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ABSTRACT

We investigate the qualitative behaviour of cosmological
models in two cases:
(i) Homogeneous and isotropic Universes containing viscous

fluids in a stokesian non-linear regime;

(ii) Rotating expanding universes in a state in which matter is

off thermal equilibrium.



I. INTRODUCTION

Recently the method of investigating qualitatively
systems of differential equations wich describes certain
special configurations of the gravitational field has

(2,3,4,6,7). The

attracted attention of many authors

interest of such method is ﬁwo fold: firstly, it gives

a very good picture of the general behaviour of dfétinct

solutions of a given set of differential egquations and

secondly, it help us in pointing into the direction 1in

which the search of specific solutions should be undertaken.
It seems worth while to call attention to the fact

that such qualitative analysis can be effectively made

only in some restricted and very special circunstances,e.g.,

in the case the system of differential equations is

reducible to an autonomous form of the type

e
it

F(x,y)

G (XIY)

o
]

a dot represent derivative with respect to a parameter, say
the time t.

The right hand functions F and G are not explicit
function of the time coordinate but may be any linear or
non-linear function of variables x and y.

Astonishing enough, Einstein's set of gravity equations



can be reduced to such planar autonomous system in some cases

of real interest like, for instance, for homogeneous universes.
In the present work we will use such method to investigate

two types of configurations: (i) Homogeneous and isotropic

universe filled with a non-linear stokesian fluid; and (ii)

rotating and expanding universes in a state in which matter

is outside thermal equilibrium. In case (i) there are well

known examples of explicit analytical solutions like Friedmann's

models; in case (ii) an example has been exhibited recently by

(11) which generalizes the static rotating

Novello and Reboucgas
universe found by G8del some years ago.
The influence of viscous phenomena in Cosmology has been

(1,2,7,10) as a model of the cosmological

examined by many authors
fluid at the drastic regions near the singularity. Hitherto
such viscous fluid has been treated only in the Cauchy linear
case. One adds to the isotropic pressure p a term proportional
to the expansion factor (bulk viscosity) or one introduces an
anisotropic stress Hij linearly related to the shear Oij' The
main reason for considering, as we do in the present work, a
more general non-linear dependence of the pressure on the
expansion rests on guantum effects.

Indeed, it has been suggested by many authors that the
introduction of viscosity in the cosmical fluid is nothing but
a phenomenological description of the effect of creation of
particles by the non-stationary gravitational field of the
expanding cosmos.

In ref.9 it is shown that the quantum corrections of the

macroscopic stress energy tensor can be described by a

polinomial function of the expansion factor 0.



The presence of viscosity, through such polinomial
dependence on © , changes radically the features of the Universe.
For instance, G.Murphy has given recently a simple analytical
model in which viscosity is even used to prevent a singularity
region to occur. We remark that this is in no way in contradiction
with the singularity theorems once the hypothesis required by
these are not fulfilled by the viscous fluid.

In section II we present the main equations of the
gravitational field for a viscous fluid in a non-linear
Stokesian regime in an isotropic and homogeneous expanding
Universe. Thus the modification introduced by viscosity can
appear only as a change in the isotropic pressure p to p =
p + polinomial in © . We analyse the specific case of a quadra-
tic regime p = p + 00 + 892. In section II we limit o and
B to be constants. We associate such situation to the
stationary case of a constant injection of new particles in
the Universe inducing the viscous phenomena in a steady state
regime. We make then some remarks in the general case of
more complicated polinomial dependence of pressure on 0.

In section IITI we investigate the non stationary regime and
allow for a non-constant quadratic coefficient 8. Actually
such B8 can depend only on the energy and we analyse a
specif power law dependence. We compare our results with the
linear case which have been examined previously.

Section IV deals with the qualitatiVe analysis of rotating
and expanding homogeneous universes. We present a class of
models discussed by Novello and Reboucas and show that among
this class there is only one geometry which attains G8del's model

assintotically.



II. Steady State Regime of Viscous Fluid

We start by considering a homogeneous and isotropic
cosmological model. The fundamental lenght , in a comoving
svstem of coordinates in which the field velocity is
Va=6ao,assumes the form

(1) ds? = at?- a%(y) l:d_xz + 02(x) (a0%+ sin®6 d¢2)J

in which o0 (¥) may be %, sin X or sinh ¥x.
Raychaudhuri's equation of the evolution of the
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The total pressure p accounts for the isotropic pressure p
plus viscous terms, which we will represent as a polinomial

in O:

(3)

ol
i

o]
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In this section we will limit the a's to be constants. This
should be interpreted as a steady state regime of permanent
‘Injectionof new particles in the universe, following the

suggestion of some authors which try to link the viscosity

to the creation of particles mechanism.



From the conservation of energy we obtain

(4) 0+ (04P) 0= 0

Equations (2)-(4) together with definition (3)constitute
precisely a planar autonomous system. This very simple fact
seems to be remarked by the first time only recently (2).

In order to this system to beceome equivalent to Einstein's

equations we have to add the constraint condition

(5) p = — - =0
3 2

in which K is a constant that assumes the values 0,+1 or -1
depending on the function O0O(X).

The main consequence of the reduction of Einstein's
equations to an autonomous planar system is the possibility of
submitting such system to a qualitative investigation of the
behaviour of the whole set of solutions without a complete
knowledge of the analytical expression of a particular
solution. This introduced great simplification and allows an
investigation on such properties like the behaviour of
solutions near singular points or on the stability, which should
be hardly done by other means.

Belinski and Khalatnikov have examined qualitatively
such system in case the viscous term is a linear function of
the expansion. For the quadratic dependence, which will be
the case discussed here, there are modifications on the phase

plane (9,p) corresponding to behaviour of the universe which



are not allowed to occur in the linear case.

We write equations (2)-(4) under the form

P(0,0)

e

N
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i

L(6,p)
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and set p = p - 00 - 802, We obtain

V P 3 0 3a 3 2

= - P2 52y 2 3 &)
(6a) P(9,0) 3 >— P = * 3 0 + 5 B
(6b) L(O,p) = - (p+p)0 + 0O + BO

The singular points of the system are given by those
values of O  and P, , in the phase plane, which annihilate
simultaneously the right hand side of equations (2) and (4).

We see imediately that there are only two singular points:

(i) The origin 0(0,0) 5
-3a S]
(ii) The point M(O ,p,) = , ° }
3B -y 3
in which we have set the equation of state p = (Y-1l)p with
1<y<2.

Then we examine the behaviour of the functions P(0,p)
and L(0,p) in the neighborhood of the singular points.
The inportant -elements of the analysis are given by the

value of the determinant of the linear part of the expansion

A and the trace o of the matrix A:
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(at the singular point)

At the point B, we have

o - 3%
By _ 38
_ o 3 _ 9
°8 T 33 - ¥ [2 T 2 B}
Following (12) we conclude that point B is a saddle for

the system if Yy <3Bf ; and it is a two-tangent node if

g If B = —%— - —%—-then B is a one-tangent node. The

stability of the solution near the node can be known by

y >3

simple inspection on the sign of the trace. For OO>0 , that
is, vy >38 the node is stable; for @O <0, the node is unstable.
We assume o and B to be positive constants.

The characteristic roots which are the eigenvalue of
matrix KB take the values Xl = 9%~ (38 = v) and A2= - —%—Oo.
The investigation of the behaviour of the solution for
t » *» can be easily made in both cases (see graphs).

The examination of the integral curves near the origin 0
is somewhat more complicate due to the fact that 0 is a non-
elementary point (that is, the corresponding determinant AO
vanishes identically at the origin). We will not give here
all the long and tedious calculations that constitutes the

analysis of the system at this point. Instead, we will

present only the final results (see the graphs).
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Although it is not our purpose here to proceed the
analysis to higher than the quadratic dependence of the
préssure on the expansion factor, let us make some comments
for the case of higher power.

We set
p=p-Yvo"

for n>0. The singular point of the system, besides the origin,

is given by the simultaneous solution of the eguations

_ v n
Po T Ty %
On—2= _L
0 3y

A

The determinant of the linearized matrix A near the

point M(@O,po) reduces to

We conclude that for any n >2 peoint M is a saddle for the
autonomous system. For n=2, there is no singularity other than
the origin, unless the coefficient of viscosity Y and Y are
related by the expression Y = 3Y,

Finally, for n=1,M is a node. For the analysis of the

origin the whole features are very similar to the quadratic

case.
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Let us make some comments on these figures. We start by
noting that we have drawn the integral curves in the whole
domain of p , even for 0 <0, although an universe filled
with negative total energy in devoid of physical meaning, at
least classically.

The character of the singular point B (node or saddle)
dependes on the sign of © . Such situation does not occur
in the linear case, once in that case the singularity can be
located only at the first cguadrant (© > 0). Further, in the
steady state linear case, the singular point B can be only a
node. This makes a great difference between the linear case
and the quadratic one.

Let us comment the graph 1. For the constant K=-1 we
can distinguish two general behaviour.

(i) The universe starts at t=-» with an infinite radius and
negative © . The universe constracts from this dilute phase
with no energy. Then as the universe constracts a negative
energy starts to appear. Its absolute value increases until
the contraction attends a minimum. Then the contraction
begin desaccelerating and after a while it changes its sign
and © becomes positive. The energy keeps negative. Now,
the universe expands and after a certain (finite) time enters
a region of positive energy which increases with the expansion.
Finally, after a maximum of © is attained, a desacceleration
of © occurs (although the sign of © does not change) until
the solution enters the singularity B, in which once again
the radius of the universe becomes infinity.

For an observer that see only the classical positive
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region, the universe starts with positive expansion dyr9ye.-0T
9, and zero enerqgy. Then they follow the way from a; to B.

In all these models, which represents only part of the
integral curves limited by the requeriment of positivity of
the energy, the universe starts abruptly with an arbitrary

expansion Gi and zero energy and ends at B.

ii) The universe starts in the same conditions than in case(i).
However after a certain time (finite) the negative energy
decreases, until it attains once again the value zero after
which it becomes positive. The energy increases and the
contraction of the universe accelerates. After a certain
finite time the energy attains’'a maximum and begins to
decrease until it vanishes. The curve enters a region of
negative enerqgy, after which the behaviour of such universe
follows the same lines as in the previous case (i). The
universe has a classical meaning (p >0) in the region MM, NN,
and so on. A typical behaviour is: it starts at (9,p)=(M,0)
and ends, after a finite lapse of time at (ﬁ,O). During this
brief period of time it experiences no singularity at all.

Let us turn now to the case in which the constant K=+1.
The separatrix OR divides‘two regions. The region ROB contain
solutions in which the Universe starts with an infinite
expansion and infinite density. Then the expansion 0 decreases,
the energy decreases until a minimum, after which it increases
~again and finally ends at the singularity B.

The region ROS contains solutions with the same behaviour

as closed Friedmann model.
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Finally, for K=0 we can have three solutions corresponding
to the region OB, BL and 0OS, the interpretations of which are
evident.

The graph 2 does not present any new features.

Graph 3 has a similar behaviour at negative values of 0 ,
but a different feature for © > 0. This is due to the absence
of the singular point B. Thus, all curves which ends at B in
graphs 1,2 , now go to infinity. There is a region (BOR)
with a saddle behaviour (actually, theorigin is a saddle node).
This region represents universes which starts with (0,0)=(»,»),
the expansion decreases together with the density, attains a
minimum and starts increasing again without limit.

Finally, graph 4 contains a combination of these previous

models.
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ITII. Quadratic Regime of Viscous Fluid (non-stationary case)

Let us now discuss a more realistic model of the viscous
fluid by allowing the coefficients o and B8 to become functions
of the total energy p . In order to examine the effects of the
quadratic dependence without contamination of the linear
factor, we set a=0,

Assuming a power law dependence B=M pu (M and ¥ are

(2)

constants) as in , We write

2

0

P(9,0)=O——+—3—M o 02 3
3 2 2

L®,0) = M03 ¥ - yopo

The singular points now (besides the origin) are doubled,
appearing symmetrically with respect to an inversion of ©.
We will call these symmetric singular points B(+) (for © > 0)

and B (for 06 <0).

(=)

They are given by the conditions

o r

3Mp, =Y .

Developping P(0,p) and L(O,p) in the neighborhood of

these points we obtain
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P(8,p) - 2o+ v0, 1+—3y@-1)[{ ©
= +
L(0,p) 20’ ¥0, (u-1) o

+ higher powers of 0,p .
Thus, the determinant A of the linear part is given by
A= -3 quoe
and its trace o :

_ -2
o = Oo(y 3 }

Thus, we obtain the results:

If u> 0 then point B is a saddle

If u< 0 and 4A - 02 <0, point B is a two-tangent node.

Ifu= - —3%—, point B is a one-tangent node.

Furthermore, if O&>O the node is stable and if(%; 0 the node

is unstable.
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Let us make some comments on these figures. For K=-1 ,

there are models which start at B' ) and ends at éi‘ They
represents universes which starts with infinite radius and
finite energy. It contracts until the energy annihilate at

~

Oi. If we follow this integral curve into the negative
region p < 0, then we see that the model intothe singular point

at the origin with zero expansion, and zero energy. A
symmetric situation occurs for curves going into B(+) with
K=-1.

In the figure 8 the eliptic sectors characterizes the integral
curves of our system for p <0, These curves represents unphysical
configquration of universes which start at t= -« with zero
expansion and zero energy. The universe has at its begining
an infinite radius and enters an accelerating era until it
attains the epoch of maximum contraction, after which the
contraction becomes desaccelerated. By the middle of
its life, it enters a region of expansion and keeps expanding
(with encreasing 0) until it arrives at a maximum value 6max'
After that, its expansion starts to be desaccelerating until it
comes back to the original state (0=p=0).

Let us now turn to the physical region (0 >0). The
behaviour of the integral curves for expanding universes in
the quadratic viscous regime has almost the same features as
in the linear case. The singular point B(+) is a saddle which
distinguish four region of distinct behaviour:
region I  from (@,p)=(+«x, 0) to (0,0) ;
region II from (4»,0) to (4w, +») ;

region III from (0,4x) to (4w, +») ;

region IV from (0,+~) to values of negative O.
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All these regions are equally presented in the linear
case and has been discussed previously by Belinski and
Khalatnikov. Let us turn to the case of negative 0.

Here the situation changes drastically. The existence of

a new singular point B(_) which turns to be a saddle (fig.8)
introduces an infinite barrier represented by the separatrix
A B(_)M. Thus contrary to the linear case in which any
curve which pass through points near the origin of the o
axis goes to (-»,+») here, in the quadratic case, due to the
existence of the boundary AB(_)M these curves can only end with an.
infinite contraction and vanishing total enexrgy. This
represents universes which starts with zero expansion, =zero
energy and infinite radius (A~>«). After that, the energy
increases, attains a maximum (near the saddle point B(_))

and diminishes indefinitely. The curves from region IV ,
crossing the p=-axis, go Jjust near B(_) and then are repelled
by the saddle. Such models represents a cosmos that starts
from a highly condensed phase (A >0) with an infinite energy.
Then as the universe expands (slowly) the energy decreases,
until a minimum value omnl(different for each model).
Beyond that point the sign of the © function changes: the
universe enters a contracting era and keeps contracting

forever, increasing indefinitely the value of the energy.
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IV. Qualitative Analysis of Rotating Homogeneous Universes

Recently, Novello and Reboucas (NR)(ll)

presented a
cosmological model which has expansion, shear and rotation.
Such solution can describe a previous era of G8del's cosmos
in which the galactic fluid was not yet thermalized,

allowing for heat exchange among its parts.

The fundamental form of the geometry is given by

2 2 2

as®= at? + 2a(x,t)dy dt + = 2% (x,t) dy>- H2(t)dz’- F2(t)dx
2

Novello and Reboucas geometry is obtained by setting

H

constant

F

i

constant

Alx,t)= A_ ecx(eo £+ 1)

in which Ao,c and @Oare constants which specifies the
amount of total (heat) energy.

The energy-momentum tensor in the comoving system is given

by

T =,V V = -
" oV vy p(guv Vﬁ V\))-’rqU v, * qa, Vu

qu is the (four-vector) heat flux.
In the Novello-Rebougas solution the heat flux g% rests

in the plane orthogonal to the vorticity vector(actually, qu

which is space-like vector orthogonal to Vu=6ao, constitutes

H H

jointly with the vorticity w and the acceleration a a
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triad in which each vector is orthogonal to the others).
Einstein's equations impose

p =2

1 -¢

A___Czl'-€

2 1 +¢

The model has an equation of state p=ep and A is the

cosmological constant. The total amount of heat flux is

given by L = LO(GOt + l)_z. We will now perturb such

solution by letting F to be a non-constant function of t.

: . : 1_ .1 1 1 2_ .1
Einstein's equations Tj= R] >R + A 61 and R,= Ry

are no more automatically satisfied but instead they give

° . . 2
F ,_A ,F—F2=o
F A F F
A F 5 f2 A F
- + - =0
A F F2 A F
(03¢

in which now 2(x,t) = e A(t).

The remaining set of Einstein's eguations gives the
same relations as before and fix the relation between the
density of energy and A,

Define two new functions ¢ and X by setting:

o = _E
F
x =2
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We then obtain

O
1l
i
-
>

.
N
N

Thus, the system of Einstein equations are reduced to a
homogeneous (second order) planar autonomous system. Let
us now concentrate our attention in the exam of this system.
We note that there is only one singular point: the origin
(6,x)=(0,0). The fact that the system is homogeneous makes
easy the drawn of the integral curves of the system (see

figure 9).
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Let us make some remarks on this graph. Point (0,0)
represents G8del's stationary solution. Thus ‘there are
only two integral curves which attain effectively Gd8del era.
Both solutions have F=constant, and they are distinguished
only by the sign of the expansion factor. These two solutions
are precisely the cases presented in the Novello-Reboucgas
solution. If the universe is expanding, the solution tends
to G8del cosmos in the future infinite; if the universe is contracting
the solution started from G8del's model in the infinite past.
All others solutions (F#constant) can become very near G&del's

but cannot attain really a stationary era.
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V. CONCLUSION

The purpose of the present paper is to maké use of the
method of qualitative analysis of planar autonomous system
of differential equation, in order to investigate some
homogeneous cosmological models. We have discussed in
section II and III the.case of homogeneous and isotropic
cosmos filled with a stokesian fluid in a quaaratic regime.
We have shown how the quadratic term can deviates the
configurations of the cosmos from the usual models, in some
cases very drastically. We have presented these new features
in a self explanatory series of graphs. Then we have turned
our discussion to rotating cosmos and compared the configuration
of these models with G8del's solution. We show that Novello-
Rebougas solution is the unique solution (with heat flux)

which admits G8del's cosmos as an assimptotic era.
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Fig.l - Ca‘se_'in which o and B are constants. Point B is a
two-tangent node. The curve is draw for -—‘:{ﬁ,— -
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‘Fig.2 - and B are constants. Point B is a one tangent node.
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Fig. 7 - ,p=p - M;ﬂjez; M and u are constants.

the case p = -~ ;i - B, are one-tangent nodes.

The figure shows




Fig. 8 - ‘Case p=p - M p“ez ; M and ﬁ are‘bonstants, with v » j.

Points B, are saddle.
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Fig. 9 - OQualitative analysis of rotating cosmological mo;iels.



CAPTION FOR FIGURES AND TABLE

Fig. 1 Phase diagram of the bond-dilute Z(4) model in square
lattice (the point E is here located according to the
results obtained through the present approximations; it
is however possible that the exact P, equals 1/2).

B (Il, I, and I3) is (are) the pure Potts (Ising) cri-

2
tical point(s); the line BD (IlG and IZD) corresponds
to bond-dilute Potts (Ising) model(s). P, F and I de-

note the para-, ferromagnetic and intermediate phases.

Fig. 2 Fixed p sections of the phase diagram of Fig. 1. (a)p=l;,
(b) p=0.8; (c) p=0.7; (d) p=0.6; (e) p =0.53. The line

BD corresponds to the bond-dilute Potts model.

Fig. 3 Fixed K;/Ki ratio sections of the phase diagram of the
bond-dilute Z(4) model in sgquare lattice. (a) Kg/Ki=0.5
0 o_ . 0 o= . 0 O_
(Potts); (b) K2/Kl-0.3, (c) K2/Kl 0.25; (4) K2/Kl 0
(Ising); (e) K;/Ki=—0.3,P and F denote the para- and

ferromagnetic phases.

Table 1 Relevant quantities (calculated through the t-, T - and
0- conjectures) associated to the phase diagram re-
presented in Fig. 1 (where the point E is located at

p = poi. See the text for the values followed by (?).

(a) Wu and Lin 1974; (b) Sykes and Essam 1963; (c)
Baxter 1973; (d) Southern and Thorpe 1979; (e) Kramers

and Wannier 1941; (f) Domany 1978; (g) Harris 1974.





