h e);k ha hB h c Ap,x +
€ A P p -
+ ha hB A h€ . ha hBA Ap;k
- € p A o
hu hB Ap n ng’x,
using property (3b).
We can then write
oA - A P u €, X ,p :
= h ¢ -
Vo Ag= B, hg (Aphg),x Tex By Bg" h7 A (45")

Thus we are led to define the restricted connection on H

by the expression

o - LM P L.€ A
Tag = Tea hu h™y h B* (46)
Using (46) into (45"):
-~ *_ p )\A Ap -~
V A=nh h A - T A

a "B Ta "B Tp,A ToB p°
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Let us exemplify the properties of such derivative in
the geometry of an expanding homogeneous and isotropic uni-
verse. The 4-dimensional Friedmann geometry written in a gaus
sian system of coordinates takes the form (Robertson  and

Nooman, (1968))

ds?= dt2- A%(t) vij(X) dx* dxI-  (47)

Remember that latin indices run in the domain {1,2,3}.
The 3-dimensional geometry has constant curvature and
thus the Riemannian tensor (S)Rijkl can be written in this

case in the compact form

(3) -

Rijk1™ i1 (48)
where € 1s a constant and we have wused the definition
Yijk1T Yik Y517 Vi1 Y5k

Contracting with the metric Yij of H we obtain
(3, =
Rip™ 267 - (49)
Contracting once more we have
(3Ip = e . (50)

Remark that (47) is already in the form (43). Making

the choice
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we have

that is,

However, from (18)

A € L0 _ .M
h Tye™ T

Thus in this case the restriction of the connection
H coincides with the values of the connection of M,.

4
Using the metric of Friedmann (12) we obtain:

= L mn _
M= 78 {8kn1 * 810,k fx1.n’

mn
YU M1 Y Yink” Ykla!

L
2

on



Thus,

m _ (3).m

M k1
in which (S)Fﬁl is constructed with the 3-dimensional geometry
Y1 * We remark that the projector huv is indeed the (Riemannian)

geometry of H, that is, its co-variant derivative restricted

on H vanishes. The proof of this is straightforward:

- _ €. AL P R B o -
v, huv— hu hu h & v h>\p ha hu h, Ve(nx np)
_ _1n E A 0 _ 1 € A o
= ha hu hv ny V8 np h hu hv np V6 n,
=0 .

~

The Riemann tensor Ru in H is given by the definition:

£ R

)

v - =
va 8 AU VB Vd AU RUEBd

A good example of the uses of the above expression is
given by the search of the Gauss-Codazzi formula which relates

the 4-dimensional scalar of curvature R to the 3-dimensional

-~

scalar R and to the extrinsic curvature Kuv' This quantity Kuv

measures the bending of the 3-surface H in the embedding space
M4. Such relation is of great help in the examination of conti-

nuity conditions of the gravitational field, for instance.

- - -

Let us then evaluate the expression VB Va Au
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<1

=

+
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h.*h O h?ty (hPpT O p.Tal
y . 5 X vp AT+ hO hA A vp hT¢} =

€ o T
he” h, h (v, D) (7, A n® +

h € h © h T ¢
o N Ve {A Vo hT¢} +

h,®h On Ay p Ty a9
o u ( e A ) A VO hT¢ -

h®hopT ¢ P
g B, b TV, n ) a® g v, by =

A

T €., 0. T
g 1, h,°n (Ve nA)(VO_ AT)+hB h hu Ve Vg A -

hShGhT _t € [0} T

g By BT n) @, A R o (VE.A¢)(VG n)n,

h Eh O, T ,¢ €, 0, X

g by b Ay v h.st h" h h,"(V, n)n"{(v_n) n, +

n v ¢ e, 0, T
. n¢} A hB h hu (v, nO)A¢ n® Vp hT¢ .
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Anti-symmetrization in o, B Yyilelds:

= )

T AR n

> )
™
=

€
peaB T 7B ha hu RTAoe A +hB ha hu TVoE ¢ *
v € c A ¢
+ R¢voe hT o+ h[B hd] hu K>\E A K¢o (51)
where we used the fact that 1 is orthogonal to H, that is,
n - n = 0 and defined the extrinsic curvature K__= V. n_.
VvV, Tv,H VRV VRV
Now,
P o T v vy _
hB ha hu {Rreop TVOP € EVOp hT b=
= P o T _ T _V
hB ha hu {Rrecp TEOP TVOp n} o+
R - R n' oV}
ETOP EVOD
=h,?Ph%n 0"
B o u € TVOP
Using this result in (51) we obtain
R =h h®h®hn®R __+h- hoh K _K_ -
UTaB p T o B “Apoe (B o U AE O
(52)

Contracting with the metric in H:

b = nTB T _w A ype O
Ruu_ h RquB hLl h hu RXQO€+

o} A € ,0T A
) hu Kre Keo™ ha h hu Kre Ko
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or

)

pe -
o U o h Rkpce * kuT k o kua ko, (53)

in which

= v
k = kuv h
Contracting once again with the metric on H yields the

desired result.,

o o T\
R= h"” h Rypoe kuv k k (54)

= - M Vv KV - 2 '
R= R ZRuv n" n o+ kuv k k°, (54)
which relates R, the Riemann scalar of curvature of

M4, to the intrinsic curvature R and the embedding property

4’

Let us now consider the decomposition of the extrinsic

of H into M specified by tensor kuv'

curvature (nu'v) into irreducible components.
o

We set

6
v uv 3 huv4'wuv4'au . (55)

in which 0y is the vorticity tensor:
w =% h-% ~fn (56)
2 TN Ve

Ouv is the trace free dilatation tensor (shear):
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_ 1 . o B _ 1 .
oW T B By Paze” 30 By (57)

The expansion 6, is defined by
= n¥ 58
8= n". (58)

and
_ v

a=mn,,n (59)

is the acceleration of the field of velocities.

From the definition of the curvature tensor we have

€

- =R
na;B;Y na;Y;B o eRY n

Multiplying by nY and projecting twice on H we obtain

U, v 3 MLV [TESERY; Y €Y v
h”h"m . D= bt a +hFhn  nY <R nn ﬁgxh -

where the point means derivative in the direction of the

field n.

Let us define the quantity qu by the expression.

We can then re-write equation (60) in the form
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=R “nY.  (60)"

u . ChH MRV \ g
h hB qu+ad aB ha hB a +waQ g ue&{n

WiV

This is the fundamental equation which enables us to obtain
all the required expressions for the evolution of the kinemat
ical quantities. Contracting eq.(60)' in a,B we easily obtain
the equation of evolution of the expansion factor 6 (known as

Raychaudhuri's equation):

+ 20%- w?- a% +a v% a_ a%=Rr ¥ nv’ (61)

in which o® and w? are defined by:

2

I}

%r o oMV (62a)

o .

2

® %; w o™V . (62Db)

uv

i1

Symmetrising equation (60)' we obtain:

Wp vy w8 o Lpug vy -
L RV ol RO VPRV NP B

1 u - e v 1
+ a, a8+-7r Q(u QUB) Ruan n n 3 Ruv n huB

But,

u 2 2 4
= =~ 0 h L +
Q(a QuB) 9 aB 3 o % zgau ° 8 au 8
Let us introduce the spin vector W associated to the vorticity

@y through the definition
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n_ . (63)

wn=0-
u
We have:
¥ u _
OmwB wuw hocB woc wB
and thus
wau= 2w wa.
ou o

Using these results into the symmetric form of equation

(60) we obtain the equation of evolution of shear:

u Vo 1 - 2_9.2 A
hy, hB Ouv* 3 hOLB L(n 202 + a ;A] +
aa -Lpugpy 2
+a0(,aB 5 ha hB (a ,v+ av;u)-+ 3 0 OuB +
Mo = e v 1 MoV
-roup o} 8 wa wB Ruer VoV 3 Ruv'v v huB‘
(64)

The equation of evolution of the rotation tensor w is ob
tained by anti-symmetrisation of equation (60)'. A straightfor

ward calculation gives the desired expression:
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" Lii‘;‘«.
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2.6 - QUASI-MAXWELLIAN EQUATIONS OF GRAVITY

In this section we will present the so called quasi=
Maxwellian formulation of the dynamics of gravity. This proce
dure explores the fact that we can use Bianchi identities as
true dynamical equations of propagation of gravitational dis-
turbances. In this way, the equation of gravity assumes a
form which has a great resemblance with Maxwell's equations of

eletrodynamics, as we shall see.

In any Riemannian space V, the curvature tensor R
4 aBuUv
satisfies identically the equation
aB aB aB -
R " Bugu ™ B 0 (66)

which is known as Bianchi identity (Eisenhart, 1949).

Multiplying equation (66) by the Levi-Civita ten&n‘nuvpg,

we have
aBpo 1 qoB wvpo . 1 uvpo paB  _
T T R e T T Ryt 0
or
aBﬂr aB
RTY At R ARGV ntve% o . (67)
Contracting o and X:
*
Rquo‘ + RuB nuvp0= 0

Y ou;v



or

*
aBpo -
R > 0

. (68)
Contracting indices o and W in equation (67) we obtain:

ROLBU\).\)= Rul:a;B], (69)

which is equivalent to (66).
The set of equations (68) and (69) constitutes the point
of departure of many theories of gravitation. Here we will re-
strict our analysis only to Einstein's model and postpone dis-

cussion of alternative theories of gravity to next sections.

We consider, primarily, the vacuum case. The dynamical

equations for 8y are given by

ROBHY = g

y . (70)

Let ¥ be a space-like hypersurface endowed with a giv-
en orientation specified by the vector n* normal to I. We im-

pose on I the validity of vacuum Einstein's equations:
Ruv(z)= 0 . (71)

Thus our problem consists in showing that equation [quB“v.v=Qﬂ

plus the constraint condition (71) is equivalent to vacum

Einstein's equations.
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From equation (70) and (71) we obtain the tenporal deriyv
BRV' Vv o 8ROO o
221 =RgY % and ——— = R® n° characterized by
ana i,a o

ative 0
=
the variation of the parameter along the normal n. These quan-

Bnu '
tities, once known, can be used to propagate the condi
tion [équation (71)] on I, to the future of I, in temms of known
guantities.

Indeed, we can write

R, =r1.%RY -1 YR* «RY . +1Y. R® - 1% RY
i,o io a a0 i 0,1 al o oi o
and
RO = -rRY 4 |r* - "]R" i
0,0 0,1 oV Vo A
Consequently, if Einstein's equations for the vacuum

(71) are valid on the hypersurface Z,then Bianchi = identities
will propagate these equations throughout the space-time, be-
yond X and we obtain the validity of Einstein's equations in
V4. In the case there is matter present a straightfoward gener
alization of the above procedure shows that,indeed, we can use
Bianchi identities to propagate the dynamics of gravity. We rec
ognize then that Einstein's equations act 1like a set of con-
straint:conditions for the identities (69).

After this result, one should look for a more formal de-
duction of the mixed group of Einstein's equations and Bianchi
identities from a variational principle. We postpone the dis-
cussion of this question, Here we will explore the consequence

of this new way of looking at  these equa-
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tions.

woB

In terms of the conformal Weyl tensor v? Bianchi i-

dentities (69) take the form:

“TOLBH\)'\) - %_ RuI:OC;B]_ Tl'— U[OLR'B:[ - (72)*

; 7 8

Using Einstein's equations, we can re-write this expres

sion in the form

WOLBU\).\)___ - _%_ THI:O(,;B]+ %_ gu[OCT'B] . (73)

*

From now on, equations (72) and (73) will be called the

w-representation of General Relativity(Lichnerowicz, 1960; Jordan (1960)).

In absence of matter we have

w“B“V,v= 0. (74a)

joBuwy _ oy (74b)

These equations are invariant under a dual rotation of
an arbitrary constant angle 6 characterized by the transforma
tion

*

cosb Wu + sinb

Buv WuBuv ? (75)

e —————— \ =
WdBUv i wuBUV

as one can easily verify from equations (74a) and (74b). This
symmetry still needs a clearer understanding*.

The W-representation of Einstein's equations is very

*See Apendix I
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useful in many respects, Here we will explore the similarities
between gravity and electrodynamics which are almost explicitly
contained in this representation.

The source of the curvature characterized by the energy-
momentum tensor Tuv will be taken as a perfect fluid with dég
sity of energy p and pressure p:

v

R TR N ¥
Tuv— pn n p h v (76)

The fundamental observer, co-moving with matter, has ve-

locity nu, which we normalize: n* nV g = +1,

Hv

We will then project equations (72) and (73) multiplying
respectively by products of n" and h"V. We have four in-
dependent projections for the divergence of the Weyl tensor.

They are:

h © (77a)
By A (77b)

Wueuv. h A (77¢)

WuBuV
v B hu(p ho)u

and the corresponding projection on the right hand side of equa-
tion (73).
Let us develop each one of these projections separately.

v B nu h®O

Fi t j i 5
irst projection WuBu sy D
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Using the decomposition (4) of the Weyl tensor in terms

of the electric and magnetic parts we can write:

T

U A VT +
ochT )(nnE);T

- g
(naBuv np AT aBuv p AT

o u oA VT
(n ey So M * 8aw Mo AT)(n n H ), .

;0
Projecting in case (a) gives:
o age B _p. M A VTy _ _y € VO € O VT _
gaﬁuv gp AT h™n" n"(n" n" E );o hv E ;o+'hv n_n E -

- _pn B AU gV
- h h E A;u .

The second term can be transformed in the following way:

gy (gpk T ngég) nu;o n* BT P %€ nfs o By nu;T K€ P VT =
= Mgy G %%'hur+'qu" a¥n ) n BT

= nEBuV Uur nB VT . nesuv qu nB T

The third term gives

(guu Epv” Eqv ) n n" nA;G H'T nP nP ne- _npOAT nx;0 BT 1P=

Thus, collecting these terms we obtain
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€ u VT pOAT £ -
+ N Buv w . nB H n w H n

Remembering the definition of the spin vector w':

v

T _ 1 _aBprt
W= 5 waB np

we have:

€ u B, VT_ _EBV  _u o .o T_ _&Bv p o T_
n Buv W H "= -n " n TG W™ n nB Hv = 6Tpo w” n nB Hv

EsBeV _ (E BV £ BV EsBsV _ €BV. £ BNV, p O T_
(GTGOGD GTépég 6p606T+ 60606T 606Tép+-6pdeg) R H =

and

PoAT w n_ HE = —ZwT HET,

Finally,we obtain

o B _p ., o € AU LV £ u R ..Tv Te
“ﬁsp g n h™"= hv h"" E A;u+ n o°_n"H "+ BwT H (79).
Let us now evaluate the right-hand side of eéquations(73)
projected by (77a).

We have
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. 5 ; ¢ =
Tu[oa,B] ng nu hof: (o nU n[OL),B]nB :nu hae__(P hli[:oc) B:I nB nll h@ =

IR TR €_ . W _Byia e ufo;f] €_
=pon"n ng ha (pn" n") ng ha ph ng n, hu

u

Qe >
h .

€
- +
pa P pa

Thus:

(- L opulese], %— g“[o‘T'B]} ng h,= - —%— [(p+p)a€-p ,aho‘s_l -

1 ae_ 1 a 1 a _ 1
B IR I i

Now, from the '‘conservation' law Tuv,v= 0 projecting ‘on

the rest space of n" we obtain

which implies,

o 2
(p+pla - p , b7 .= 0.

Finally,collecting all those results we obtain:

£ AU LV £ u VT Te_ 1 oe

h\) h Ek;u+n8u\>OTnBH +3wTH = 3 p’uh . (80)
The remaining projection can be evaluated in a very simi-

lar way as we did for the previous case. We do not reproduce here

the rather long and tedious calculation but we give only the final

result:
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Second Projection:

We obtain,

Wosn v A
We obtain:
UV . P, T pt_1 » (p )v_ 1 - (p 1) +
E hU hv + 0 E > Ev g 7 Ev W

* U A Teo BV

1 u (T_p)XaB B 1 0T
- Hg' . h,*'n ny = - 5= (p*plo” .

Fourth Projection:

aBuv
W -y nB hu(phs)u

We obtain:

sV o P 4 O po_ 1 4 (po)v_ 1 (p,0)
H hU hv +0 H 5 Hv g = Hv W +

ovEe _piofB
1 n nunkHeocGB\) o R X 2 TR:

n' VHE npmB n n, E Tou * 3, HB(pnT)XuBnA -

(81)

(82)

-a E(pno)mBn+l EFugfﬂP”“5n=(L

A

(83)



Equations (80), (81l), (82) and (83) constitute the set
of quasi-Maxwellian system obtained in the W-representation.
These equations, complemented by the kinematical evolution e-
quations and the conservation of the energy-momentum tensor,
constitute the whole set which describes the dynamics of mat-

ter and geometry, in Einstein's General Relativity.
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Two Examples of the Use of Quasi-Maxwellian Equations of Grav-

ity Complemented by the Evolution of Kinematical Quantities.

In order to gain some insight on the behavior of these
equations, let us apply them in two special and simple distinct
cases: i) a conformally flat geometry having a perfect fluid as
its source(Friedmann, Cosmos) and ii) a vacuum solution with
anisotropic spatially homogeneous three-dimensional flat section
(Kasner Vacuum Universe).

Let us examine each of these solutions separately:

(i) Friedmann Geometry - The fundamental lenght has the

form

ds?= dt2?-A2(t) gij(xK)dx1 dxj.

The source of the geometry is a perfect fluid with
density energy p and pressure p. It has a non-vanishing expansion
6, no .shear |, no rotation, no acceleration. In the co-moving
coordinate system the velocity of the fluid takes the form

o

Vo= 6“

0

From equation (80) we obtain
o _
p’u h . 0. (84)
This means that p is spatially homogeneous, that

is,p= p(t).

From the conservation equations we obtain

0+ (p+p)6= 0 (85a)
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and

p .= 0, (85b)

that is, p= p(t).

From eq. (61),

De
+
-

§2= -—é- (p+3p) + A . (86)

All these ate consequence of the quasi-Maxwellian equa
tions supplemented by the evolution of the kinematical quanti
ties. To these equations, we have to impose the initial condi
tions that Einstein's equations of motion are satisfied in
a given hypersurface .

This gives a constraint relating the expansion © to the

density of energy p:

e= p-A, (87)
in which € is proportional to the three-dimensional suﬂar(8=€%&0.

We recognize that eq. (85) and (86) are precisely the
dynamical set of Einstein's equations for the Friedmann Uni-
verse.

(ii) Kasner Geometry

This is a vacuum solution of Einstein's equations
without cosmological term, which has a 3-dimensional hypersur
face of homogeneity which constitutes the section t= constant,

for the global time t.
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In the gaussian system of coordinates we write the fun-

damental element of the lenght in the form

ds?= dt?- a?(t)dx?-b2(t)dy?-c?(t)dz?*. (88)

The velocity of the fundamental observer in this system

of coordinates is given by

vH= 8% . (89)
The expansion factor 6 and the shear clj are, respec-
tively,
_V_a , b ,¢
il 2 (90)

a 1
Sul-ai S (91a)
_ b 1
O’Z’- B - —3—- 6 (glb)
c 1
T T T e (91c)

The other kinematical quantities vanish.
We have chosen this model to exemplify the power of. the
quasi-Maxwellian equations of gravity, since Kassner geometry

is not conformally flat, and thus,in this case the equations

are not trivial.
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A straightforward calculation shows that the magnetic
part Huv of the Weyl tensor vanishes identically, and that the

electric part Epv is diagonal., We have:

b El(Een)-1EE 13-4
(92a)
e d e h(eE)-2d L (594
(92b)
SRS DR R RS
(92¢)

The traceless condition imposes

o+ B+ vy =0, (93)

After a rather long but direct calculation, we can trans

form equations (80, 81, 82, 83) in the set:

. a b :
G+ 208 - 20 o+ B o+ y {} =0 (94)
B + 2B6 - 28 Ji-+ o EL + ii—= 0 (95)
b a c
¢

-
+
N
-
<D
]
(NS
<
+
o)
mlm-
+
w0
010%
if
(aw)

(96)
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These are the quasi-Maxwellian equations which must be

suplemented by the initial condition
Ruv(2)= 0. (97)

We choose % to be the surface t=t0= constant.

We set the ansatz:

a(t)= a, tP1 (98a)
b(t)= b, tP2 (98b)
c(t)= 4 tPs | (98c)

Solving the Cauchy condition (97) gives two constraints:

il
o)

+ p? =1, (100)

P+ P

2

For the ansatz (98) the equations of evolution reduce

to the following algebraic relations

p’ (p, -1)=1p (p, - 1) (101)

2 - - - =
pp (p-D+p p(p-1*p p (p-1)=0. (102)

1

It needs a simple algebraic manipulation to show  that
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equations (101, 102) are consequence of equations (99,100) and
thus the system merely propagates the initial conditions through

out sucessive epochs, in the future of I.
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2.7 - CONSERVATION LAWS

Let Tuv represent the most general fluid, as seen by an

u

arbitrary observer n° which co-moves with the fluid. We write

T = n n_ - h + n .t 7 . 103
U TV e T A TCT D BTV (105)
in which besides the density of energy p, the isotropicpressure
P, we have introduced the four heat conduction a, and the an-
isotropic (traceless and symmetric) pressure ﬂuv. These two

quantities satisfy the properties
q" n.= 0, (104)

wich states that the heat flux rests on the surface orthogo-

nal to the direction of the velocity, and

ﬂuv= ﬁVU
uv_

T &= 0 (105)
v

ﬂuv n =90

. Vo .
which say that n” is an eigen-vector of ™

v with null eigen-
value.

From the divergenceless of T
u

" projecting parallel and

orthogonal to n" we obtain:
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which, using section (2.5), can be written in the form:

b+ (o +p)o+d'n +a - o =0, (106)

Projecting T"", =0 by h s

9

which yields

g. . n=0, (107)

For the special case of a perfect fluid, which will be

the case most extensively treated in these notes, we have

and thus the equations of conservation reduce to:
6 + (p + p) 6= 0 (108a)
v
(o +p)a -p, 0 =0, (109)

u

Remember that a dot means derivative in the direction of

=22
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2.8 - CONSTRAINT RELATIONS FOR THE KINEMATICAL QUANTITIES

Besides the equations of evolution for the kinematical

parameters (6, T __, muv), there are three more equations en-

iy
volving these parameters and the metric quantities which do
not contain any derivative with respect to the time (that 1is,
a derivative projected in the direction of the fluid velocity).
Let us write explicitly these equations, in order to obtain

a complete and self-consistent set of equations.

From the definition of the curvature tensor we write

- €
Nsgiy™ Masvs g~ Raegy B - (110)

Contracting o and B and projecting into H we obtain

. m* ) -nY. n® =R _n®nY

AT ey AT Svie ey A (111)

However, using (55) we can write

hY. n® = 6% +o* ) nY 4-%? 8

a o
Ay Y Y2500 A oy *+ar(o,, )

*Q A Yo Yo

2 u o o Y o
=6 h" . -(o - = U Lo
79, (07 +w ), h a (OYG*-wYu) Ruu n" h™,,(112)

which is the first constraint equation. Let us go into the sec

ond relation.

Using (110) three times and changing indices we obtain
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n ) =

TR Y3850

- +
;8" Mgradsyt Myia " Pasy)t (B

(n Biy

= H Y + pH ]
(R v * Rgay * R ypal By

The right hand side of this expression vanishes due to the sym-
metries of the Riemann tensor.

Using equation (50) we have

Thus,
- aByr _
(Zwu8+ aanB aBna);Y‘n = 0,

or, using the fact that guv'k=0’ this equation reduces to

aByr _
+ (aq nB)‘Y n =0 .

Y

(w_ o 7

of yY

Multiplying by nA:

aByX aByA_
(musﬂ );Y n, + a nB;Y ny 7 = 0.
Remembering the definition of the spin vector W we can trans-
form this equation to its final form
a o
Wy + 2w a, = 0, (113)

which constitutes the second equation of constraint. Finally ,
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let us deduce the third and last constraint.

Multiplying equations (110) by the tensor anBE n we

have

YBe - L
n 2R

na;B;Y ﬂo € n

u YBE
n ﬂp e

ouBY

Using equations (50) and a little of algebraic manipu-

lations yields the third equation of constraint
YBe

(OB(T_mB(T);Y'no) ng*'za(rwg)= 1 puBy ¥ €

We can simplify the right-hand side of this expresssion by noting

the definition of dual given by (5)

Using expression (1)
1 p HBY n nt = -f uo_e x M _E
70 -noyBe U Tace &M HTuoe noon4
¥ %? R‘ﬂTuoe n¥ n®
= ’ﬁfuoe n* n® - %? ”m-:pA Hrupa n" n®
- ’Wrucs ¥t - %%'ﬂoepA n* n° (Ryg 8107 Brg Ryg)
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symmetrization of this expression gives:

1 uBY E_ _om U €
'T_R(T -nc)yBe np n= zwtuce n-n

By the definition (4) this is equivalent to HTO‘

Thus equation (114) simplifies to

1 _ YBe =
2 (GB(T wB(T);y‘no) ne ¥ a(rwo) Hro (115)

This accomplishes the task of obtaining the complete sys-
tem of equations (dynamics plus constraints) for the kinemat~-

ical parameters of the fluid.
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2.9 - THE EQUATIONS OF STRUCTURE OF CARTAN'S FORMALISM

Let us define a set of four linearly independent 4-vec-
tors, ez(x), throughout the manifold V4, in which a metric has
been assigned and defined by its components guv(x) in a given
coordinate system {x*}.

The metric g in the tetrad frame takes the form
e : Vv
gap = Spr Op T £, (X) ek(x) ep(x) - (116)

. . . . . B
We can invert this expression, since we can obtain ea(g

from the vectors GK(X)’ through:

h(x) edx)= 8t (117a)
fx) exy= 5f . (117b)
Thus we can write
_ A B
gquX)— €, (x) e (x) gpp - (118)

Although a given set of tetrads fixes univocally the met-
ric guv(x) (once gag is given),the converse is not true.

Let us choose the tetrads as an inertial frame and set
gAR" NS diag(+1,-1,-1,-1).

Any local rotation of the tetrads, characterized by a

. A
Lorentz matrix A B transforms the eX frame into another iner-
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tial frame e'X:

B

e'Aa(x)= AAB(X) e 0L(x). (119)

Since AAB is a Lorentz matrix the tetrad metric gAR is

left unchanged:

4, C D _
g2'a8™ M Zcp M BT 8aB

and consequently the metric guv(x) is left unchanged too:

Now,
A c_ .C
A B AA =0 B’
then,
) - M N c D _ .C D _
g uv(x) 8 C J D € u © v 8MN~ © u v gCD guv(x)'
We remark that the rotation (119) is space-time dependent,
since Lorentz matrix AAB may be different from one point to

another, This independence of the metric on a space-time point
dependent Lorentz rotation is usually called the gauge invari-

ance of the gravitational field. In case the geometry is invar
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iant for a global Lorentz rotation then the metric of the space-

time reduces to the flat Monkowskian structure.

We define 1-forms GA in terms of the tetrads by the ex-

pression:
0= e dx® ., (120)

Taking the exterior derivative of this 1l-form we obtain

the connection 1-form wAB:

(121)

in which the symbol A means the wedge product of the Grassmann
algebra [éee Flanders (1963) for a concise and very simple in-

troduction to the calculus with differential forms ].

Since GA constitutes a basis for 1l-forms we can develop
the connection wA in this basis introducing the 'so~-called

B
Ricci coefficients YABC:

A _ A C
Wy 2 Yo 8 . (122)

Then, from (121) and (122) we obtain directly the expres

sion for YABC in terms of the tetrads:

(123)
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Or, taking the inverse of this expression, using (117):

A A eB eC

e a;8= Y gc o g (124)

From the definition of the curvature tensor we have:
(125)

Taking covariant derivative of (124) and anti-symmetris

ing we obtain, using (125)

A

1, C,D_ .A . A
2 " BCD

07 A= dw ,+Ww Aw

or, denoting the left hand side of this expression as the 2-
form curvature QAB we can write

(126)

Expressions (121) and (126) are the basic equations of
structure of Cartan for the formalism of exterior differen-
tials. They describe in a very concise form the content of

Riemannian metric geometry.
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2.10 - THE COMPLEX VECTORIAL FORMALISM

The essential point of the complex vectorial formalism introduc-
ed by Debever (1964), Cahen, Debever and Defrise (1969) depends on the
observation of the existence of an isomorphism between the group SOSC of
the rotations in the complex three dimensional space and the
Lorentz group L.

Thus, one can map bi-vectors of the 4-dimensional mani
fold V4 into vectors of a 3-dimensional complex space C3 and
locally construct a formalism by means of which all relevant
quantities of the geometry of V4 are mapped into objects of CS'
Then, using Cartan method of moving tetrad frame(Cartan ) this
map can be extended to cover the whole manifold. Here we will briefly
sketch the main lines of this procedure.

Let us choose the tetrad to be generated by a set of com

2 3

plex null vectors eOLA such that 60, 61 are real and 67, 67 are

complex conjugated, that is

6l= ¢! (127)
62= 93,

The fundamental length takes the form

ds?®= 2(6%'-0%0%), (128)

The tetrad metric gpp is, in this case, generated by

Pauli matrix 01:
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= = g (129)

and the 2x2 matrix 91 has the standard value

Let us consider now a set of complex anty-symmetric ma-

trices ZmAB ZmAB satisfying the following algebra [see Israel
«C 1
m nB m nB mn
2 et gt AT Y gac (130a)
m nB _ . m nB _ __mng
Z AR Z C Z7 e Z A € ZqAC (130b)
m =nB m =nB _
Z AR / c % cp Z A 0, (130c)

in which €™% is the Levi-Civita completelly anti-symmetric

tensor, gan is the metric (129) and Ymn is the metric in C3
defined by the internal product
7M. 70 g\ (131)

which means

1 n ABCD_ _mn



ABCD behaves like a metric for the space

In this formula g
of bi-vectors of V4 and is defined in terms of the metric gAR

by the formula:

8ABCD - 8Ac ®BD T faD EBC* (133)
From equations (130a,b) we obtain
m nB _ _ 1 | mn mnq
a2 !:Y gact © Zch}'
(134)

A specific realization of such set of Z's can be con-
structed and will be used later on for calculations. We set the

4x4 matrices Z™ in the form:

) ’21‘”(01+i“’2)
T(U "1 0
%"(01'102)
2 (c +io ) 0

0

I
AN



1
0 - 5 (05 1))
-1 _
ZAB_
1
7 (3% 1)) 0
1
0 - 5 (o5 1,)
52 _
ZAB
1
TT(OS 12) 0
02 0
.
7AB 2
0 -GZ
(135)
0 -i 1 0
in which o,= and o¢,= form with o
2 . 3 1
i 0 0 -1

the set of Pauli matrices, and I2 is the identity in two di-
mensions.
These definitions enable us to introduce a basis for 2-

forms in V4 represented by vectors in C We define the 2-forms

3.

vectors in C3, Zm, by means of the above matrices ZmAB:
A AL (136a)
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o _ %_ ZmAB oA 163, (136b)
which gives

zt = -0° Ae®

z2 = o' pp?

73 = - %— 8° Aol + 02 A93:|.

71 = - g% pp?

72 = gl p@3

=3 _ _%_ |:e° rBl - 92 Ae;J-

Defined in this way the set (ZmAB’ anB) constitutes a basis

for bivectors in V4 and (Zm’ Zm) constitutes a basis for the

corresponding two-forms.

We can use such basis to describe the bi-vectors of the
Riemannian geometry V4, that is we develop the connection 1-

form W R and the curvature 2-form QA in this basis:

B

_ m —

WA = Yp Z ARt Y 2 AB (137)
_ m = =M

Qup = 0 DM tR TN (138)
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The first equation of structure of Cartan can be written in

C3 by a direct derivation of the 1l-form ZAo We have

m A B

m_ 1
7" = > Z AR 8" AB~,

Taking the exterior derivative of this expression and no-

ting that ZmAB are constant numbers, we obtain:

m_ .m A B_ _.m A C B _
dz"= Z AB de” A= -Z AB Y e ADT ABT =
_ _o-m mA —  =mA C B .
= -7 AB (wm Z ct ey Z C) ABT ABT
using identities (130) we obtain
m_ 1 _mpq A B
dz 5 € wp ZqAB A& AB7, (139)

This equation represents in C; the first equation of struc
ture of Cartan.

In a similar manner we obtain the second Cartan structur-
al equation in CS'

We have:

and

= A
AB ABT Yac " Y B -

Thus,
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m =1 _ m =0 m C
Un Zoap* O Loap= 4o Zagt oy Tap) ¥ (up Ta7 ¢
— =m C n =N -
rup T )M ey Togt ey Thcp)
_ m — = 1 m C _
= dwp 20 prduy Thagt gy Moy (257 Zhcep
R S R A SRS AR
B nCA n A CB
=m C ,n m C =n
+ w_ Aw_ Z A Z CB+ Aw  Z A Z CB
Using identities (130) we obtain
o = du_- + e o a9, (140)
m m 2 “mnq
which is the analog of equation (126) in C3.

This form of writing the curvature tensor, Qm, has an in-
teresting and practical advantage: one can exhibit explicity the

irreducible components of the curvature tensor. Indeed, we write:

R s e 7R (141)

fn = (cmn*'lz Ymn) mn

m

. ‘ . . mn _
In this formula, Cmn (which is trace- free, Cmn Y = 0)rep

resents the Weyl conformal tensor, R is the scalar of curvature

and €n represents the Ricci tensor without trace R“];‘ - 711— RcSAB.

We arrive'at this interpretation using the previous identi-

ties (130) and by noting the additional properties:

m

VALY WVAREN) (142a)
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Azt = My, (142b)

in which V represents the 4-form 6° Ae' Ap? A6d,

Using these properties (142) into the expansion (141) we

obtain the set

O A = -g__ V (143)
m n mn

m__ 1
o AZ"=- RV, (144)

These relations enable us to write Einstein's equation

using objects of C, in the form:

3

= _ ,AB
2 AZn-M . TAB \Y (145)
m_ 1
Qm AZ7 = - TT'T vV . (146)
The mixed quantity MAan is defined in terms of the Z's:
mn _ CD .m n
Map =8 ZacZopp (147)

and satisfies the property of completeness

Mt MM o gm g

. 148
AB Pq P q (148)
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2.11 - MODES OF VIBRATION OF FRIEDMANN UNIVERSES

Perturbations of Friedmann Universes are particularly
easy to be analysed by using a decomposition of scalar, vector
and tensor perturbations in terms of eigen-functions of = the
generalized Laplacian operator. In this section we present some
properties of these eigen-functions (Lifshitz (1980), Harrison

(1967)).
(i) SCALAR EIGEN-FUNCTIONS: QUn)

We have
A - K2
v = a 9
hHv Vu v Q(n) A2 Q(n) s (149)
where we used the notation of section 2.5 and A(t) is the

radius of the Universe defined by expression (47).
In order to express conditions only on spatial perturba

tions we impose on Q(n) a restriction of time invariance

NC RGO (150)

Vector and tensor perturbations can be obtained from Q(n) by

operating with co-variant derivative:

_ . B2 A2 @2
H(n)a ha VB Q(n) o = ” VOc Q(n)' (151)
(n) (n)
This vector satisfies the properties:
W vom=q (152)
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~ A 2
ap vV T _2e+K” 4 (153)

/\2 -
v Hu h B Ty A2 U

(For sake of simplicity, from now on we will write Q instead

of Q(n))where € measures the 3-curvature, <f. equation (50). -
A direct calculation shows that
V I -V I=0, (154)

This enables us to define thé symmetric eigen-tensor

pv

=g R
Puv = Vv Hu 7 Q}luv (155)
This definition implies immediately the following prop
erties:

P“U =0 (156)

av _ 2 3e+K?
h Va Puv_'?r e Hu (157)

aB 2 2 (6e+K?)
h Va VB Puv e Puv . (158)

(1i) VECTOR EIGEN-FUNCTIONS: Su

(n)

They are defined by the equations

u\) A N A N ~
W ow Vs, = S (159)




S n =0 (160)

n>>
I
[e]

(161)

This vector Sa allows us to define the tensorial quantity Zuv

by the expression

L= Vg Sg* Vg Sy (162)

A direct calculation shows that we have

UV ~ A 1 5 ~

L = —— (2e+K 163
h™" v, ol 2 (2e+K*) Sp (163)
ZHV;A n .= - —3'— ZU\) (164)

We define two more derived quantities from this vector
s* which will be of great help in the analysis of the perturba
tion quantities in Friedmann universes. They are

Fug 6 5o~ Yy Sg (165)

{1
1>

*Su = nUEBA n S

= e Sgia (166)
Corresponding to (162) we have
* _ N *A A *I\
I =V, *S,* v, %S . (167)

We 1list below some useful properties of these
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quantities, which are not difficult to be obtained:

u v BYA o = hH v § *§ 168
h (e h @) My By Zugsy h (e h o) v M (168)
u v BY>\ ~ A _ v u ~ */\
h e Bgy My n, V., F = -h" hq) v, *S, (169)
o LYV S 2 L& _ KPoLG
h*_ W'Y v v xS, e *S (170)
h, " h. V(7 *S ), n*=-2eh "h, Vv %3 (171)
(o 7B) T TV 3 (¢ 7"B) "m0V
h " ho Ve Sy L v o & n MR VoS (172)
(o 7B) UV 3 (¢ B) u ooy
(e €)iva e - w2y wM(E 0V g (173)
h n n, Zau;v (2e-K°) h h Sv;u .

(iii) TENSOR EIGEN-FUNCTIONS

We have

cht\ ~ "N _
h™ v Ve Uy, = e Uy s (174)

in which the constant K has the following spectrum ( for dis

tinct Bianchi-types ):

Type I: 0 <|k|< «
Type V: K2 = q2+ 3 0 <q< o
Type IX: K? = n2-3 n=3,4,..

Besides, the tensor qu satisfy the properties:

Uivia vi= 0 (175)
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(176)

(177)



2,12 - THE METHOD OF QUALITATIVE INVESTIGATION OF NON-LINEAR

DIFFERENTIAL EQUATIONS

Let a system of two non-linear equations be written in

the form

X

F(x,y) (178a)

y

G(x,y) (178b)
for the variables x, y. Functions F and G are regular (say of

class Cn) which depend only on x and y but not on t. The dot

means ?%T' The range of variable t is the real axis
(-»,+»), In general, system (178) is not easy to integrate

and consequently we have to look for alternative methods of
investigation of the properties of the integral curves x= x(t)
and y= y(t).

We call a point on the phase space (x,y) a singular point

if it annihilates simultaneously functions F and G, making the
derivative %% indeterminate. We usually say that (xo,yo) for

which F(xo,y0)= G(xo,y0)= 0 is also a point of equilibrium

of the system. The main important property of this system is
related to a theorem which states (Andronov, 1973) that in the
neighborhood of an equilibrium point (x,,y,) the general behavior of
the integral curves of the system can be deduced by a slight
investigation of the linearization of the functions F and G
in the neighborhood of (xo,yo). This allows us to 1limit our
resumé to the characterization of linear systems.

The most general form in this case is:

} = ax+by+a (179a)
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x=cx+dy+ B (179b)

in which a, b, ¢, d, o and B are real constants.
The singular points are obtained by the commom solutions
of §= x=0. Making a translation X¥X=X 4 and Y>Y-Y, the sys-

tem (179) can be reduced to

y = ax + by (180a)
x=cx + dy, (180Db)
a b

Let us call Q= det Q= det ‘>. For Q# 0 the origin
c d
(xo, y0)= (0,0) is a singular (isolated) point.

Let us examine some special cases (see Sansone-Conti (19

Case 1: a=d= 0 (SADDLE)

The system reduces to

e
I

]

»

(with cb < 0)

\<
]
o
~<

The solutions are given by:

(o and B are arbitrary constants).

We can easily draw in the phase plane the behavior

of the integral curves (see figure 1).

)).
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Figure 1 - SADDLE POINT



We call the singular origin a saddle point. (The arrows point

in the direction of increasing values of parameter t).

Case ii: (TWO-TANGENT NODE)

We have

He
i}

]
e

~

{
o
~<

with c¢cb> 0.

Only the configuration in the phase plane changes (see Fig. 2).

v

Figure 2a — TWO-TANGENT NODE
(unstable case)



Figure 2b - TWO TANGENT NODE
(Stable case)
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Case iii: (ONE-TANGENT NODE)

X = ax + ay | (a#0)

y = ay.

The solutions are easily explicity found:
X= 0 eat+ af t eat

y= B eat

(see figure 3).

Figure 3a — ONE-TANGENT NODE

(Stable case)



Figure 3b - ONE-TANGENT NODE
(unstable case)
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(STELLAR NODE)

Case IV:
The system reduces to

y=ay.
The phase space is easily found to be given by fig-

ures 4a, b,



Figure 4a - STELLAR NODE
(Stable case)

Figure 4a - STELLAR NODE
(Unstable case)
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Case v: (FOCUS)

The system is given by

X

ax - by
(with ab # 0)

-

y bx + ax .

The phase plane is easily drawn as focus (stable

unstable).

Case vi: (CENTER)

e

= _by
(b#0)
bx.

.
]

Solutions are : Xx a cos (bt+vy)

a sin (bt+vy),.

<
I

or



Figure 5 - FOCUS

(Stable (a) and unstable (b) cases)

FIGURE 6 - CENTER
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Let us now pass to the general case in which the system

takes the form

"e
1}

ax + by

cx + dy

<
0

with det Q # 0.

It is possible to show (see Sansone-Conti pg. 44) that
for different values of a, b, ¢ and d we can always reduce
the system to one of the previous simple cases by linear
transformations.

We give here the theorem without proof. The reader can
work it out by himself or accompany Sansone-Conti demonstrza-
tion.

Theorem 1.

Given the system

.
X

ax + By

y
with Q = ad-B8y # 0

YX + 3y

I = o+ §,

Then, there exist real non-degenerate linear transforma-

tions
x'=s ax + by
y'=s cx+ dy

by which the system is changed into:

(1) the system

Ax !

"o

(Au < 0)
if Q< 0;

e
I

=

<



(ii) the system

X'= Ax'
y'= uy'
with (Ap> 0, X# u)
if  0<4Q<1%;
(iii) the system
X'= Ax'+Ay'
y'= Ay

(with A # 0)

if 0<I2=4Q, B2 + v2>0;

(iv) the system

Ax!

(VIR
1

1

y'= Ay
(with A£0)

if 0<I%2=14Q, B2+yl=0;

(v) the system

(with Au#0)

if 0<1% <49 ;

(vi) the system

(with p#0)
if 0=1%2<49.

This theorem allows us to obtain a very simple characteriza-

tion of the behavior in phase space of distinct linear pla-



nar autonomous system. We obtain the table below

Center 0=12<4Q
Focus 0<I%2<4Q
Stellar Node 0<I%= 4Q, B2+vy%2=0

One-Tangent Node 0<I%=4Q, B2+vy2>0

Two-Tangent Node 0<4Q< I2

Saddle Point 40 <0 (<I?)

Table of Classification of distinct linear planar auto-
nomous systems - (See Sansone and Conti (1964))



SADDLES

Figure of Classification of distinct linear planar
autonomous system

- L8 -
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3. THE GENERAL THEORY OF PERTURBATION OF EXPANDING UNIVERSES

In this chapter we present the methods to investi-
gate the evolution of small perturbation of Einstein's equa-
tion of General Relativity. Although we concentrate in one
specific method (the quasi-Maxwellian approach)we brieflyreview
two other possible alternative procedures. We apply this meth
od to the exam of the evolution of homogeneous and isotrop-

ic evolutionary Universes (Friedmann Universes).



3.1 - INTRODUCTION

The investigation of the stability of a large gravitation-
al system was the subject of two memorable works, one by J.
Jeans (1902), for the Newtonian treatment, and other by E. Lifshitz (1946),
for the relativistic case. Since then, many authors have dedi-
cated to review the subject (see, for instance, E.R. Harrison
(1967), G.B. Field (1875) and P.J. Peebles (1980)).

In all these reviews the standard technique discussed in
Lifshitz's paper on perturbation of Einstein's equation of mo-
tion is used. This is certainly the most direct and a very gen
eral procedure. However, in certain special cases of interest
in Cosmology;like, for instance, in Friedmamn homogeneous and iso-
tropic expanding Universes, there is a competitive procedure
used for the first time by Hawking (1966), some years ago. Although there
have been a few works using the conformal technique employed by
Hawking, as far as we know this procedure has not been largely
used and a complete analysis of the whole set of the perturba-
tion equations using the conformal technique has not been
worked out in the literature. We intend to remedy this situa-
tion by providing a complete investigation of this method here.

Three methods have been used in the investigation of small
perturbations of Einstein's equation:

(i) The perturbation of the metric tensor in the stan-

dard form of Einstein's equations.
(ii) The perturbation of Weyl tensor in the schema of the
quasi-Maxwellian equations.

(iii) The perturbation of the complex vectorial version of
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Einstein's equations.

Let us briefly comment each of these methods and

sketch their main lines of procedure.

3.1.1 - PERTURBATION OF THE METRIC TENSOR guv AND

EINSTEIN'S EQUATIONS IN STANDARD FORM

The perturbation of the geometry is represented by small

variations of the components of the metric tensor, namely

g, () ——>F, ()= g,, () * g, (). (1)

Such variation induces on the derived quantities (the

curvature tensor Ra and its contractions) corresponding trans

Buv
formations:

RY 600 — B 00= RY o+ /Y 00 (2a)

RY ()—> ﬁPV(x)= RPv(x)+-aRPV(x) (2b)

R(x)

> R(x)= R(x) + 6R(x) . (2¢)

The dynamics of the perturbing quantities constitutes e
quations of motion for a tensorial field in a Riemannian curved
geometry determined by the background gravitational field. In
general, one imposes that the perturbed quantities obey equations of
motion which are analogous to the equations for the unperturbed geometry,
that is,

U_l uo_ u
SR™,= 5-(8R) &% = -k sTH | (3)



- 91 -

It seems worthwhile to remark that, due to the non-linear
character of the theory, the perturbed quantities could obey

a more general non-einstenian equation:

SRM - = (6R) 6" = -K o1 + oM (4)
in which @“V is a functional of the perturbed metric. The
choice ®uv5‘) neglects all deviations from Einstein's equa-
tions which could be due to the fluctuation of the geometry
(see Novello (1978) for a different point of view). This is the
standard procedure. It is straighforward and by far the sim-
plest one. It is no surprise the fact that it was the
first perturbation method used and the most largely .employed

until nowadays [ see Weinberg (1972) for a review].

3.1.2 - PERTURBATION OF THE WEYL TENSOR IN THE SCHEMA

OF THE QUASI-MAXWELLTAN EQUATIONS

The perturbation of the geometry in this method is rep-

resented by the variation of the Weyl conformal tensor Wusuv

af

W80 —s 8 = W coran®® oo,

uv

(5)

However, instead of using Einstein's equations ~ in the

standard form the dynamics of the perturbed tensor 6W@Buv

is described by the quasi-Maxwellian equations of motion (see
section 2) (Hawking (1966); Olson (1976)).

The main interest in this approach is for the case of the

perturbations of those geometries which are conformally flat. The rea



- 92 -

son for this is related to the simplicity of this method in
the characterization of the perturbation as a true modification
of the geometry and not merely a transformation of coordinates.
Indeed, as the quantity Wusuv is a tensor, if it vanishes in
the background geometry then we can be sure that all quanti-

oB

ties &W are true perturbations and not merely a conse-

quence of a change of coordinates.
This is precisely the weakest point of the previous meth

od; if we consider a modification of the metric tensor .,

g, (X) —> g, ,(x)= g (x)+ g, (x),

how can we be sure that such awmodification is not a consequence
of a change of coordinate mapping?

Here, we will concentrate our mailn efforts on the quasi-

Maxwellian form.

3.1.3 PERTURBATION OF EINSTEIN'S EQUATIONS USING THE

COMPLEX VECTORIAL FORMALISM

Although this method will not be pursued here, it seems
worth to give an overview of its general features since as far
as we know,it has not been previously used for the treatment
of perturbations.

We start by choosing a set of null tetrads {eg} and cor-
responding 1-forms GA such that the fundamental length is giv

en by ds®= 2(6°0'-626°%). The internal geometry gpp reduces to
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the form

01 0 o\
1 0 0 o

5AB T\ o o 0 -1 | - ©)
0 0 -1 0

A perturbation of the above set of tetrads can be gene-
rated by a matrix MAB (which is not a Lorentz rotation)by the

map

A ~A _ A A B
ea(x) —_ € O‘(x)— e oL(x)*-M B(x) e 0L(x). (7)
In what follows we will consider the quantities MA as

B
infinitesimals and we will neglect any non-linear term on M.

The independence of the metric quantities on a local Lorentz
rotation of the tetrads allows us to choose the perturbation in
such way to leave the tetrad metric gAR unchanged.

Thus

o =~a~ B~ =
AR °A ®B 8up” &AB®

The 1-forms GA change correspondingly to the modifica-

tion
eA _ 5A= eA4-MA eB (8)

and the metric 8y
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A B B
M (e e +e\)eAu) .

uv uv
We can choose a basis Z™ in the auxiliary complex 3-
dimensional space Cz, in such a way that under the above pertur-
bation neither the quantities ZmAB nor the internal metric
Yun of C3 change.
That is, we set:

sz™ =0 (10a)

deAi-wABA6B= 0
defines the 1-form wAB. In the C3 basis we write the decomposi
tion (see section 2)

wop= w M+ g 7 . (12)

(13)
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In a completely analogous way, for the 2-form of curva-

ture QAB we have:

~ 1 n C _ . C _ C |,AB
Sy~ "Z‘["’AB' ®ang © A Ma~ @c” %A Mcp~Map,c® JZ m
(14)
in which we defined the quantity ¢AB as:
_ C, D C ,.E C ,.E_
¢AB_ MAB,CD 6~ AB *'MAB,C w E AB *'MCB,E W, AB
C E C B E B C E
- MAC,E W'y A® +-MA (QC - W AwE ) - M B(QAC wAE]\w
(15)

These formula allow us to proceed in the investigation
of the perturbation of the gravitational field in a straight-
forward way. Although such formulation may appear rather in-
volved, it has certain advantages in some special cases de-
pending on the symmetries of the background gravitational field.
Besides, it produces a direct mechanism to eliminate ab initio
those modifications in the geometry which are simple gauge trans-
formations, by specifying the properties of the matrix of per-

turbation MAB.



3.2 - FRIEDMANN UNIVERSES

The purpose of the present section 3,2 is to use the method
of the quasi-Maxwellian equations of motion in the study of
perturbation of expanding homogeneous and isotropic Universes.
These constitute the class of Friedmann cosmos. Let us start
by a compact review of the basic properties of these universes.

The fundamental length of Friedmann cosmos in (t, ¥x, 6, ¢)

system of coordinates takes the form

ds?= dt? - A% (t) |_c1><2 + 02 (x) (de? + sinze)dcbz} s (16)

in which o(x) may assume the values ¥, sin ¥ or sinh y.Accord-
ingly,the 3-dimensional space section is euclidean, closed or
open.

The source of this geometry is a perfect fluid with den-
sity of energy p, pressure p and velocity v.

In co-moving coordinates we set

For future references,we list some properties of this mod-

el in Table I.
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0 A 5 ] A(n) t(n)
4 ¢ 0 0 2¢7} A2/ n
3 0
3 ¢7? 1/3 0 R Ant/2 n
4 2 0
6 -3 3 sinn A (1- A, (n-sinn
;:g (1-cosn) 0 1 2 (T-cosm)?2 o(1-cosn) of )
3 1 3 cosn -
= = =2 A A_(1-cos
ai sin'n 1/3 1| & =ity oS o n)
6 1 0 -1 3 —féﬂlhIL——.Ao(conshn-l) A, (sinhn-n)
aj (coshn-1)3 %0 (coshn-1)?
3 1 |1 -1 | 2 -£oShN iy sinhn A (coshn-1)
a; sinh%n 8  sinh?n 0

TABLE I - Fundamental quantities of Friedmann Universe. A is
specified by the equation of state p= Ap,relating
the pressure to the density of energy. The radius
of the Universe is given by the function A(n).

The expansion factor 6 measures the time varia-
tion of the volume V per unit of volume. We take
units K= 1, c= 1.

In this geometry only the expansion 6 does not van-
ish . All remaining kinematical quantities vanish (that
is for the fluid velocity ouv= 0, wuv=(), au=0).This implies
that we can write v, = N ,

M3V 3 HV
great help in the simplification of some calculus of the per

a result which will be of



turbation.
Let us make one remark here. In the standart Big-Bang mod

el of the Universe the initial state is represented by a radi-

ation gas (mainly photons), the equation of state of which
is given by p= %? p. The Universe starts with a big explosion

(Big-Bang Phase), expands in equilibrium and after the decoup-
ling of matter and radiation we enter a period in which the
evolution of each one of the constituents of the cosmos evolves

separately. From the conservation of energy, we conclude
that pY’ the density of radiation,depends on the radius of the

universe through the simple expression

and for the density of matter Py we find Py ~ A_S.

This fact leads to the separation of the characteristics of
the geometry of the Universe into two, non-mixing eras: the ra-
diation era (in which py>>pM) and the matter dominated era
(for P <Py

The simple dependence of p on the radius A(t) shows that
the Universe starts in a radiation era and turns into a matter
dominated era for later periods, since A(t) is assumed to be a
well-behaved monotonic function.

However it is a dificult task to find a smooth function
which connects continuosly both regions.

In general this causes no problem, once we are interest-
ed only on asymptotic situations in which one of these re-

gimes dominates. However, if we insist in finding a continuous



transition from one era to the other, we are led tocmnshkn‘very.
intricate expressions for the equation of state p=p(p), as-
‘suming that a perfect fluid description could still be a faith-
ful representation of the cosmical fluid. Just to exemplify this
procedure, we can refer to a case in which the equation of

state is represented by a time-dependent relation Ipr sech(mt )p.

VA

1/3

~V

Fig. 1 - A model for the dependence of the

. equation of state with the cos-

mological time. The function v
measures the ratio p/p.

Such function has good asymptotic limits:for t ¥ 0 the
equation of state is aﬁproximated by a radiation gas (p = p/3)
and for large values of time it tends to the matter dominated
era (p=0).

So much for these preliminaries, let us go directly into

the perturbation schema.
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3.3 - PERTURBATION OF THE GEOMETRY

II. THE QUASI-MAXWELLIAN PROCEDURE

The basic quantities of perturbation, afre the following

elements:

(1) The Metric: g > A guv+ 6guv

(ii) The Density of Energy: p = p ~ p + 6p

uv

(iii) The pressure: p ~ p = p + 6p
u

u H

(iv) The fluid velocity: v" = ¥% = v¥ + ov

in which dguv’ §p, Sp and sv" are "small" quantities, that 1is,
(8p)2 << 8p, etc. Besides these quantitites,we will analyse
the possibility that the fluid becomes non-perfect during
the perturbing era.

One can argue that such perturbations of the metric Gguv
may be nothing but a consequence of transformation of coordi-
nates and that a real perturbation theory should deal with su-
per-space S (which is a collection of geometries) in which con
tiguity of metric should be defined in a very precise way by
the specification of the topology of S. This is a well founded
critics. Although it is not a general result, in some special
cases of interest we can characterize in a precise and defi-
nite way real perturbations and examine its evolution on the un
perturbed background manifold.

The Friedmann universe, for instance, constitutes an ex-
ample in which the method of investigation of the evolution
of the perturbation in the quasi-Maxwellian formalism can over

come such difficulty, as we shall see later on. In general this
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method is unambiguous if the background is conformally flat.

Let us turn our attention now to the perturbation of de-
rived quantities which are a consequence of the above modifica-
tions of the velocity field,

The Expansion 6:

From the definition of 6 ,

we have for the perturbed quantity:

PO o o o o o o
0 = (v + 8v ),a+(F€d+6T€a)(V +8V7)
=V v*+ v (ev*y +vEer® .
o o ga
thus,
_ o~ o e o
§6 = 0-62% VoV + v 6T (16)

The Rotation w

We have, by definition ,

~ 1 A e 2 o
w —_ hp h\) VEEV?\]

1 X ~
A hu a[:‘av):] ?
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in which
- st o3 . (17)

From the definition of the perturbation of the contra-

variant vector field vU we can set

~ A A
VS {guk4.6gul}{v + 8v"}

-~ - A A
~ + ) + :
vu vu guv v v Gguv

thus

~ ~ A A
= - ~ § . 18
dvu VTV, S gy SV v Gguk (18)
Using this result in definition of 6uuv ,
quvE wuv-wuv s (19)
we have
~w 1 A, . | £ 1 £ A
qu\) ~ 5 h].l h\) 8[8 6V)\:| 5 h]J BEE:V)\] CS(V\)V ) - > h\) BLEVA] S(VUV ) ’

which is the general expression for the perturbation of the

vortex tensor,

The shear o :
HV
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~ _ 1 X Te o = 1l =z~

uv RN pv°

Defining the perturbed shear by the expression

we obtain:

~ 1 A A € A
6Ouv” - 5 {hh S(v,v )+ hy S(VUV )} V(EVA)

A L€ Qo 1 X ,€ _
- hu hv Vasrek 5 hu h V(Eévk) (20)

1 9
- —g— §6 h.u\) + —3—' S(V]JV\))O

The acceleration a" = v':
We have
g¥= ¥ v,
“U_ _U Uy u e A u A
a= a"+ (8v") + §he V'V 4'(VAV )Sv
or

sab = g% -aH 2 (SVU).+ VEVA 6%&; 4-(Vkvu)6vk{21)

Formulae (16), (19), (20) and (21) give the general rule
for obtaining the perturbation of the kinematical quantities

as functions of the perturbed velocity avu, the metric Gguv
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and quantities defined in the background geometry.
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3.4 - PERTURBED QUANTITIES IN FRIEDMANN UNIVERSES

The freedom we have in the choice of coordinate systems

allows us to impose a gauge condition. We make the choice

684,= 0, (22)
which has the useful property of not changing the gaussian char

acter of the system.

The normalization condition of the fluid velocity gives

which implies

]

sv°= 0. (23)

Remark that this system of coordinates 1s no more comoving,
although it still rests a gaussian system.

Using these simplifications,due to the gauge choice, in
the formulas which we deduced previously for the Kinematical

quantities we obtain:
T v 6Ty (24)

| i
(Swij— —2'- dvl_i,j:] (25)
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8 1 L 1
80557 = 3 8855 TV (5,5)" 3 80855+ 7 (8gy5), o (26)
saX= (svk),0+-2 é} sv K. (27)

Let us now turn to the perturbation of the quasi-Maxwellian
equations of gravity for the Friedmann background.

The Friedmann geometry has a null Weyl tensor. Thus we
can, without ambiguity, denote the perturbation quantity by

Equ GEuv and HQUESHGU°

Equation (80) section 2, gives:

ag, uv_ 1 ae _ 1 Ol €
Euu;vh h™ "= 3 (Sp),dh 3 p’QG(V V7). (28)

Now, in the background p= p(t), which implies
o SvB= ¢ svf

]

For B=0, eq. (28) reduces to an identity.

For B=k, it gives:

- %5 psve, (29)

in which we have used condition (22) for the motion of the

fluid and the consequent relations
H = 0 (30a)

Ho= 03 (30]3)
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Eq. (81) section 2 reduces to

L e R A (31)

or, equivalently in this case, to

HE k= (p+p)snt. (32)

9

In the same vein, the equation of evolution involving

time derivatives of E and H is
Hv pv

UV, P, O po_ 1 (0, 0) usv _ 0 _ovue plaB _
E hu hv + OF 5= Ev h™“u Vv = n VuVAEeath
IS STt (o_p)raB , _ _ 1 0o

5 HB ;O(,h].l n V}\ -—2—-(D+p)60 ) (33)

or,equivalently ,

'ij ij ___1_ i ojmn J oimn =_1__ ij
E*J + 6B > {H m:n" + H _— } 5 (p+p)So™ - (34)

Finally, the fourth equation

*UV , P O po _ 1 (p..0) us;v_ 6 oV € praB
H hu hv + OH > Hv h™“p Vv el n VﬁVXHeath+

1 e (opP)raB y _
t 3 EB - hu n Vk_ 0, (35)
or,equivalently,
*1j ij .1 i 03 J oimn, _
H™Y + gH™ 7 + > {e m;nrqun + € — } =0 (36)
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Equations (28), (31), (33) and (35) constitute the set of
quasi-Maxwellian equations of the gravitational field. Besides
them, we have to take into account the evolution of the pertur
bation of the variables which characterize the state of motion
of the galactic fluid, the perturbation of the equations of
conservation of energy and the constraint equation. Let us

now turn to them,
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3.5 - PERTURBATION OF THE EQUATIONS OF EVOLUTION OF THE

KINEMATICAL QUANTITIES

(a) The Equation of the Expansion 6:

Raychaudhuri's equation for the expansion factor © has

the form

In first order approximation this equation reduces to:

2

(66) * + _3__ eae - aoc.oc= (S(Ru\)vuv\)) . (37)

4

In the gauge in which §v°=0 = 6g°% we have SF;0= 0 .
From the definition of the acceleration au,the component

for a=0 is given by
9

0_ 0N °® 0 0 A
a’= (Sv’) + S%O-FT?-h SV

A 5
we obtain

a’=0 . (38)

From Einstein's equations ,

SR vM¥y = a0 v, T TRRY
( oV Vv ) = 6&¢( Tuvv Vit g vV )

= - MV _ My, L
(STUV)V Y% 2Tuv(6v v o+ 5 ST
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. i, 6T
= =8T = 2T 36V + -
_ 1
= -8p+ 5 8(p-3p)
1
= - 5 (8p+ 33p)
- 1;3A) Sp (39)
Thus equation (37) reduces to
. 2 _o ko (1+3)) .
(68) + =z 866 - a K — §p (40)
(b) The Equation of Shear "V
Just as in the case of the Weyl tensor, we write oWE Gou\),since
the fluid motion in the background is shear free (and also

sa® = a% Swas

9

= wOLB

, for the same reason).

From section (2) the equation of evolution (64) 1is:

Hp Ve + L ko oLy Y 2 -
ho hB ouv+ 3 tha 0 k 2 hu hB(au;vi'av;u)+ ?Tegaﬁ
= B8Ry gV v - 3 RvHVVR ) (41)

Let us evaluate the right hand side of this equation in

the case of a perfect fluid.

We have
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Now, from the definitions of Eu HaB and g we have:

v? aeBv

W &vV= -E (43a)

E.V_ _ e.V_ _ -
Buepy V V = (guBgev guvggs)v V= gug T VaVg hag (43b)

e, v_ 1 _ _ E._V
Haesvv V-'——T-{Ra6g8v+ RevguB gavReB geBRav}V v
L@+ g ,-vR -v_,R '} (43¢)
2 ap 00 “aB o 0B goa” *
For a perfect fluid with Tuv= pvuvv-phuv
R .=0.
oi
Thus,
eEV_ _ ;L_ 1 _1 0 _
RuerV v EaB+ 5 RaB 5 ROOgaB 7f'6 ROB
R 1
5 68 Rog < RhuB (44)
e v 1 u.v - 1 1
Raerv v 3 Ruvv v h 8 E Bi-jr Ra8+ 5 RooguB
1 1
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For a= 2 and B= k,

€.V
vyv -

WV s
Ruv vy hzk E

o

Rzekv 2k

Using these results into equation (41) we obtain for the

spatial components (the o-v components gives no information):

. 1 ) 1 2

+

OixtF 8 2T 2 Akt 3 %95 By (46)
in which &.

ik~ %ik;o0°

(c) The Equation for the Vorticity WY

From section 2 equation (65) we have:

Hp Ve o Loy ey V] 2 -
hu hB wuv 5 ha hB au;v+ 3 quv 0. (47)

The only surviving terms are the spatial components:

[

2
Wig 7 2.t 7 O

Multiplying this equation by %ﬁ nOkij and using the def-

S rg s - . .
inition of the vector w this equations reduces to

5k-+%%-6 0¥ = %} noklj a. .. (48)

1]
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WSTRAINT EQUATIONS

Let us now perturb the equations for the congruence which
do not contain time-derivatiwves.

First constraint equation:

[N

o _ .0 o o _ o
6 h (o7 +w ) h . aa(cu

0(,= €, 0
= ,a " 0 o) a +wu ) REO(,V h U’ (49)

For a perfect fluid we can re-write the right hand side
using Einstein's equation, to obtain:
£

€10 _ ,_ T
ReoV h u ( Teo® 2 gea)v

- (p-3p) €40
{ oV v, * Ph_ * __TTB— gea} v h L (50)

Thus, if the perturbation does not change the properties

of the fluid that qa=() and H&B=(), we then have
€
S(R_,V h“u) = 0. (51)
Thus, equation (49) gives:

2 o 2
5(88), h% - =8 0La(vo‘vu)- (6® +w* ) nP =0

P pria

k]

Or
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2z - 23 - (% + " hP = 0.
3 ae,u 3 edvu (o o Y p);u u

If u=0 this equation gives no information, and

u=k we obtain

2

2 : L
7;(66),k—-?r 0d8v

g _
g~ (Ot T = 0

For the second constraint equation:

In the first order we have

For the third constraint equation:

_ e . _ 2. =
L9 (g “glatiu Mp) VeT 37 O Vg Wyt lag,

1
T 77 Rayuca Moy YBE

We obtain,by a straighforward calculation :

= - 1 o B8 EPA
Huv 2 h(u hv) (Gap;kq'wup;k) nB Ve

for

(52)

(53)

(54)
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Thus the whole system of perturbedequations is given by
equations (29)(31)(34)(36)(40)(46)(48)(52)(53) and (54). Let
us now turn to a systematic discussion of these equations in
the three possible cases: scalar, vector and tensor perturba-
tions, respectively, the density of energy. The vortex rota-

tions of the fluid and the disturbances of metric, as gravi-

tational waves.
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3.7 - BASIC EQUATIONS OF PERTURBATION OF THE DENSITY OF ENERGY

IN FRIEDMANN UNIVERSE (SCALAR PERTURBATION)

In this section we will examine the following question:
given, at certain time t,, a small perturbation on the Friedmann
Universe, how this perturbation will evolve with time? In
other words: is Friedmann cosmos stable or unstable for gentle
modification of its basic features?

This problem has been examined prior in the 1literature,
with the principal motivation to give a simple explanation of
the observed inhomogeneities which are seen in small scales of
length in the cosmos. Here we will present the quasi-Maxwellian
version of it. We give a complete analysis of the full system
of equations (quasi-Maxwellian equations of gravity, plus the
equations of evolution of kinematical quantities associated to
the cosmic fluid) and solve all of them in some special cases of
interest showing the compatibility of the whole system. In this
case we will use the explicit 3+1 decomposition of ‘'space-time
and consider the quantities on the space-like surface I as a
3-dimensional space (characterized by coordinates xi (1=1,2,3)).
That is, we take hﬂl=0, hij=6ij. This choice somehow simplifies the
calculations and is a point of contact with standard procedures
in the calculus of perturbation (see Lifshitz (1946), for in-
stance).

The important point we want to stress from the very be-
ginning is that, in order to obtain the correct equation of ev

olution of the variation of the density of energy, we only

need to consider the equation of conservation of the energy-mo-
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mentum tensor plus Raychaudhuri's equation for the expansion

factor.

Let us expand the perturbation of energy Sp in a conven-
ient basis Q(k)' In the Euclidean section (e=0) we can take,
ik-x: (cf.

for instance, Q(k)(x)= e section 2.11).

We set

Sp = N(t)Q (55)
- 9Q -
GVk— R(t) ;;a = R(t)Q7k (56)

[ it is understood that this expression contains a complete
series and that we should write, in a more precise way,for in-

stance

Sp=) N(t) C, Q.. (®)]. (57)
P 12( k Q) 3]

Then,from equation (27) the acceleration vector is given by:

a; = RQ,k o (58)

From the conservation equations we have:

(80) "+ (p+p) 86+ (Sp+ &p)6 = 0 (59)
(p+p) ay - 6p’k +p»5Vk =0 . (60)
In this section we assume that the equation of state p= Ap

does not change during the perturbation.
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Thus:

Sp= ASp .

Using (61) into (60) we have

" A (Sp,k - A _Q_ S
T T+ o T+ o Vk
or
2 N
T e kMR QU

- N -

k _(1+2) Q,k
Thus, from (60) and (62) we have:

s_ .| N

R= ) ]—m + Rej’ N
Now, from equation (59) we have

1

§0 = - '—('-m [N"' (1+>\)N6 Q

or

.1 (NY
o= - o ()

Using (64) and (62) into Raychaudhuri's equation,we have:

(61)

(62)

(63)

(64)
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1 NY T2 1 (nY] & o
[_ (1+1) <—5—> -3 I <'5'>j'Q+—Z; (V2Q)= - & (1+33)NQ.

Remark that in this expression we have used the fact that

ak= _ R Q,k
AZ
in which
k 2k
Q= Q , 8

Re-arranging the above expression, we obtain:

1 (N ", 2.(NY R 2. 1
I:—r' <‘p"> *Te<‘p‘> }* o T (3N (83

The quantity %} = p is known as the density of contrast (of en

ergy). Using equation (63) into (65) we obtain:

b2 K2 <;——N——— " Re> - %5(1+3x) ou = 0
A (1+A)p

or equivalently

1 2o e (1+3)) ,2 k22 2 -
SR (A%u) - > Acpp + TF% u+ Ak® 6R = 0, (66)
Equations (66) and (63) enable us to know the time dependence
of the perturbation of the density of energy &p and of the fluid
velocity Vi Indeed, derivating (66) and using once more equa-

tion (63),we obtain
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1
a=x

L] * 0 1 3 L r- L] L] |
(%) "= 2R T 0| - g (%) e PR e pu] :

+ -—g-- ] 1+23)\ A% pp - ——(—‘[1-\—?;-)——]+ 13\}\ k? [ﬁ— -g—u]= 0 . (67)

This is the general expression which allows us to know
the density of contrast u in terms of the known quantities of
the background geometry. However, instead of dealing directly
with this equation let us simplify it a little further.

A direct inspection on equation (67) shows that a partic
ular solution of it is given by u= -(1+X)R 6. This is the spe-
cial case in which R= 0, that is, there is no perturbation of
the acceleration (see eq. 58).

We can use.this fact to reduce the degree of equation (92).

Accordingly, we define

u= u,F o, (68)
By setting

J=F (69)

a direct calculation gives from (67) the equation of evolution

of J:

8J + ‘:(-%- - > 8% - (1+3A)p:lj+ (1+3>\)I:2>\62-—‘23~(1+3>\)J —g— J +

8J = 0 . (70)
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Before proceeding to the analysis of equation (70)1t seems
wothwhile to make some comments on the special solution u ,about
which there have been misleading remarks in the literature. This
solution represents a perturbation that is damped as the Uni-
verse expands, typically uomt'l. The fact that this solution ap-
pears as a trick to reduce the degree of the differential equa-
tion of the density of contrast may rise a suspiction that it is
nothing but a consequence of a coordinate transformation and not
a true perturbation. Some authors have conjectured that this should
be the situation for a fluid endowed with non-null pressure p=Xip,
but that a singular situation could occur in case p=0, thus making
this special solution u, to be a real perturbation only in such
case.

Let us prove now that this conjecture is false, and that
U, may be eliminated for all values of 0<X<1 by a simple coor-
dinate transformation.

In order to prove this we will use the complete set of
Kinematical equations plus Einstein's equations in the quasi-
Maxwellian form.

We have

sp = N(t) Q) (71a)
8V, = R(t) Q,k(i) (71b)
E;j = E(O) Py (71c)
Hij = H(t) Py (71d)
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= .. 71
S5 = L(t) Py (71e)

As a consequence of (71b) there are no rotational perturbations.,

From equation (29) we have

ij_ 1 -1
Eix:5 877 3 (80) 3 - 5 0 8V
or
i 3
- 28 X A% u+(1+x)eR]. (72)
k -

From equation (32) we obtain
1] H.

=0
&7 Mik|l;

or
H(t) = 0 . (73)

The equation of evolution of Eij is obtained from (34)

e
+
S
td

- - %? (1+\)p % (74)
From the equation of evolution of the shear, we have

. 2
L+ E-~ k
.A2

R= 0 . (75)

Besides these equations, we have to consider the con-
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straints, The only equation which is not trivially satisfied

reduces to

. 2
6R+1}_>\u+k+3 L - . (76)
k*? A?
When the solution u= U, = -(1+)\)6R, is inserted in these equa-

tions we get E=2=0,

Thus,this solution M, makes all tensorial quantities to
vanish identically. Only the perturbation of the scalar quanti
ties does not vanish identically, but this can be elimi-
nated by a simple re-scaling t>t= t+f(§,t)o

The case p=0

In this case we can deal directly with equation (66).

We have
w2 « 1 _
Ht =z 0u-— pou=0. (77)
Writing
u= 0F (78)

and substituting into eq. (77) we obtain

6f - pf = 0> (79)

in which

FHhe
1
i
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Thus,

]
= f L
f = foexp J 5 dt . (80)

Let us make two comments here:

Firstly, we notice that if the perturbation is such that
the initial condition is taken as (avk)0= 0, then at any time,
the perturbation of the velocity vanishes.

Secondly, we remark that the equation (77) for u does
not contain the wavelength of the perturbation k. The term
which couples the wavelength with the density of contrast disap
pears as a consequence of the vanishing of the acceleration of
the fluid.

This has the very important consequence that the time de
pendence of the contrast factor is the same forall wavelengths
of perturbation, even for thosewhich can stay beyond the hor-
izon. This is due to the fact that the only interaction be-
tween distinct parts of the fluid has a gravitational origin.

Furthermore, in the linear approximation,the gravitation
al field which interacts with the perturbed density &§p has its
origin in the uniform distribution p (t) and,consequently, the
wavelength of the perturbation is not relevant for the dynam-
ics of &p.

This is not the case when the fluid has a non-null pres-
sure p, as we shall see later,

For the sake of completeness, let us present the solutions of
the perturbation for distinct topologies of the 3-dimensional

section,
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(i) EBEuclidean Section

In this case (see Table I) we have:

A(t)= A t2/?

o(t)= 2t "

-2

p(t)= éﬁ t

Equation (79) becomes

and thus we obtain

£(t)= f0t2/3 ) (81)

The density of contrast takes the value

t (82)

in which u(l) and U(Z) are constants, The evanescent mode 'c_1
may be eliminated by a simple coordinate transformation ( a re

scaling of time).

(ii) Closed Section

We have



- 126 -

A(n) = Ay(1-cosn)
t(n) = Ao(n—sinn)
. 3 sinn
=3
0 (l-cosn)?
6 1
p =

Aj (l-cosn)?

In this case we have:

sinn %% - 2f = 0 .

The solution is
£f= £, tg*(n/2) (83)

and thus, for the density of the constrast,

. 3f

3 sinn . 0

u= - (sinn-3n)f, + £ J+ — . (84)
Ao(l—cosn)‘ L 0 1 Ao(l cosn)

Eliminating the fictitious solution, the physical pertur

bation is given by:

. . 1
u= 3f r S1nn (sinn-3n) + —r— 1 . (85)
AL (1-cosn)? l-cosn
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(iii) Open Section

We have:

A(n)=.A0(cosh n-1)

t(n)=.A0(sinh n-n)

sinh n

Y —
g =3
0 (coshn- 1)2

(coshn-1)% .

©
It
<o

The physical perturbation, in this case, is

C 6 sinht? (1o Ll
u = fO sinh (7r3(1 3 coth 5 ) + 3 £

Let us now examine the case A= 1/3 (pure radiation)

(i) Euclidean Section

From Table I we obtain the fundamental values for

unperturbed quantities:

A(t) = A, t1/2

0

o(t) = 3/4 t°
=1

o(t) = 3/2 t_ .

b

(86)

the
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Equation (70) becomes:

™ 2
ML S ST S IS t—|J=0- (87)
2 2 2
3A0 -
The solutions for J(t) are
J(t) = Ja ¢ sin¢ + Jb ¢ coso , (88)

in which Ja and Jb are arbitrary (small) constants and

¢)=-—.—g_.K'tl/2.

VSAO

The density of contrast, after eliminating the fictitious solu

tion proportional to 0 ,is:

u = Zoc[ sinq) + (—j;—; - %) cos¢:|+ ZB[C———%S—q)—-(i—Z-%)smd)J

In this case the dynamics of the perturbation depends on the

associated wavelength. In the case of very long wavelength, that is,

1 tl/z

< >> —x—» we can approximate this expression by the form.
0

=1
in which the term proportional to t has been eliminated, as
before. This result was obtained previously by Olson (1976).

See also Lifshitz (1963).
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(ii) Open Section

From Table I we extract the values of the unperturbed

background:
A(n)=.AO sinh n
t(n)= AO (cosh n-1)
n

3 - sinh™ ' n
Ag

p(n)=

h
0(n)= & —=1 0

0 sinh? n

Defining

_dJ
~odn

s

we have

J'

J= A (coshn-T) °

Then, eq. (70) becomes

tr 2 —
sinh(2n) J-4 J' + [ 8 coth 2n + g sinh 2n [J= 0 . (90)

For very early times we can approximate this equation (for

n << 1) by the equation
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2 -
ann_sz'+[2+l(3—-n2_lJ=0; (91)

writing

we obtain for H, a Bessel differential equation:

2
n? H" + nH'4—<¥§-n2 - %&) H=20 (92)

the solution of which is given by

J(m) = n*/% {c; Iy p(an) + €, Yy, (am)} (93)

k2
3

For small values of the parameter, i.e., qn<<l, we ap-

in which q? =

proximate such expression by the form

C
q1/2 n2 - “2_ n . (94)

J.(n) ~ C p—E

1

and in the other extreme case (gqn>>1),

Jo(m) ~von (7ér)1/2{cl singn - C, cosqnl}. (95)

2

For the density of contrast we have

u =0 f J A(n)dn,
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that is,
TR é%.cl ql/? n? - _;z(wq)'l/z n, (96)
and for very large wavelengths
u, voq (97)

Closed Section

The result of the perturbation of Sp in the case e= +1
(closed section) can be obtained from the previous case by

the formal mapping

n > 1in (98)
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Let us make an additional remark. In the standard pro-
cediure (Lifshitz 1946) one deals directly with perturbations
of the metric. One should ask if it is possible to find
Gguv from our solution. The answer for this is yes. Indeed,

from the definition of shear we have

-- 9 e -1 ey ;
§o..= Z Ggij+ 5 GV(i;j) 3 éegij+ 5 (égij),o’

setting
Sgij = B(t)Zij
we obtain,in the case of perfect fluid,

-2

. A ~
B-2 e B= oA s

in which o= 2(1+A) Py _ constant.,
2€+ k?

We can easily integrate this expression to obtain

M= constant. A? ( dn_ |
7 AT (n)
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3.8 - VECTOR PERTURBATIONS

In the previous section we have worked out the full sys
tem of perturbation equations for a general fluctuation of the
geometry and the matter. Let us restrict our study in this
section to those perturbations in which only the state of mo-
tion of the fluid changes, leaving unperturbed the density of
energy. This corresponds to the case in which g vortex is intro-
duced and we want to examine the future evolution of such small
vorticity.

It enormously simplifies our analysis 1if we follow
Lifshitz et al. (1946) and use a complete basis of the hyper
spherical harmonics to develop the general perturbation. For
the case of pure vortex fluctuations (§p=0), this is accomplished

by the vector §a which has the following properties:

-

(1) S, is defined in the 3-dimensional rest space M orthogo-

nal to Vu, obtained using the projector operator hvu’
that 1is
L
% Su— 0 (99a)
h V8 =135 .
u Sy Su (99b)

(ii) Su is an eigen-vector of the 3-dimensional Laplacian oper

ator.

MV 5 5 a5 K? oz
LU AACE v s, (100)

(K is an integer)
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in which the co-variant derivative Vp is defined as the

restriction on M of the covariant derivative Vu. Thus,
VA, = h° o 01
V AL = hu Ve(hx Ap) (101)

(1ii)The eigen-vector Sa is stationary.

This means

s v = o, (102)

v s =0, (103)
a
From this vector Sa, we can construct tensors ZaB and
FaB by taking the symmetric and anti-symmetric derivative,
respectivelly:

-~

Zug = (a Sp) (104a)

FBu = vl:oc SS]’ (104b)
Besides we can construct the dual vector *§“:
sgW = HERBA, g . (104c¢)

£ BA

Using the properties of Su it is not difficult to show
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that EaB and ﬁaB satisfy the following properties:
-~ -~ 2
A _ 2e+K
Vo A2 P
2 A o I
ZU\);)\V +—§—Zu\)—0
USRI UL R RS LS SN A
(p 7 o) T A TVBLY (p &) v 7 u
L N N C 2N S NS o A
(p @) ATy VB (p 70) v Tu
-~ - 2
B WYy v 8+ = K g
e vy a A2 8]
L L W VO oax -
h(u h‘B) (Vusv) t =z 0 h(u hB) Vusv 0

H Voo ety 8 U Voog oo
h(a hB) (VUSv) * 3 h(a hB) VUSv 0

RH(P@AVe g Fe = (2e-k2) BMLO PV §

A PATRAY;

in which € is defined in terms of the scalar of the

curvature by means of the formula

=)

aBuv A2 BBy

and h -h h

aBqu hau hBV av ~Bu’

(105a)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

3=

Thus, we can develop any vortex perturbation in the basis
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§ . We set*®
U

5V = V(1)S (113a)
H u
_ a (113b)
a, q(T)Sp
= T 113
oy H(T)va , (113c)

in which T means the proper time of the fundamental co-moving
observer VY.
Using (24) we obtain for the vorticity
1

= = F 114
©uT V(T)Fuv° ( )

For the shear and the electric tensor Euv we set:

g = L(T)Eu (115)

v v

(116)

E = E(T)Zuv'

uv

Equation (26) for the definition of the acceleration gives

a = (V+—%¢ ov) S . (117)

*Remark that this decomposition is to be understood as a series

SVU= % cﬁn)'V(T) Su(m), for instance. We will write only a generic temm
of the series in the text, just to simplicity of writing.
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Using this value into equation (38) we have:

o . (1-32) 101 fe, 4 2e+k? 7 _

The constraint relation (30) gives

Z °
= . 119
+ 3 B 6V q ( )

From Raychaudhuri equation (5) we know §:

5 - _3L e, 12 p] , (120)

Using this value of & into eq.(119) we obtain the value of the

shear L:

A2
2e+K?

L = ¥ . (121)

[ﬁ : (1+x)pv] ‘

The expansion (56) for Euv and the equation for the divergence

of Euv (eq. 33) gives the value of E:

E=—2X A2 g|(1+A)oV+q| + - (122)

3(2e+K?)
Let us now turn to the calculus of Huv' Equation (32) gives:

S U AU IR
HaB > (L > ) h a hB) Vv S; . (123)

(

This induces us to define the expansion

= A*
H H(t) Za

" H(T) ﬁ(a éé) (124)

B
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and consequently,

AZ

H(t) = -~ —————
2(2e+K?)

[(1+A)pVV+q], (125)

It seems worth to remark that although we used only four equa-
tions (Raychaydhuri equation, the conservation of energy-momentum
tensor, the constraint relation‘whidlcnnnectslﬂn)wiﬂlspatial de-
rovatives of the shear and the vorticity and the equation for
the divergence of Euvlwe have solved our problem of finding
the evolution of the vortex perturbation. Indeed, we know EUV’
Huv and Guv. Equation (58) is a condition envolving V, q and
I. There is no more non-trivial condition left for the whole
set of equations of the complete quasi-Maxwellian system. All
other equations are identically satisfied. This can be shown
by a rather 1ong(*) but straightforward substitution of the
values of H, E, L and condition (58) into the remaining equa-
tions.

Let us examine two particular cases of these: perturbations

which are of great interest.

case i: Perfect Fluid

We set q = 0 =1
In this case equation (58) can be immediately inte-

grated to give the value of the perturbation V . We find

V=V, A (126¢)

(«) j.M. Salim - PhD Thesis - CBPF (1982) unpublished.
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E =¥ oy g a7" (126b)

3(2e+K?) o 0
H = - %% %} (126¢)
Ao
L = 1A o, V, * %? v, AL (1264)

2e+K?

In the case of radiation (A=1/3),the velocity perturbation and
the corresponding shear and vorticity are constant, a Tresult
which was known since Lifshitz et al paper (1963).Remark
however, that for stiff matter, in case %ﬁ <A<1l, the vorticity
(and the shear) increases as time goes on, once we are consid-
ering standard Friedmann expanding background in which A(T)
is a monotonic function. Note that (66b,c) shows that for those
perturbations which preserve the condition of the source as a
perfect fluid, short wavelenghts (AK= é% « 1) of the gravita-

tienal disturbance are inhibited.

case 1ii: Stokes Fluid

Let us consider that the perturbation is character-
ized by q=0 but, has anisotropic pressure Huv’ linearly
related to the shear,

i} =0 O (127)

with a=constant.
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In this case we can integrate equation (58) to obtain the val-
ue of V(1):

3 o 2 2
- 22 (23+V)fAdt (128)
-at 8 p
V=V e% e 0 ,

in which VO is a constant.,

In general, for a Stokes fluid (67) the only restriction
we set on constant a is that it must be positive. This garan-
tees, through the use ad hoc of the second principle of thermo
dynamics, that entropy only increases in the direction of the
arrow of time. However, for the present case in which Huv is
to be considered as a first order perturbation term, equation
(37) states that this condition on o may be relaxed, once the
contribution of anisotropy to the variation of entropy 1is a
second order effect (the additional term is Huv oHV= ac?).

Thus, the instability of this kind of perturbation which
may occur for a<0, is not forbidden.

Let us make a final remark on the general features of the
vortex perturbation.

Suppose we want to consider a pure electric perturbation
by setting H=0. Equations (58)(61)(62) and (51) imply that then
I=0=E. That is, the perturbed geometric is conformally flat
too. This is possible only if there is a heat flux such that
q= =-(1+X)pV, in which case the shear is given by L= %?. This
shows that we can prescribe arbitrarily the function V(t) for
the perturbation of the universe. We have just to proceed as
follows: consider L(t) as a given function (either by theory

or by any kind of observation) of the distortion of the cosmic

fluid. Then we obtain V(t). From this we evaluate the
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heat flux which 1is necessary to satisfy the whole system
of perturbed equations. Note that this result is completely in
dependent of the wavelength of the perturbation. It remains

only to consider a physical model to generate heat. This

has to be examined for each case individually.



- 142 -

3.9 - TENSOR PERTURBATIONS

In this section we consider perturbations of the geome-
try which are not linked to perturbations of the matter. This
represents gravitational waves propagating in the Friedmann
background.

The basic equations (of the quasi-Maxwellian system) re

duce 1in this case to the set:

a uv
h* By, BV =0 (129)
a uv
h c Huu;v h"" =0 (130)
DE
o 8 o B 1 .u A TVO _
he hp Dt 2 h (p " &) -qA Huu;v Vot eEep_ Mep
(131)
DH
o B ofB 1 .u A TVO _
he hp Dt M) h (p he) A Eau;v V0+ OH_ = Nep
(132)
Dy
08 .2 gy =-F -1 (133)

Dt 3 afB aB 2 aB ?

_ 1 1 € X e 1
M =- = - —_— =
[TRY; 2 (p+p)ouv+ 2 hu hv Dt * 6 enuv (134)
_ 1 .o > ABp
N = - — h
0V 1 (u hv) ”€ VA HaO;B . (135)

Using the fact that in the unperturbed geometry we have
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D . L . .
DT huv_ huv 0 and defining the operator PaB given y

~= - 1 u v AED
Pgll= 5 b h.V Tl v, Hy

(o 7B) v use (136)

we can re-write the above equations in the compact form:

]::oc8+ 0, - POLB}:H:|= Mo (137a)
Hyg* 0Hyg + Poo[El =N o (137b)
5@8*-é? ® “a —EaB_ é%'HaB (137¢)

Hy, = Pu\)[:o] . (137d)

Applying the operator 51 to equation (137a) we obtain:

B g% OE g+ OB 5 - POLBI:H:[= Meg -
In order to evaluate the term ﬁas[ﬁ] we can proceed as follows:

We apply the operator Poc to equation (137b) and obtain

B
POLB'_H] + P gloH] + P [P[E]] = POLB[N] . (139)
Let us evaluate each term of this equation separately. The

first term gives

1A (140)

K1 Y . o 7 Avi
paBl_H]_ -z-h(a hB) T]p Vy(H v

, E

The double derivative on Huv can be written;
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The proof of this is as follows. Using the definition of
Riemann curvature tensor we can invert the order of the deriv

ative to obtain

H vE=g V®+ R H. V&+R

€
HY; €SV UY3V3E uoeV TAY Y €V Huk vo(142)

In the Friedmann geometry we have used equation (1) section

(2.2):

-1 - -1 -
Rukev T3 T(gueng guvgke) 2 (gue o™ &y Tue

TRV Txe_ Ere Tuv)'

A

Contracting this tensor with Huv and V" to obtain the right

" hand side of (142) we find:

A e__ 1
Ruxev H y V' = & (o + 3p) HVY VU
and
Aye_ _ 1
Rykev Hu V= 3 (p+ 3p) Hvy VY .
Thus,

H €2 e . 1
wysesv LT Buysuie V 6 (P+3PIH, () Viy -

Substituting this result into equation (142), expression (140)

gives:
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(o] _ . - 1 -
PaB’_H] = POLBI_H:|+ %0 POLBI_H] i (143)
Now, using the fact that huv 6 =0,

POLB[:@H]= ePaB[H] , (144)

which implies that equation (140) reduces to:

Pl + 'g_ 0P g [H]+P ,[P[E]] =P o[N]- (145)

Using equation (137a) to isolate PaBEHI as a function of the
electric tensor Euv and the quantity Muv’ equation (145) a-

bove takes the form:

L d _ 4 - _ * _ o
POLB[H]— =8 M g~ O ¢ EOLB:] PaB[P]_Ej] +P N . (146)
Finally, equation (138) reduces to:

4 4

. 7 - . 2 E B E _. —_—
Bt 5 8F o+ (B+ 5 07)E g+ P [PE]]=M, o+ <-oM o+ P [N] -

o o B

(147)

In an analogous way, one finds that the magnetic tensor HaB satis-

fies a similar equation:

- AP s 4 e 4
Ha8+ 36 Hu6+(e+ 36 )HaB+PaBEPDﬂ]—NGB+-g_m%B_PuBDﬂ'

(148)

Equations (147) and (148) are generalizations of the equationof
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wave propagation in Friedmann background. In order to make
such similarity explicit let us find the relation between the
operator P[P|X]] and the generalized Laplacian operator v?

which is defined by

2 = _p% 18 pYAH VB
v Hep.. hE hp h (ha hé hY Huv;B);A' (149)
We have, using definition (136):
_ Y s o via ¢oT M LU LB
PeolPH]I= - b " by '_3 o VoTls™ Moy Bayhe My g*

Yy V¢ ngm n(v o [hoc)u hf hch Huw;B:I;A_-] '

A simple manipulation shows that

hY h § V h VAO ooT U,y .8 .
(e 7p) vohA né n(v hoc) ht By Huw;B 0
Thus,we can write
P - 1O LT vV o BA -
Peol— (] he ho (hy he b Huv;B);A
-1y o T (b hB WA H )
2 (e h o) HV; BT A

0T, 1in the equivalent form

P__[PMH]]=10% h" nY (" B - L g2
ep PIHIT = e by BIR(hg b by Hyyig)nm 5 07 Hop ol

(150)



- 147 -

The term PaBrMJ can be written in a more convenient way as:

PEDEM] = - %— (p+p)hu€ hp§ n i\)@ V)\ TOLU;\)+
* 711" h(E(S hp§ niuu Va ﬁvé;v ¥
* %é 0 h%e h T T)Xvu A Huu;v
Or, using equation (137d), we find
p_ M) =- _%._ (p+P) He,* T3 ehlé8 hp§ niva Vy Mooy ¥
zll h(ge ho§ niw Va ﬁvé;v ’ (151)
We have also
Mep ¥ %’eMef Z]i hlée hp) nim Va .uoc;B B
- en n3 N vom e (152)

These results allow us to re-write the equation of evo-

lution of Huv (eq. 148) under the form:

7 A 2 1 - = - -—1—-— ’ )\Bd .
DHED+—3—6H€p+ {0+6°%+ ‘Z"(Q P)}ng > Hég p)n V)\ 3o B

U T Vo
3 eh(E 5 T!T Vo Mooy o (153)

in which the generalized D'Allembert operator O is given by
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In a similar way one finds:

7 5 1 _ - 1 [ [ ]_
DEED+—3— GE€p+{é+e + -—-2—(0 p) }Egp ‘:——2 (p+p)+ = (p*p) 6 O'Ep+
1 7 YA U B -
N | h_ h h h oD h i ) 7 a2
2 £P 2 ’ UV,B] ;>\+ 'B— + = (p-q)+ 18 e_-_lngp
(154)
in which we assumed the restriction on Huv’
n .. h* nv =g
au;v € ’

a condition which is fulfilled in <case, for instance, of
a linear Stokesian fluid in which the anisotropic pressure 1is

linearly related to the shear
I =¢% o0 (155)

(with &=constant or at most a function of the energy density ).
We can now proceed by examination of the perturbed .equations
by taking a decomposition(as in section 2.11, equations (174)
and the following ones).

We set

En i E @ U(n) (156a)

= (n)
H o= & ég)(T) Uy (156b)
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0 (%)(T) USQ) (156¢)
T £ &y () U}E‘\f) ) (156d)

Using this decomposition into expression (153), we obtain

K2
A2

JH = - -il-(ﬁar-g—en) O (157)

ﬁ+—§—eﬁ+ {6+ 02+ —%—-(p—p)+

Now, using the constitutive relation (155) the right hand side

takes the form

N N A ,
rhs = - -£(L+381L)

which can be simplified, using eq.(137c),

rhs= - 4-¢ (-BE- —+£L)
obtaining, thus:
e 7 ® A 2 1 K2 E 1 2 _
H+—3—6H+{e+e + T(p-p)+ e + g_L_+ Tg JH=10 .

In an analogous way, we obtain the equation for Euv:

A Y ST | K2 1, 1 1 =
B+~ BE+ {6+06°+ —(p-p) + 2z B {7 (e*p)+ 5-(p+p)OIL+ o= T +
5 o, (8 1 7 a2 K?
MRS M MG R v I ye 2

or
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se . . 2 ; « o 1
E+(—§—6+%£)E+ (B+p2%+ -—g—g+—%—(p—p) ¥ §2)5= —{—%——(p+p)+ +-(p+p) 6 +

1 ;42,1 . 1 K?
t 5 £0 e Ep 7 AT g1L (159)

and the equation of evolution of shear

. 2 |
L+%8 L= -E-3EL
or
L+(—§—-6+—%——£)L=—E- (160)

Equations (158), (159) and (160) constitute the basic system
of equations which govern the evolution of the perturbed gravi-
tational wave-like field. In order to gain some insight into
this system let us examine it in some special and simple cir-

cumstance.

Gravitational Waves in De Sitter Universe

De Sitter Universe can be characterized by setting:

D
1l
[ep]
U}

constant

A

o
1l
!
kel
1]

]

in which A is the cosmological constant. So, it represents an
evolutionary cosmos with a constant value of its . expansion
(eé=—3A) in a steady state situation.

We consider only two extreme cases in which either the

electric tensor Euv or the magnetic tensor Huv vanishes.
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Case 1: Euv= 0

From the equation of evolution of the shear (160) we ob-

tain immediately

L=L_ e"2/38,¢ (161)

and for H the equation

KZ
AZ

i:l+—;— 9, A+ (eé+/\+

JH=10

K 2
A2

For very short wavelenghts (e.g., 6;>> ) equation (162) can

be easily integrated to give
i} -lal?t
H(t) = HO e | ,

. . D og.= - L = -

in which q may assume two values: a; 3 eo or (g, 260.
If we makea two dimensional  picture, with coordinates x, y,
related to H by the autonomous system

. 7 _ 2
X= - = 60 X 5 60 y

tin which x = H), we can use the methods of section (2.12) to
depict the qualitative picture of the system showing the esta

bility of the perturbation.



- 152 -

]
o

Case 1i: H:

We leave the analysis of this case to the reader, for we

can proceed in a very similar way as in the previous case.
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4, QUALITATIVE ANALYSIS

4,1 INTRODUCTION

The difficulty of obtaining exact solutions of the
nonlinear system of Einstein's equations of gravity has led
to investigations of alternative ways to extract information
from thig system in certain special situations. Among these,we
can quote the spinorial formalism, null tetrad frame, complexi-
fication of known exact solutions, the inverse scattering tech
nique,etc., One of these methods, the qualitative analysis of
investigation of an autonomous system of non-linear different
ial equations, has been of great help in recent years. We will
present such method in this section (see, however, section 2.12
for the non-initiated readerj.

It is almost astonishing that the highly non-linear
and complicated system of Einstein's equations admits its re-
duction,in some special cases, to an autonomous planar system
of equations. This, of course, is possible only in some re-
stricted situations and certainly it is not applicable in gen-
eral. However, the important point is that thosecases in which
such reduction is possible are of great interest and they in-
clude precisely the most typical and traditional cosmological
models like ,for instance,Friedmann, Kasner and Gddel.

This method of analysis has been applied by many au-
thors, e.g. Collins and Stewart (1971), Shikrin (1973),Belﬂmki
and Khalatnikov (1975, 1977), Novello et al (1979, 1980),

Bogoyavlenskii and S.P. Novikov(1973) and Ellis ( ).

It seems worth to remark that the term qualitative in
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this context is not a synonimous of imp;ecise, vague: it only
means that the method does not look for exact solutions in an
explicit form, but it intends to investigate the behavior of
classes of solutions and the topological properties of these
classes in an abstract (phase) space of collections of integral
curves-each one representing an exact solution. The method 1is

important for, at least, two reasons:

(i) It permits an overview of a collection of exact solutions

and its topological behavior in the space of the solutions.

(ii) It allows the set up of a program of search of new exact
solutions giving some general properties of a large set of so-

lutions.

Besides this, in a more deep context, this method can
be used as a tool to analyse the stability of a given geometry
in a collection of geometries. Indeed, it is possible to
analyse the variation of the topology of a set of
integral solutions of Einstein's equations by an exami-
nation of a family of solutions which depend on one parameter.
For instance, Friedmann's universes, which depend on the equa
tion of state p= Ap, 1s a one-parameter family characterized
by the constant A. One could ask about the modification of the
topological properties of the Friedmann solutions under-a change
of the parameter A. This can be applied to more general situa-
tions, and even to discuss the generic stability of Einstein's

system of equations itself.
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4.2 SPATTALLY HOMOGENEOUS AND ISOTROPIC UNIVERSES

Friedmann Universe

The fundamental length of the spatially homogeneous
and isotropic world is given in a gaussian system of coor

dinates under the form
ds?= dtz—Az(t][?x2+ o?(x)(de?+ sin26d¢2)] . (1)

The standard (Friedmann) Cosmology assumes that the
main responsible for the curvature of the space-time can  be
represented by a perfect fluid, the stress-energy of which is

given by
T“v= quV\)— phuv , (2)
where

LR TR
h v S vV Vv (3)
is the projector in the 3-dimensional space orthogonal to the
normalized vector VM (see section 3.2).

Einstein®s equation of motion reduces to the set:

()" 25 = e (4)
2T+ (__/;“‘—)2__]:— o . -p-A (5)
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«-O,n -0;12 1
— - = 6
b et (©)
We remark that due to the spatial homogeneity of Friedmann

model the quantities p and p depend only on the global time £,

From equation (6) we conclude that the model -admits
three possibilities for the 3-dimensional geometry;accordingly,
the three dimensional scalar of curvature(s) Rz 6¢ is positive,
negative or null.

We have:

case i: Euclidean section, e=0
o= ¥

case ii:open Universe, e= -1
0 = sinh ¥

case 1ii: closed Universe, e= +1

o= sin ¥

Thus, it remains to solve only equations (4) and (5) for the
three unknown A(t), p(t) and p(t). In order to solve these
equations we must provide an equation of state p= p(p). Let us
limit our analysis, in this section, to the case in which this

relation is simply given by a linear expression:

p= Vp (7)

and limit v to the range [0,1]. The lower limit is given by
the requirement of positiveness of the pressure, the upper limit is a

restriction imposed by the relativistic barrier on the sound
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velocity,v, < light velocity=1.
From the conservation of the stress-energy tensor we

write

™Y = o
MY,

Multiplying this expression by vH= &% and using the form (2)

for the energy tensor we obtain

o+ (p*p)o = 0 . (8)
Using (7) it takes the form

p+ (1+v) p8=10 - (9)

The evolution of the expansion parameter 6 is given by Raychaudhuri

equation, (cf. section 2.5)

2 92 2 _ 2 o
e-f—gn + 20 AN a, a

L

= HyV
R VIV (10)
Using Einstein's equation we obtain

. g2 2 _ 2_ 0O - Uy o T
8+ — +20% -2w-a”, TWVV+—2—— (11)

This equation has been of great help in the study of the behav

ior of the gravitational field in regions of high value of the

(*)

curvature

(«)

see R. Penrose in Batelle Rencontres (1967) and references
therein,
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Using vH= 6% for the velocity vector field and expression (2)
for the energy-momentum tensor, Raychaudhuri's equation takes

the form

. g2 (l+3\))
B= - "'3—' - "'2" - p = A . (12)
Let us re-write Einstein's equations (4) and (5) in terms of

the expansion factor. We have

2
_93._+-3—2=p—[\ (13)
A
28,89 . = . A 14
3 3T -p-A. (14)

Equation (14) is a consequence of taking the derivation of (13)
with respect to time and using the equation of conservation of

the energy as given by (8).

Thus, the whole system of Einstein's equations can be reduced

to equations (8), (12) and (13).

Equation (13) may be regarded as a constraint, since it does not
involve any time derivative. The dynamic system in the (p,8)
variables are given by eq. (8) and (12) which can be written

in the generic form:

ie]
I

F(p,8) (15)

De
n

L(p,8), (16)
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with

F(p,6) = -(1+Vv)pb (17)

L(o,e)E-eTZ-Ll—%@lp—A. (18)

It is a very fortunate consequence of the double choice of the
geometry (1) and the perfect fluid configuration of the sources
that the equations which govern the evolution of the density
of energy and the expansion factor reduce to a planar autono-
mous system. Let us undertake now the qualitative exam of this

system.

Qualitative Analysis of Friedmann's Universes

In the examination of the planar system (15,16), we
follow the methods and theorems quoted in section 2.12 , which
gives a pedestrian outline of the main rules of the qualita-
tive analysis of a non-linear system of differential equations.
The singular points of the system are the values of p and 6
which annihilate simultaneously the right-hand side of equa-

tions (15,16), that is

F(6,,0,)=0

L(0,,py)=0.

They are given by:
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) _ . _2A
P1. (po,eo)_ ( l+3.\) ’0)

Pyt (0,+(-31) /%)

1/2
Pt (0,-(-30)72)
If A is positive,there is no singular point at all (for p pos-
itive); if A vanishes,the unique singular point is the or-
igin 0, We examine the case A<0,
The fundamental matrix of the coefficients of functions F and

~

L in the neighborhood of the singular points is Q:

5F  OF
~ 3o 38 -(1+v)® ~(1+v)p
Q = =

3L L 1 2

3 36 - 1) - 30

The trace I and the determinant £, at the different singular points,

take the values:
I(Py) =0
I(P,) = -(3 +v) =317 2
I(Py) = (3 +v) (-31)/2
Q(Py) = (1+v)A

R(P,) = =2(1+v)A

Q(P;) = -2(1+v)A
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Thus, we obtain the results of Table I (see section 2.12),.

In order to simplify the drawing of the integral paths
in the phase plane, it is useful to know the isoclines Jo and
Jo» the curves of constant value of the derivative %% = J. A
simple inspection of equations (15,16) gives for Jo the expres

sion

02= - —3—(1+3\))p— 3,

The curves J_ coincide with the coordinate axis (6=0 and p=0)

These results allow us to depict figure 1.
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. . 12 Nature of the

Singular Point Q 7 4Q-1 singular point
P <0 <0 saddle

P, >0 <0 two-tangent node

P3 >0 <0 two-tangent node

Table I - Nature of the singular points for the system (15,16) in
the case of a negative cosmological constant.
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VIR

Figure 1 - Behavior of integral curves of Einstein's equations for homogeneous
isotropic Universes filled with perfect fluid (the figure is drawn

for the case of negative cosmological constant). The arrows on the
curves point in the direction of increasing time.
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A useful limiting situation of the above investigation is the
case in which the cosmological constant vanishes. In this case,
points Pl’ P2 and P3 coalesce to the origin. Figure 2 illus-

trates this case.

Figure 2 - Behavior of integral curves of Einstein's equations for
homc')geneous isotropic Universes filled with perfect
fluid (case in which A=0)



- 165 -

Before commenting . these figures, let us make a re
mark on equation (13). A simple inspection shows that points
P, and P3 are true singularities: the radius of the Universe
diverge at these points, This does not happens at point Pl.For

the case A= 0 the radius diverge at the origin showing real

singularity.

Comments on the figures

We separate figure 1 in six distinct regions:

Region I : Limited by the curve SP2 and axis p=0 (for e>eP )
2

Region II: Limited by the curve NPZS

RegionIII: Limited by P2 P1 P3 (including 0)

Region IV: Inside the parabola NPlP
Region V: Inside PP1P3Q

Region VI: Outside QP4 (for 6<6p )
3

Let us briefly sketch the general behavior of a typ-

ical solution in each region,

Region I:
The model starts with an infinite density and infin-
ite expansion. Then both, the expansion and the density, de-

crease until the point P, is attained. At this point the den
sity vanishes, the expansion arrives at its minimum value and

the radius of the Universe is infinite.

Region ITI:

The model starts at (p,0)=(+%~,-»), The density and

the expansion dimish with the increasing of the parameter t
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and tend asymptotically to the singularity P, with a similar
behavior as in region I. Although the behavior of the energy a
long the whole trajectory mimics that of region I, the expan-
sion 6 passes by a minimum which is a consequence of a non-ca
tastrophic attraction of the singular point Pl' After the min-
imum (for p ~ Pl) the expansion increases until the point Pz.
We realize that the cosmical repulsion, due to the presence of
A is responsible for such very strange behavior expressed in

these models.

Region IIT:

This is the only section of the phase plane in
which both the density of energy and the expansion remain  bounded.

This region represents models of the Universe which
are dominated by the cosmological constant. Indeed, a simple
inspection of figure 2 shows that in the limit A-0, this whole
subregion shrinks to the singular point 0.

A typical model starts at P, with an infinite radius

3
and (p,0) = (0, 9P3<0). Then as the expansion becomes less nega
tive, the density of energy increases, passes through a maximum
at the moment in which the expansion factor changes sign (from
contraction to expansion) and as time goes on the density of
energy decreases towards the value zero at the maximum of the
expansion ePZ. At this point the radius of the Universe di-
verges.,

These solutions represent bouncing models, in which
the radius of the Universe has a minimum value Ays . correspond

ing to the point in which 6 changes sign, the Universe stops

collapsing and an expanding era starts, For such sit-
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vation to become possible, the cosmological constant must be
high enough to prevent collapse, that is, the maximum value of

the total energy and A must satisfy the inequality.

1+3v

Region IV:

It represents a series of closed Universes with ana-
logous behaviour as in the absence of cosmological constant.

The models start at (p,e)i= (+o,+o) and . ends at
(p,0) g = (+o,-%).

The density of energy has a different minimum for each
integral curve.

The curve NPlP represents the Euclidean case.

Region V:

Similar to region II.

Region VI:

It represents a time inversion situation of the mod-

els of region I.

Figure 2 presents similar features as regions I,IV
and VI of figure 1. The other regions of figure 1 are absent
here since the singular points Pl’ P2 and P3 coalesce to the u-

nique singular point 0.
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4.3 - THE INFLUENCE OF VISCOSITY

Although a perfect fluid description of the matter
content of the Universe in .a homogeneous and isotropic geome-
try may seem a very idealized picture, it gives a model of the
Cosmos which, in its general features, seems to be in good
agreement with the main observations.

However, even without a deeper analysis of its
observational properties, there are reasons to believethat such
a model cannot represent the history of the Universe for all
times., To get convinced of this it is enough to recall
the existence in such a model of a global singularity,e.g.,the van-
ishing of the spatial volume V and,as a consequence the formi-
dable value for the density of energy (which in the very limit
of zero volume goes to infinity),packing all existing matter
in a very compact region (in the limit, into a point).

To escape from this naive model one may either modi-
fy the properties of the geometry, or change the character of
the fluid or both.

It seems reasonable to take the point of view that
the transition from a perfect fluid behavior (latter era) to
some less restringent regime (primordial era) is not so dras-
tic, but that it is smooth in such a way that the whole ener-
gy content of the Universe should admit a hydrodynamical de-
scription. In this vein, we maintain the fluid description but
introduce dissipative terms on it. It is clear that even such
description could not be mantained forever. However, it seems
a fashionable hypothesis to assume that a viscous era was pre-

sent during a certain period of time, the duration of which
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should be matter for future concern.

Stokes Fluidity Principle

In this section we will treat the energy-momentum ten
sor as a fluid with density of energy p, isotropic pressure p
and anisotropic pressure Hij.

The trace of Hij vanishes, in order that p can representithe
total isotropic pressure. The stokes fluidity condition is stated
in terms of the response of the fluid to a given perturbation
which is characterized solely by the dilatation tensor 62 (so-
metimes called the deformation tensor).

If the response of the fluid is such that it can be
described by a functional dependence of the anisotropic stress
tensor Hi. in terms of the dilation eij, then we say that such

fluid satisfies the Stokesian fluidity condition. We write

E m_’o (17)

Choosing coordinates in such way that the value vH= duo,we can

write, using a well-known theorem of Cayley for matrix
M .= o 8%, +8 6%. +vy ot 8%, , (18)

in which o, B and y are polynomials in the principal invariants

of the matrix elj. These invariants are:
I =67.=Tr 67,28 (19a)

II

1
S
~
D
]
I
<D
e
<D
()
L

(19b)
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III = det elj. (19¢)

Thus, we can write for the most general Hlj, the expansion

=]
I

2 3 (]
[ao + alI + (aZI + a’ZH) + (aSI 4-&'3III + a's

+

(20)

in which the coefficients o B Y, may still depend on the

JA
density of energy p.

Although such Stokes fluid represents a generaliza-
tion of the‘perfect fluid, it still does not have the highest
degree of generality.

We will discuss later on how to generalize further

the Stokes principle in order to describe other more elabo-

rated situations.

Viscous Isotropic Models

Let us come back to Friedmann geometry. In this case,
as the shear vanishes, the most general expression of the
Stokesian fluid takes the form of a polynomial of the pres-
sure in terms of the expansion. We limit our analysis here to

the quadratic order and set

p'=p-o06-p6%, (21)

in which o=0(p) and B=B(p).

I ID)+...] cSlj+

k

2 ' 1 2 1
[B,+B I+ (B, 1%+ B',IT) +...]0 it [ro+ vy I+ (v,1 +y' ID+...]05 00,

J
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Einstein's equation (15,16) gives:

s _ 0 SRR S 3. e’ =
B .= = (l"‘S\)) 3 A+ 5 o+ 5 ge =
0= —(1+v)p6+ab®+ B6> = h(8,p)

Let us examine this set of equations in the case
cosmological constant.

We distinguish two special situation:

case 1: o and B are constants

i
[en

case ii: B

in which u is an arbitrary parameter (for the time being)

o, is a positive constant. We analyse both cases.

Case i: o and B are constants,
In this case the singular points are
P, (p,8) = (0,0)
270 3 Yol ?
. _ 30
with 90 = mo
The fundamental matrix of the singularities Q takes the
form 5f of
ap 36
0 =
ah oh

|

(o34
o
(o34
<D

£(0,0) (22)

(23)

of vanishing

and
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-(1+v)8 + %% 624-%% 63 ~(1+V)p +208 + 3882
Q =
Q@) 3 da g, 3d8 24,3
5t S R o + > I 9 -3 B+ 5 o+ 388

(24)

Substituting the values of P, and P2 we obtain for the trace 1

and the determinant Q the following values at the singular

points:

|
o

Q(Py) =

Q(P,y) = 1593

I(Py) = 5

|
Q

98-3v-7
3

O o Zbmov-/
2 B=v -1

I(p,)
The second law of Thermodynamics imposes that a and B must be
positive, by identification of the direction of evolution (for
increasing values of parameter t) with the direction of the ex-
pansion of the Universe.
Let us analyse the behavior of the integral curves in

the neighborhood of point P Using the techniques displayed in

X
section 2,12 we obtain the results:

If 1+v<3B8 then Q<0 and thus, 40<IZ,

We conclude that point P2 is a saddle point. On the
other hand if 1+v > 38, point P, is a two-tangent node.

Finally, if 8= 3%;1 (in which case, 4Q=12), point P

2
is a one-tangent node.
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The result of this analysis is contained in figure 3.

Comments on figure 3

We divide the phase plane in five regions:

Region I : Limited by the curves QOS.
Region II: The interior of SON
Region IT1I: The interior of NOR
Region IV: Limited by the curve RO and axis p=0
Region V : Limited by the curve QO and axis p= 0.
We will sketch the general behavior of the solutions
in each of these regions.

Before doing this, let us make two remarks:

(i) In a similar manner as in the previous case of a perfect
fluid, equation (13) implies that the exterior region of the
parabola NOQ consists in a class of open models, and the interi

or of it on closed models.

(ii) Contrary to the previous case, the axis p= 0 is not an inte-
gral curve of the planar system. Consequently,it can be crossed
by the solutions,as we see in figure 3. We have drawn the lines for
negative values of the density in a discontinuous way in order
(to recall the reader that it represents a classically forbidden

region.

Let us now turn to the analysis of the five distinct

regions.

Regionl.

It contains solutions which represent closed Uni-
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Figure 3 - Behavior of integral curves of Einstein's equations for homogeneous
isotropic Universes with viscosity given by eq. (21). The figure is
drawn for the case 1+v 4 14Y

—_— < Fe

3 9 ' 3

[OXN]
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verses, starting at (p,0) = (+x,+») with a big explosion and

ending at (p,0) = (+x,-») in collapse. Such behavior 1is the

same as in the non-viscous case.

Region IT.

In this region constant € (which measures the 3-di-
mensional curvature) is still positive, once p—-%i > 0. These
Universes start like in the previous case with a big explosion
(p= 6= +»), but their future fate are,however, very distinct.
They end at P, with a finite value of both the energy and the
expansion. No singularity at the end.

From the big explosion the density of energy de-

creases until a minimum (different for each curve) is attained.

After this point the energy increases until its final value
62 2
p(Py) = S0 = S0
(1+v-38)2

At this point the radius of the Universe becomes in-
finite.

The responsible for the increase of the energy in the
neighborhood of P2 is the viscous term, and we can talk of this

region as a viscous dominated era.

Region ITI,

A typical Universe of this region has an explosive
beginning in which (p,8) = (+«,+»), Then the energy and the ex
pansion decrease wuntil arriving at the singular point Pz,in
which the radius of the Universe is infinite. The final config

uration is the same as in the preceding case.
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Region IV.

Here we find models which are created at a finite
time with zero energy and finite expansion Ni‘ As the Universe
expands matter is being created until the value p(Pz) is at-
tained at the singularity, after an infinite time.

These curves may be continued untill classically un-
physical regions, for negative values of the energy. If we pro
ceed to the left of the 6-axis then we see the singular origin
of those solutions: they all start at 6=p=0 with an infinite
radius, pass a contracting era (in which the energy 1is neg-
ative) and enters an expanding era in which the energy is still
negative. Beyond this region they enter into the classically per-

mitted situation, for positive values of p.

Region V.

If we do not continue the integral curves for neg-
ative values of the energy this region V admits very strange
models.

Tipically, a Universe in this region has a finite
duration without nothing exceptional occuring during its whole
life time. A Universe starts with a finite contraction
and p= 0. As time goes on matter is created, the energy passes
a maximum and then diminishes, while the contraction in-
creases. After a finite time, the model disappears (that is,
enters a classically forbiden region). If we follow this solu-
tion to the left of the 6 axis, then we come into the - isitua-

tion previously examined (Regeion IV).

Finally, let us comment the three possible cases
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of models with e=0. They are all contained in the parabola

%; =p . There is a model which starts at the point 0 with null
energy and null expansion, Then as the expansion increases the
density increases until the second singular point is attained.
The final configuration of this model is an Universe with den-
sity p, and expansion 0  at Pz.

The second solution on the parabola p=-%? repre-
sents an Universe with a singular behavior: (p,8) = (+x,+>).As
the Universe expands the density of energy becomes lower until
the minimum at P2 is attained with the same end as in the pre-
vious case,

Finally, the third integral curve is the branch in
the negative region (contraction) of 6, with a similar behav-
ior as the one found in the Friedmann cosmos in which the mat-

ter behaves like a perfect fluid.

We present at figures 4, 5 and 6 the configurations
for some special values of the coefficients of viscosity (*).

Let us now turn to the analysis of the case in which
the coefficients of viscosity are not constant but depend on
the energy.

The case B=0, a= aopu {in which O, and Y are cons-
tants) was examined by Belinski and Khalatnikov (1977) and the
case B= %pmg a=0 was examined by Novello and Araujo (1980).

The features of these models depend deeply on the

constants u and m. We will present a few configurations for

(*) These figures have been examined by Ruben Araujo (Master
Thesis, Rio de Janeiro, 1979) (unpublished)
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Figure 4 - Behavior of integral curves of Einstein's equations
for homogeneous isotropic universes with viscosity
given by eq.4(21). The figure is drawn in case
B= 1xv . 2

3 9

vay
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=

9

Figure 5 - Behavior of integral curves of Einstein's equations for
homogeneous isotropic Universes with viscosity given by
eq.(21). The figure is drawn for the case g= 1+v

3
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Figure 6 - Behavior of integral curves of Einstein's
equations for homogeneous isotropic universes
with viscosity given by eq.(21). The figure is drawn
REAY]

in the case B>
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some cases of interest.

The linear regime

In this case the singular points are:

Ppt (0,8)y

Py: (p,0),

with o= | 1
. %

= (0,0)

it
~~

3u—1}1—2p

The behavior in the phase plane is represented by

7 and 8.

The quadratic regime

We set

™
1}

figures

In this case we have, from equation (22) and (23):

3
h(8,0) = o-3 682+ g o™0% - 3 yp

£(0,9)= 8,6° o™

2

0
-Ye

?
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Figure 7 - Behavior of integral curves of Einstein's equations for
homogeneous isotropic Universes with linear viscosity.
The figure is drawn in the case R=0, OL=OLOQ“ for
2 1

1
5 13y SH< 5 (see the text).
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Figure 8 - Behavior of integral curves of Einstein's equatios for
homogeneous and isotropie Universes with linear
viscosity. The figure is drawn in tge case B=0,
a=a,eH for pe Lo 2

2 3(1+V)
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in which p= (y-1)p,

The singular points are:

o
i}

o = (P48 = (0,0)

P, = (pg,6)

J
it

’

2 (po "60)

with

Developping h(6,p) and £(6,p) in a power series in the neigh-

borhood of the singular points we obtain

-3 8, * 9, 1+ Y (m-1)
Q= .
2 B2 6(m-1)
=7 Y, ¥ O

The trace I and the determinant Q are given by:

- 2 2
Q= - = Y m 60

—i
"

2
6, (ym - "3'") .

Using the theorems of section 2.12 we easily arrive to the fol

lowing results:

If m>0 Pl’ P2 are saddle points.

If m<0 and 4Q- I”*<0 points P,, P, are two- tan-
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gent nodes;

If m= %% Y, points Pl’ P2 are one-tangent nodes.

In the expansion era the node is stable; in contract

ing era it is unstable.

See figures 9, 10 and 11.



- 186 -

Figure 9 - The fluid has viscosity represented by p=p-M QUGZ, M and u
are constants. The figure is drawn for the case in which

%% <u <0. Points B are two-tangent nodes.



- 187 -

Figure 10 - Case p= p—Mpu 6%; M and U are constant. The
figure is drawn for <~ = Y. Points B are
two-tangent nodes, 3
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l+)

¢

M

Figure 11 - Case 1~>=p—MpU 62; M and | are constants with

W>1. Points B are saddle points.
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4.4 HOMOGENEOUS ROTATING UNIVERSES

Some years ago K. G8del presented a cosmological mod
el in which the cosmic fluid had an intrinsic rotation. Al-
though this model could not represent our real Universe (for
instance, it is a static configuration of rotating galaxies,
which does not fit well with the observed portion of space-

time we can see),it has some intrinsic curious properties which

have stimulated deeper investigation of certain types of
Riemannian geometries. Our interest here in presenting this
model is linked with the possibility of examining some more

general rotating models which allow the qualitative analysis.

We start by writing the fundamental length of our ge

ometry as being given by

ds?= dt?+ 2A(x,t)dy dt - B(x,t)dy? - H2(t)dz? - F2(t)dx?2.

(25)

The fluid velocity v¥ takes the values V°=1, Vi= 0,
(i=1,2,3).
The rotation and the acceleration vectors are given

respectivelly by

w¥= (0,0,0,9), (26a)

with

A 1/2

2FH

o)
i

(A%+B)~
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A= (DA o, - A0 (26b)
A%+B A%+B

. . y = OA v - OA

in which A' = X and A= ST

The source of this geometry is taken  a non-perfect

fluid, given by

Tov= (p*p) V. V= pg v a vy * a,V, z7)
in which q, is the four-vector heat flux.

The vanishing of Ty, imposes

d H ' 24BY 20 (B'+2AA') _:L.._d._ =
L[ & aareny/?] S F & a0

If we set

= (m-1)A?, (29)

where m is a constant, we obtain

A(x,t) = A, ¥ A (2), (30)
in which A  and q are arbitrary constants.
The absence of anisotropic pressure imposes Rll =
=R22 = RSS’ that 1is,
T E A B2 (2m-1) g% _
D FrF R Tl w0 (31)
R L F:l q B2
m-1 — + - = - = [+(2Zm-1) + - —~ = 0.
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Novello and Rebougas (1978) presented a solution of
these equations which contains G8del's model as a special case,
in which the value of the constant m is 1/2. Let us follow them
and set this value for.m. We then reduce (31) and (32) to an

autonomous homogeneous planar system:

Fo, B A _ B

LN . S (33)
F'TFT R

WY . B A B

y ol =il wl U 540

Indeed, let us define the new variables x(t) and y(t)

as

x(t) = -

e

y(t)

Then equations (33) and (34) reduce to the set:

X = =Xy (35)

= -y?-4x2. (36)

e
|

Figure (12) represents the integral curves of this
system. Let us make somme comments on it. The unique singular
point is the origin (0,0). This is precisely GUdel's metric.We
then conclude from figure (12) that there is only one solution

which tends to GBdel's geometry for asymptotic values of time
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(t>*»), This solution, which corresponds to F=0 , was presented

in Novello-Reboucas' paper (Novello and Rebougas, 1978)

For é% >0 the solution tends to GYdel in the infini-

future (t->+«); and if —%—< 0 it tends to GHBdel in the infinite

past (t»-«), A small perturbation of G8del's model (by a small

quantity of heat, for instance) makes the model stay far away

from GYdel's geometry forever.

Fig. 12 - Integral curves of the system (35,36) represer'lting
rotating cosmological models (non-perfect fluid).
The origin represents GBdel's solution.



5.1 - INTRODUCTION

In the preceding section we have examined the properties
of the standard cosmological model, that is, Friedmann Univer-
se. We have reviewed its stability property against any type
of perturbation. Although the great majority of the cosmolo-
gists believe that we live in a Friedmann-like Universe, theo-
retical reasons allow alternative expanding models to be
thought as candidates of the description of the structure of
space-time at large, at least for ancient eras. To be precise,
even for later eras structures more complex than Friedmann's
can be considered, 1like, for instance,the possible existence of
White Holes and/or the sudden irruption of acausal structures
in the cosmos at large,with their unpredictable behavior.

The purpose of the present section is to give alterna-
tives models for the global properties induced by the presence
of cosmic fields coupled non-minimally to gravity. It has been
argued in the literature that non singular cosmologies are con
sequence of quantum effects (Melnikov and Orlov (1979),
Starobinsky (1980).

Here we show that this is possible within classical the-
ory just by taking non minimal coupling with gravity, as we show
in section 5.7 for non-linear photons. We examine here also
the mechanism of spontaneous breaking of symmetry in cosmology.
In section 5.4 we present the consequences of this non-invari-

ance in the creation of a repulsive gravity induced by radia-

tion.
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5.2 - THE SCALAR FIELD: ALTERNATIVE EQUATIONS OF MOTION IN A
CURVED SPACE TIME

In flat Minkowskii space-time the equation of motion
of a saﬂar:ﬁeldd{xw)is obtained, using a variational princi-

ple, by the Lagrangian
Lepy= 9,9%0,6 1"7 - m? %o, (1)

in which ¢* is the complex conjugate of ¢.

The corresponding equation of motion is
¢+m*¢=0, (2)

in which %%szﬂuvau8v¢ is the Laplacian operator.

The correspondent of this equation in arbitrary curved
space-time, endowed with a metric g“v(x), introduces an arbi-
trariness in the theory once there is not a unique candidate
to such generalization, Two are the main lines of procedure
which have been adopted to deal with such situation. Let us
review both of them.

(i) Minimal Coupling Principle

In the Minimal Coupling Principle the equation of
motion of ¢ is assumed to be free from any functional depen-
dence on the curvature tensor.

This led unequivocally to the Lagrangian

Liyy= Y=g {o,0% 3¢ g"V -m? ¢*¢) (3)
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and the corresponding equation to ¢).

D¢+m2¢= 0, (4)
in which
_ 1 o
O¢ = 7;;“ (V-g ¢,a g ),B (5)

(o
is the generalization of the Laplacian operator Cf.

(ii) Conformal Invariance

In this procedure one states that the equation of
¢ in curved space-time must be such that, in case the mass of
the ¢ field vanishes, the resulting equation becomes invariant  un-
der a conformal mapping. This map is due to a space-time point

dependent scale transformation characterized by

g,y () > ()= 27 (x) g, (x). (6)

It induces in the curvature tensor the correspond-

ing modification

o8B _ o=fpaB 1 o 8]
RT )= 9 R - Sl_u ij ) (7)
in which a
0 _, =1 om0 ar L -1 -1 TV
Qg=tt (® ).g.y g7-2(0 ) (@) 8 B -
Contracting indices ,
0 _ =2 0 1 ..o 1
RT =9 TRY -5 (Q% + 5 v ) (8)

Finally, for the scalar of curvature R:

R » K= 9‘2{R+6%9- i (9)
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The Weyl (conformal) tensor changes only by a multiplicative

factor

L e L (10)

Now, if we adopt the principle that the theory mustbe
invariant under a conformal mapping and note that the associ

ated change of the ¢ field is
-1
$(x) > F(x) =07 (x) e(x) (11)
then we are led to the Lagrangian

Loy Y7E (3,073 0g""- m2%o- % Re*e)  (12)

(3)

and the corresponding equation of motion:

O+ (FR+m2)p = 0 . (13)

It seems worth to remark here that this equation is

not univocally defined. Indeed, let us add to L(S) the term
Ara VA S (14)

in which the invariant I(l) is defined as the second order

Weyl contraction (see section 2.3)
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It is easy to show that expression (14)is invariant under the
conformal map (6)-(9)~(11). There are other terms which can
be added to the Lagrangian of the ¢-field and which do not
break the conformal invariance of the theory. These terms are

generated by higher powers of the Weyl tensor multiplied by
1/2 4

(1)’ Cb ]
-1/2

¢ I(l) and so on, conserve the conformal invariance of the

higher powers of the ¢-field. Terms of the form ¢?I

theory. How to decide among them? This is still an open
question. Let us turn now to a more intimate study of the non
-minimal (conformal invariant) equation (13) of motion of the

scalar field.
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5.3 - CONFORMAL COUPLING AND THE FUNDAMENTAL SOLUTION

Let us assume that the Lagrangian of the metric guv(x)
and of the scalar field ¢(x) is given by

L=/"g|R+ 2,,6%3., g"’ - mPoro - TR ¢*o+ 21 (15)
in which we have introduced an additional constant term (A is
the so-called cosmological constant).

The equations of motion which result from this Lagran=

gian are

06+ (m2+%—R) =0 (16)
1 . 1 1, .
(1= 6% (R -FRg )= F(8%, 0 +0* 6 )+
1 A

© g (0%, 0 o g T -merel - - O (670)g ¢

1
£ g (070) L v hg (17)
Taking the trace of equation (17) gives
R = m?¢*¢ - 44, (18)

Substituting this value into equations (16) we find:

2
O¢+ (m® -5 Mo+ 9% = 0, (19)

The form (19) of the equation of ¢ shows explicytly
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that the final consequence of the introduction of the con-
formal term proportional to R¢*> in Lagrangian (15) is equiva-
lent to a quartic self-coupling of ¢. This fact suggests a
further generalization of the equation of ¢ by introducing ab

initio the self-interacting term
c(9*¢)?

in the Lagrangian..Thus we set for L the form:

L =/—E[R+ aud)*a\)d) gu\)—mzd)*d) - %—-R d* ¢ + O’((b*d))2+ 2/\].
(20)

The corresponding equation for ¢:
2 2 III2 2 —
Qo+ (m°-51) ¢ + (g~ - 20) ¢°¢ = 0. (21)

We see that the role of the cosmological constant A (for A>0)
is to reduce the value of the mass of ¢ to an effective mass
m, e glven by:

_ 2
(moe)? = m? -5 A, (22)

We recognize here the possibility of induction, by A, of the
mechanism of spontaneous symmetry breaking. Let us briefly
review the main points of this mechanism in flat space-time.

In this case the equation for ¢ is

O¢+m?¢ - 20¢%¢ = 0 . (23)
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I1f we look for the simplest solution ¢ = ¢0= constant we obtain

— (24)

-
o~
(]
Q

This is possible only if the mass of the ¢-field is im-
aginary (for o<0)., This value for ¢0 corresponds to the mi-
nimum of the energy which in this case is given by the mini-

mum of the potential
V(¢) = m*¢* -~ o¢" (25)

We remark that in the fundamental state ¢O the system
does not have the gauge symmetry (invariance under a change in
the phase given by

¢ > e 9
which is valid for the Lagrangian. Thus, the system breaks spon-
taneously the fundamental symmetry. Let us now pass to the
curved geometry and ask for the modifications on this phenome-
num introduced by the coupling with gravity. Equation (21)

shows that the new constant solution, corresponding to (24) is:

20 - 3m?
2 - 2 -
to ( m2-120> | (20)

We take as definition of the energy-momentum tensor of

the ¢-field the expression(Chernikov and Tagirov, 1968)

- .97 -1
Ty L¢] thy : (Ru\) zng>, 27)
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in which tuv is the tensor

:1 * * * __1__ * >\€_
Cuv = 77<?,u VRN ¢,u> 2 guv[ x %8

2470+ 0(470)%] ¢ £ 0 (670)g, - +(070) -

We can however re-write Tuv in another form, using e-
quation (17) for guv’ with the inclusion of the o-term.

Formally we have

- 2 2 t Ag -
T = - e - L - ¢ ¢ PV Suv
uv[ﬂi tuV = <Ruv 5 Rguv) tuv+ : [ — s

or

_ t 2
T, 8]= — - R (27")

1- & 6-¢° HY

Thus, the energy E(¢) in the fundamental state g is

2 _ 2 _ 4
E(¢0) - (3m 6A)f 3007
-9

Let us add to E a constant just to renormalize the energy of
the zero point, that is, E(0) = - A. We write E=E - A
The extremum points of ¥ are given by solutions of the

equation

0¢z - 120¢§ + 6m? - 20 = 0. (29)
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In order to the fundamental state (26) be an extremum it
must satisfy simultaneously both equations (26) and (25). This
is not possible in general, but it can occur if the cosmological

constant A and the self-coupling constant ¢ are related by

N
=1 30
o= I, (30)

which implies, by (26), that

2

_m
97 = 5= . (31)

0

Q

This is precisely the result expressed in equation (24) thatwe
had obtained before in case of absence of gravity.

The interpretation we can give to such result is this: in gen-
eral, the introduction of a cosmological constantto renormalize

the value of E(0) does not allow the mechanism of spontaneous

symmetry breaking. However if the constants o and A arenot

completely - independent but satisfy 7relation (30), then the

constant fundamental solution ¢0 constitutes the ground state

of our system. As a consequence of this, the gauge symmetry is

broken. We call this an induced breaking symmetry mechanism.

Remark that the extremun will be a minimun only if 3m? - 2A< 0,
in which case the effective mass is imaginary . We find here the
same situation as in the flat space time. The role of the cos
mological constant A is just to let the mass m of the ¢ field
to be real and an imaginary effective mass to appear, which
allows the existence. of a ground state distinct from

the trivial one (¢=0). See figure (5.1).
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-2 /7
L

Fig. 5.1 - Case in which 2A> 3m®> A> ;ang.

(See the text)

2
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Fig. 5.2 - Case in which g= 0.
S(+) and S(_) are De Sitter Universes
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What is the role of the other constant o which ap-
pears inthis theory? In order to understand this let us set
o = 0 and see what are the consequences of this.

This case is represented in figure (5.2). We see that
the point of constant solution ¢  cannot be an extremun for any
value of A. Instead of this, we recognize the instability of
the constant solution which corresponds to E(¢O) = - % m?.

The equation for the metric in this state, reduces to

L peH = 3. p2 gH

L = =2
R Nl yv- M N (31)
which corresponds to a negative effective cosmological con-
stmﬂ:Aeff = - %mz. In case of homogeneous cosmological models

it corresponds to closed de Sitter Universe. Figure (5.2) shows
that this is a highly unstable situation, the whole system de-
caying to the assymptoticaly stable case E(z») = - 3m2.

Thus we recognize that the role of the self-coupling

term of the ¢ field is just to increase the stability of its

fundamental symmetry beaking constant solution.
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5.4 - REPULSIVE GRAVITY OF MASSLESS PARTICLES INDUCED BY THE

SCALAR FIELD

In this section we present a consequence of the existen-
ce of the symmetry breaking mechanism on the properties of the
gravitational field. From figure (5.1) we can conclude that in
the ¢O—states the scalar field does not contribute to the ener
gy which is responsible for curving the space-time. This is due
to the fact that E(¢O)=O. Let us see the consequences of this
in case there are other sources of energy present.

In this case, equation (17) has an additional term of e-

nergy:

- Ay - L --F -
(1- 59D Ry~ 7 Rg ) =-E,,-T,, (32)

in which Eu is given by the right hand side of (17) and T

v Hv

represents the energy momentum tensor of the rest of the mat-

ter. In the fundamental state equation (32) takes the form

2

1 3m
R -=% R Z o — .
Remark that in order of the value (24) of ¢0 to remain

valid in case Tuv# 0, equation (18) must hold and this imposes
that the energy-momentum tensor must be trace-free (TfﬂhvgﬂgO).

From equation (33) we obtain that the net consequence of
the existence of the scalar field in the fundamental statedb
is just to renormalize the gravitational constant K (which we
take as unity in the system we are using) to an effective con-

stant given by:
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3m?
REN 3m2"2A

The sign of the value of the renormalized gravitational
constant depends crucially on the mass of ¢ and on the cosmo-
logical constant A.

Thus, if the mass of the scalar field is such that 3m?*-

- 2A<0, then K N becomes negative. We then conclude that the

RE
gravitational field created by a radiation gas is repulsive in
the fundamental state ¢O of the scalar field.

Let us point out that this mechanism does not change any
property of photons and neutrinos, but only create a  medium
in which the gravitational field generated by these particles
becomes repulsive.

The application of the above mechanism to our Universe
could lead us to an alternative explanation of its actual ex-
panding era. Indeed, the dominant energy at early times comes
from massless particles (this is a direct consequence of the
conservation law, which states that for a perfect fluid with
equation of state relating the pressure p to the density of en
ergy o by p=Xp, in a Friedmann Universe, we have p= pOA_S(lﬁvk
see section 3.2).

If the scalar field has a very small mass m2<-2— A (that

3
is m¢§10_34 MeV) and if the system exists in the fundamental
state gythmlthe conditions are fulfilled in order to the a-

bove result of cosmic repulsion be applied.
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5.5 - MORE THAN ONE SCALAR FIELDS COUPLED NON-MINIMALLY TO

GRAVITY

Let us consider now the situation in which there are two
scalar fields ¢(x) and Y (x) conformally coupled to gravity and

without any direct interaction. We set for the Lagrangian

L = \/:—g_R+ Buw*a\)wgu\)_Mz U)*IP"‘%—R PEY o+ 3u¢*3\)¢ gu\) -
“m? rg- L Rerer aere)? e Bwre) 7 20 - (35)

The equations of motion for ¢, ¢ and g are:

uy
D¢+ (m2+ 5 R)o- 20.(4*0) = 0 (36)
Dy+ M2+ R)Y - 28(v* W)y = 0 (37)
(1- 4 9% 5+ V) (R 5 Rg )= <E, (0,0 (38)

in which Euv(¢,w) is given by 'a straightforward generalization
of expression (27). Remark that the energy of the coupled sys-
tem ¢, ¥ 1in the curved space is not the sum of its individual
energies. This is due to the fact that we have to take into account
the interaction energy of ¢ and ¢ through the mediator role of
gravitational field.

Taking the trace of (38) we obtain

R=m?¢%+ M2y2 - 447. (39)
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We remark that R has the important property of being indepen-
dent of the value of the self-coupling constants o and B and
depends on the scalar fields only through mass-dependent terms.
Let us consider the case in which one of the field is massless,

say m=0. Then, using (39) into (36), (37) we obtain

06 - = Ao = 200° + 4 M2y2¢ =0 (40)
2
O+ (M= 5 Db+ (S - 28) (W 9y = 0 (41)

These equations present a very curious property.At first
sight it seems that we have constructed a system which viola-
tes the action-reaction principle. Indeed, equation (40) has
a term %? M?y?¢ which represents the dependance of the equa-
tion of motion of the ¢ field on y. In the equation of ¢ (41)
there is no correspondent term which represents the reaction
effect of ¢ on ¢. However this is only an apparent puzzle,
since the action and reaction effects are manifested by the me
diation of the gravitational field. Remark that, as locally we
can reduce O to the flat Minkowskii operator %9 s the
puzzle appears as a manifestation of local violation of the
action~reaction principle.

The origin of this is the non-symmetrical role of the
scalar fields in Lagrangian (35) in case one of the fields is
massless.

Equations (40) and (41) show that the fundamental con-
stant solution Y = wo can occur independently of ¢, but the

possibility of a fundamental solution ¢0 depends on the prior

existence of ¥ in its fundamental state. Let us see what are
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the conditions for this to occur.
The existence of solution Y is simply related to the con

dition 3M? - 2A< 0. In this case,

b= 2 (3M2-21)
°© 128 - M2

It turns out that as a consequence of this, the effective mass
of the ¢ field becomes imaginary,which is the condition the
field ¢ must fulfil in order to admit a fundamental solution
by

Indeed, in this case,

l}-
12B8-M?
Thus, the existence of the fundamental solution wo induces the

existence of the fundamental solution ¢0. We call such situa-

tion a cascade process, once it can occur with a series of

scalar fields, the existence of the fundamental state for a
massive field being the cause of the existence of fundamental

states for massless fields.
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5.6 - BROKEN SYMMETRY IN AN EXTERNAL GRAVITATIONAL FIELD

In section 5.3 we have examined how the curvature of
space-time created by a scalar field ¢ can affect the mecha-
nism of symmetry breaking in the fundamental state of ¢. Here,
we intend to analyse two simple examples of this mechanism in
a curved external background geometry. This means that ¢ has
to be considered as a test-field, the energy of which is so low
that we can neglect the disturbances it provokes in the geome-
try.

(1) Gddel Geometry

We will show now that there is no non-trivial funda-
mental solution in the static rotating GYdel's cosmos.
The background geometry in a cylindric coordinate sys

tem takes the form

ds®= dt?-dr?-dz2%+g(r)dy2+2h(r)dy dt , (42)

with

g(r) = 2sinh*r - sinh?r cosh?r

h(r) =v2 sinh’r .,

A scalar field conformally coupled to metric (42)

and with a quartic self-interaction takes the form

(43)

k]

2
o+ (mP- —£—)4 - 206° = 0

in which we used the fact that

R=-2Q7%, (44)
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The constant O measures the rotation of the fundamental
observers co-moving with the source of the geometry. A constant
solution,¢o= constant ,of equation (43) exists which is dis-
tinct from the trivial one (¢=0).

We have

_ 1 Q2
0= g5 -] (4%)

Remark that, as o< 0, the solution existsonly in the case
3m? < Q2. From (27),the value of ¢ which is an extremum of the
energy E(¢) is given by solution of the equation

d>”—12¢2+———60m= 0 . (46)

A little algebra proves that (45) and (46) are not com-
patible, thus showing that the fundamental constant solu-
tion ¢O does not define the fundamental ground state of the
¢ field in GBdel's background.

(ii) Friedmann Geometry

Once Friedmann geometry is not static and the scalar
R depends on time there is no possibility of having a non-trivial con-
stant solution for the scalar field. However,it is possible to
find a solution which has only one degree of freedom ¢= ¢(t)
and which allows for the mechanism of symmetry breaking.

Let us write the geometry of the (open) Friedmann

cosmos in the conformal form

ds?=A%(n)[ dn® - dx® - sinh®x(d6%+sin?edy?)].

(47)
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In this coordinate system we have
(48)

in which a dash (') means derivative with respect to n.

Setting ¢ = ¢(n)the equation for ¢ takes the form
' 2
b1 a2 Agre e Z0) AHe (- 200A% 7= 0, (49)

Introducing a new variable f by means of the definitions

_ +1 f
¢ = V2To] A’ (50)

[ Melnikov et al (1979)]

equation (49) yields:
f" + f(m?A%- 1) + £3 =0 , (51)

Let us examine the limiting case in which, when n->20
the radius of the Universe goes to A0 (which can be taken . as
0).(Following Melnikov and others (1979).

Equation (51) takes the form

f"+f(m2A§-1)+f3=o . (51)

We set

f'=y (52a)

y'= (I-m*Ag) - £° (52b)
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Thus we have reduced equation for f in a planar autono-

mous system. There are three singular points for this system

which are

B.,= (0,0)

B,= (V1-m Az

=, 0)

B2= (- v1-m AS s 0) .
In case AO vanishes, points B1 and B2 coalesce to BO'

Using the results of 'section 2.12 we 1infer that:

(i) if m?*A2>1 then points B,, B, are stable (center)
0 2

1°
which implies no symmetry breaking,
(ii) if m2A6<<1 then points By, B, are saddle (unstable)
points.
We then conclude that the non-singular open cosmologi-
cal model (with AO#()) can stabilize the vacum of the ¢ field
if the mass of ¢ and the minimum radius of the Universe are

such that they satisfy the condition

m2 A2 >1 . (53)
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5.7 - NON LINEAR PHOTONS

The investigation of the general properties of non-linear
electrodynamics is not new. The idea seems to be ancient (Mie,
1912) but it gained new interest after the contribution of Born
(1933) and Born and Infeld (1934, 1935). We do not intend here
to present a review of this subject. We suggest the reading of
the very attractive and complete review made by Plebansky (1968).
Here we present an analysis of non-linear electrodynamics in-
duced by non-minimal coupling with gravity. As we saw in the
previous section,this coupling can be responsible of drastic mod-
ifications in the metric properties mainly related to the prob-
lem of singularities. As a particular and important example we
will show here that non linear photons generate a Friedmann-
like cosmos with a minimum radius. Let us limit our analysishere
to the gauge-dependent theory described by the Lagrangian ( mas-

sive photon model):

- /o5 (L Wvyp 1 Hv
L /_E{k(l+>\WuW\)g )R- F F 3+ L (54)
in which
F =W . -W _ =W _-W .

A 1s a constant with the same dimensionality as Einstein's
coupling constant K[ (energy)_l(length)]. |

The equation of motion for gy and Fuv obtained from (54)
are:

2 - J; - . 2 2
(1+AW )(Ru\) > Rgu\)) A0w gu\)+ AW

L it

+ >\ v:—k — (m)
15V RWUW EUV k Tuv

(55a)
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V- oA ¥ (55b)
;v K ;

in which Tuv represents the stress-energy tensor of the matter

and Euv is the Maxwell's tensor

- o 1 o
Euv_ Fuu F V*-7r guv FaB F™". (56)
In case there are charged particles we have to add to the right-
hand side of (55b) a current JH. Taking the divergenceof this

equation yields

i %% (R (57)
If the divergence of RWY does not vanish then charge is not
conserved. In this case the number of created particles depends
on the value of the scalar of curvature through equation (57).
Note that creation of change in this model can occur only in
those regions in which the scalar of curvature does not van-
ish. This is not a sufficient condition, of course, but it is
a necessary one.

The effect of a breakdown of charge conservation. on cos-
mological scale was analysed, some years ago, by Lyttleton and
Bondi (1959) and criticized by Hoyle (1959). The essential idea
of the Lyttleton-Bondi (LB) analysis rests on the observation
that a slight difference in the magnitude of the electric charges
of the proton and the electron could give rise to a repulsive
force. On cosmic scale, the result could be an alternative ex-

planation of the observed expansion of the Universe. The modifica-
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tion suggested by LB consists in adding a mass term € Wu W, guv
to Maxwell's Lagrangian, allowing for a non-null divergence of
the potential vector w". Then they construct a cosmological
solution of an universe filled with such massive photons.The
result is a steady state (de Sitter type) cosmological confi
guration. In a subsequent paper Hoyle (1959) has shown that
LB model is equivalent to the introduction of a fluid with
negative energy that could be generated by a scalar field
(see section 5.3). As a consequence, the equation of motion
which gives the behavior of LB electrodynamics in an ex-
panding steady-state homogeneous and isotropic universe is
similar to the equation of Hoyle's C-field, which is respon-
sible for matter creation. Thus, the effect of the proposed
modification of electrodynamics through the Lyttleton-Bondi
hypothesis is indistinguishable — with respect to cosmic ef-
fects — from Hoyle's model of continuous creation of matter.

Although there is a point of contact with the Lyttleton-
-Bondi scheme of modified electrodynamics, the model we dis-
cuss here is very distinct from their proposal. The crucial
difference 1is contained in the introduction of nonlinear-
ities through the dependence of the mass term on the scalar
of curvature. Actually, many new features appear in this mod
el which have no equivalent in LB's. For instance, it does
not admit a cosmological steady-state configuration. Such a
solution, which is a typical property of the Lyttleton-Bondi
model, is indeed the main point of contact of the LB model
and Hoyle's version of continuous creation of matter.

Let us come back now to equation (55a). Taking the



- 218 -

trace of this equation, we find
R=kT-3x OQw?, (58)

where T is the trace of the stress-energy tensor. Thus, we ob-
tain from eq. (55b)
v

2
P - 31ﬁ @wH)wH - arwh+ J¥, (59)

which explicitly exhibits the nonlinear character of the mod-
el. It seems worthwhile to remark here that such a type of non
linearity behavior can be introduced in an equivalent way with
out making an appeal to nonminimal coupling with gravitation.
Indeed, if we consider a Lagrangian of the form

- L
L T F

uv H 2
N F* "+ o(W WU;X) ,

v
a straighforward calculation shows that the equation of motion
obtained from such LN is precisely eq.(59) (without the trace
term, of course).

The wave equation for the potential vector wH is given

by

. 2
Ow'+ RY W= ¥ Mo 3 cgwh)n, (60)
in the absence of currents and matter. The first two terms of
this equation are nothing but de Rahm's wave operator in curved

space. The third term is proportional to the gradient of the
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scalar of curvature in the WM direction.

Let us now turn to the following question: assuming the
existence of an Universe filled with such nonlinear photons,what
are the global properties of this cosmos? We will now show that
there is a solution of the above set of equations (55) which
represents a homogeneous and isotropic universe.

As there is no privileged direction in space, in which
the electric and the magnetic vectors could point, we conclude
that both vectors must vanish. From Eq. (55b), the scalar of

curvature must vanish, too,
R=20, (61)

As a consequence, charge is conserved. Equation (61) may be

written equivalently,
Qw?=0, (62)

Let us define a function Q=1+ AW?. Then our set of egs.

can be written in the form
R = - DR ' (63)
Oq=0, (64)

Let us look for a solution of this set of equations in which

the infinitesimal element of length has the form

ds®=dt®-a®(t) [ +o?(x) (de2+ sin% dy?)].(65)
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After some simple calculations,we obtain the equations for a(t)

and Q(t).

The values of the curvature are

R® = 32
0 a
R1=i+2;5}___?_£_2_ (66)
1 a a2 a2 O ?

in which a dot means time derivative.

The covariant derivatives of Q are given by

From this, we obtain the result that the 3-curvature (S)R must

be a constant.

Let us define €= _.l_(S)R. Then € may assume the values 0,
- 6

+1, =-1. Correspondingly, the function o(x) may be ¥, siny or

sinhyx. The solution is easily obtained:

a(t) = (-€t2+bt+c) V2, (68)
Q0
R=— (-26t+b), (69)

in which band ¢ are constants.
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Let us make some comments on these solutions.First of all,
we remark that asimple explicit form for the function. a(t) is
available when the cosmos is filled with such nonlinear pho-
tons.

Constants b, c, and Qo are not completely arbitrary.They
have to satisfy a constraint which is linked to the definition
of ©. As in the isotropic world there is not a privileged di-
rection, the vector w" must be of the form Wu=(¢,0,0,0). We
have set a derivative on ¢ just to recall that W ois a gradient.
Thus, we have

sy _ ) a2 ~1/2
1+2Xx¢ Q, ( 26t + b) (-€t* + bt + ) . (70)

Let us examine this relation for the three possible val-
ues of € separately. In the case of €= 0, then A¢p?=Q ,b/a-1. If
A is negative, then @ b must be negative too.

In the closed universe, A¢?= (Rq/a) (-2t +b)-1. In the
case of a negative A, then @, must be positive and b negative.
Finally, for the open model, if X is negative, b must be posi-
tive and @, negative. Now let us turn to the function a(t).The

possibility of a real solution is dominated by the sign of
A=Db?+ 4€c .

Remark that in case A<0 the radius a(t) does not vanish. This
means that in these cases the singularity is avoided. The reason for this
is preciselly the dependence of the curvature of the non-linear
photons. Thus, we see once more that non minimal coupling may
lead to non singular cosmological models. We leave to the reader
to recognize that this result does not contradict the famous

singularity theorems by Hawking, Ellis, Penrose and others.
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" see Hawking and Ellis (1973)].

The above cosmological solution is stable against a small
perturbation generated by the introduction of a small quantity
of matter. Actually, this property does not depend on our spe-
cific model but is a consequence of the absence of density of
matter in the expanding background.

As a consequence of the energy-balance equation, and
owing to the absence of electric and magnetic fields, the stress-
~energy tensor of the matter must be conserved. Let us con-
sider a fluid (dust) with an energy-momentum tensor given by
Tuv= (6p)Vu Vv’ where S§p is a small density.

We choose the comoving frame in order to set the fluid

velocity VH to have the value VU=SE. Conservation of T“V, pro-

jected in the vH direction, gives

(6p) +(6p)6=0.

In the case of the Euclidean section, using the results ob-
tained above, the expansion 6 equals %;J)(bt+ c)—l. A direct

integration yields

Sp= (80), (bt +c)* /2,

Thus, as time goes on the total perturbation decreases showing
the stability of the model under a small injenction of matter
in our nonlinear-photon cosmos.

Actually, one can show a result stronger than this,e.g.,
that our model universe cannot share the bending of space-

-time with a finite density of matter. This can be seen by a
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direct inspection om equations R=0 and Q= 0. These two equa
tions specify the functions a(t) and Q(t), giving no possibili

ty of inserting another function p(t) in our equations.
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5.8 - KASNER ERA

Lifshitz and Khalatnikov (1980) showed that the
general behavior of the metri¢ of the Universe in its
early epochs is of a Kasner type. This means that the struc-
ture of Einstein's equations is such that it admits a Friedmann
like Universe as an asymptotic. limit of a higher anisotropic
regime characterized by stochastic oscilations of the axis of
anisotropy. In other words, the directional homogeneity of the
cosmos is related to the alternance of anisotropic axis through-
out the whole space-time. Lifshitz and Khalatinov have shown
that the main basis for their analysis depends on the fact
that in Kasner-like geometries the behavior of the metric, in
the neighborhood of the primordial global singularity, is not

dictated by the matter terms. This means simply that a compar-

ison of the Einstein tensor (Gqu R“v- %ﬁ Rd“v) with the ener-
GH
gy tensor T“v shows that for t-> 0, we have l——&l—_ + ®
[T, |
v

for different values of u and v.

This vacum stage allows the existence of a chaotic era of al-
ternative mixing axis of anisotropy,which is the main property
of the Kasner regime. Indeed, as it is well-known, a perfect
fluid can not be responsible for the curvature of a Kasner Uni
verse. One is then faced with the question: - is it possible
to find an alternative behavior of the source of the geometry
which could avoid the different treatment which leads fromKasner
regime to a Friedmann era? The answer to this is related to
the question: could one find a stress-energy tensor which can
accomodate both kinds of geometries? Let us show now that the
non-linear photons introduced in the last section can do this

job. .
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We set the geometry under the form:

ds? = dt2-a?(t)dx? - b2(t)dy? - c2(t)dz?, (71)

Using the same function @ as in the previous isotropic case the
basic equations of the theory reduce to the same set of equa-
tions (63) and (64).

Using (71) we find that it yields:

;+§+g+g=o (72)
Z + 2 ( E + E + g )=10 (73a)
b 5, a ¢ G .

5 + B ( 3 + z + 5 )=0 (73b)

D e

) =0. (73¢)

Following Kasner we try a solution in the form: a-= aotpl,
b= botpz, C= cotp3 and Q= Qotp“. Substituting this ansatz into
eq.(72) and (73) we find that the numbers pi, p., Ps and ps

must satisfy the relations

P1+ P2+ ps+ps=1 (74)
(P1)2+ (p2)%+ (ps)?+ (pu)?=1. (75)
We recognize here that this set of numbers represents a

Kasner solution of a five-dimensional Eintein's theory (in vac
uum) in which Q(t) plays the role of the expansion factor of

the fifth axis. This is not astonishing, as the theory of the
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the non-linear photons in the high symmetrical geom-
etry we are analysing has a unique scalar function which
is left free and it then turns out to be in perfect ranalogy

with theories of five-dimensional structure for the space-time
[ Belinsky and Khalatnikov (1973)].

The next step is to show that during the evolution of
this cosmos we can pass from this Kasner regime to the Friedmann

solution. This is left to the reader.
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APPENDIX 1: ELECTRIC AND MAGNETIC GRAVITATIONAL MONOPOLES

We have shown in section 2 that in the absence of

sources Eintein's equations of gravity reduces to the set

weBHY 2 g (1)
Y

This implies that the equation for the metric field

guv(x) is invariant under a dual rotation [eq.(75), section 2|
We are then ledto ask about the possibility of extending this sym
metry to the motion of particles. A free particle in a gravi-
tational field follows a geodesics. In the geodesic equation
of motion the presence of the gravitational field 1is given
by the metrical connection, which is coordinate dependent(lo-
cally, it can be made to vanish) and, in this sense, cannot
be considered as a true observable. The corresponding observa
ble quantity is the vector n* which comnects in a congruence of geodesics,
two points of neighbouring curves with the same value of the affine parame

ter. The connecting vector n® satisfies the Jacobi equation

&) Vv
W
Buv

D2n%/DS? = vE ok, | (2)
in which V"= dX“/dS is the tangent vector to the ngeodesics
X”(s). s 1s an affine parameter. We can thus characterize elec-
tric (E)-poles as those particles that move, under the influ-
ence of gravitational forces, on curves such that their con-
necting vector satisfies the Jacobi equation (2). This way of

describing the behavior of particles in a given gravitational

field itself suggests that we must look for the generaliza-
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tion of the Jacobi equation in order to introduce a new fea-
ure in the motion of particles in curved space. The symmetric
properties of the Riemann tensor give a unique way of construc
ting such an equation. Indeed, let ya(s) be a congruence of
curves on the space-time Riemannian manifold such that their

connecting vector m% satisfies the equation

- f%aeuv vP vy ¥, (3)
f is a constant characteristic of each particle. We will call
a magnetic (H)-pole any particle that moves on curves ya(s)
such that their connecting vector of the congruence, Hu, satis
fies equation (3).

The reason for not having a term analogous to the
constant f in equation (2) reflects the constancy of the ratio
of inertial to gravitational mass - and is indeed the main rea
son for geometrizing gravitational interaction. The new parti-
cles do not follow geodesic lines but , as we will see, curves
of forced motion. In other words, H poles are not minimally coup
led with gravitation.

Using definitions (4a,b) of section 2 we can write

these equations in the form:

D?n”/Ds? = EOLu n" (4)
p2n%/ps? = £ H“U v, (5)
The origin of the terms E pole and H pole now be-

comes transparent: they unambigously denote particles that coup-
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le, through two types of tidal forces, with the electric and
magnetic parts of the Weyl tensor, respectively.

The equations of motion for E poles are geodesics
and the corresponding equations of motion for H poles are
curves of forced motion. The acceleration effect on H poles
is a completely new phenomenon that has no equivalence in
Newtonian theory. So it is a typical effect of the curvature
of space-time. We will give here some properties of H-pole
trajectories.

Let ya(s) be the curve under discussion and con-
sider a real parameter s on it. The equation for ya(s) will

be written as

a2 o o, dyt &y’ _ @
1s2 y (s) + {uv} ds ds ~ F~, (6)

where F” is the forced motion term which induces the deviation
of ya(s) from the equation of a geodesic. Then, we construct a
family of curves that generate a congruence ya(s,v) in which
v distinguishes different curves and s is a parameter on each:
curve. Next we impose equation (5) on the connecting vector
i (that can be defined as the derivative of ya(s,v) with re-
spect to the v variable). As a consequence, the force F” must

be a solution of the equation

Fa,u-{(w}F}\ = Eau + fHom. (7)

In order to arrive at this condition forFoc a lot of

work is saved if we note that the second absolute derivative
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of 1% with respect to the s parameter can be written as

5 O o A € A € N2 A
D®I"_d®N", ro4 By By 0, 8400433y 3y R L A
Ds?  gs2 OA |¢ 3s 3s €0’ "ur’ 9s s PV 2s?
A 0.
a, oy dlI g
¥ Z{OA} 3s ds ° (8)
where
s ;B 3s ,B €8 9s
and
at® o ayP_ 9% ayP

Equation (7) for F* seems, at first sight, to be highly in-
volved. In order to know the motion of H poles, we have to
know the force F*. To obtain F® we must solve equation (7) in
which the electric and magnetic parts of the Weyl tensor are
obtained by projection onto the direction of motion of the H
pole. It seems like a 'bootstrap' situation. Fortunately, due
to the symmetric properties of H poles we will show that this
is only an apparent situation - we can deal very directly with
this new kind of motion. The ultimate reason for this simpli-
fication rests on the conformal behaviour of this theory.
Before showing this we remind the reader that F®
must fulfill the following special properties in order to be

a solution of expression (7).

(i) F* must be a gradient. Indeed, using the symme-
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tric properties of EaB and HuB we have

So, due to the symmetric properties of the metric connection
{ﬁ:} this implies F = ¢,u'

(ii) ¢ is a solution of the wave equation (O¢=0)in
the given background metric. This can be easily seen by writing
equation (7) in terms of the ¢ field and making use of the
trace-free property of the Weyl tensor.

(iii1) F® is a constant of motion for H poles.Indeed,

the absolute derivative of F® gives

a B8 B
D(b‘; _ e O By - o o g_y__ -
—ps— = ¥.p 55—~ (BgrflHg)ge =0
The last equality comes from the fact that EuB and HaB are or-
thogonal to Bya/as. The above property implies that H poles
travel on curves of constant acceleration. Consider now a

Riemannian manifold V4 containing a metric guv(x)and a set of
non-null geodesics, characterized by a generic tangent vector
uu(s), where s is an affine parameter. Let us then project the
Weyl tensor and its dual into the u® directions, in order to
define its electric and magnetic parts.

An arbitrary conformal mapping of V4 into V4 generated by

a function ¥ will be given by setting

gy 8, (0 = e Mg 0o (9a)

uv v

gV gV = e Vg (x). (9b)
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As a consequence of this mapping, the quantities E&B and HaB

and the properties of the congruence generated by u® change ac

cordingly

u® - ~oL==e“wuo°

Fag ” Bag = Eap

HuB ” HuB - HdB

6 > 8 = e Vo-3(eY) u® (10)
ol - ¥

Oy SR A AN
= - ¥

wu\)+wuv—ewuv,

in which we have used the invariance property

by Ay (1)

We would like to call attention to the fact that it
is not possible to change the shear-free and/or the rotation-.
-free properties of a congruence of geodesics by a conformal
transformation. This is not the case for the acceleration vec-
tor. The geodesics ua(s) are mapped into accelerated curves

ﬁa(§) of equations of motion given by

2

op

Dﬁa/D§=‘%%(e_ wlBg . (12)

From the whole «class of functions ¥ let us select the set

{¥=¢} such that obeys the equation

. e'2¢(E +f H

1
7 ° 05 0c ag) (13)
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in which the tilde over ¢ on the left-hand side of this expres
sion means that the covariant derivative is taken in the con-
formally transformed metric éuv(x). By making this choice of
functions, we map the class of geodesics ua(s) into the class
of accelerated curves 4> (§) defined by equation (6). In other
words, we map the trajectories of E poles into trajectories of
H poles. We remark that the right-hand side of equation (13)
can be evaluated without reference to the curves of H poles.
This is a simple direct consequence of the transformation prop
erties of the Weyl tensor under a conformal mapping. This shows
the way of circumventing the bootstrap situation we seemed to

be faced with before.
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