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ARSTRACT

A nonlinear scalar field § of short ramge is consi-
dered, in the lights of general relativity. The pseudovirial
theorem of Rosen is found to be related to the principle of

equivalence, in the weak field Iimit. A self-interaction addi-

. 4 . . . . L. ' .
tive term AS is included in the Lagrangean, which perwitis

nonsingular and source-free.systems. A family of static, spheri

celly symmetric solutions is obtained, with a nonlinear spectrum
cf masses. The gravitational potentials tend to the Schwarzschild

ones at infinity, while the scalar field presents Yukawa-type

asymptotic behaviours

1. INTRODUCTION

The idea of explaining the structure of elementary

particles. in terms of genaral retativity has a long histery}x
Such a classical approach has been almost abandoned after the
discovery of the guantum pronerties of parti:?és. However, one
mey Stili hope that come essential guantities which charactaerize

A T Y s e PP S -
elementairy paviicles, s

chas baryon number, can be related 1o

topoltegical propertics of spacetime
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In this connecticn, recent studies of nonlinear fields
brought a ‘1ight on some interesﬁing'poésibi]ities fof the struc-
ture of elementary partic1e32’3. Thus it seems worthwhile to
get back to-the original idea and look for the possibility of

: . <
explaining these structures as a result of mutually interacting
fields in a curvec spacetime.

On this line of .research, it is now customary not to
introdguce any'rest mass tevm in the_describtion of tﬁe system4.
On can also try to eliminate sources of fields; however, it
was recently shown5 that éhe simple minimum coupling of, say,

a Klein-Gordon field and the gravitational field does not allow
an equ%}ibrium configufatioh of nonsinguiar syétemsr
| 'In this paper we consider a self-interacting scalar

"

field S alon

4]

, in the framework of general relativity. In § ¢

we formu]aﬁe the theory and inVestigEte the static, spherically
symmetric'noﬁsingu]ar solutiens of the equations. In the weak
gravitation Timit, wé'shoﬁ'that the pseudovirial theorem of
Rosen6 is related‘to'the_principle of equiVaTenceL As Shqwn by
Rosen, this theorem‘does not permit nonsingular solutions if

the additive potential term to the otherwise free Lagréngean

is positive definite. For several types of potentia?, we verified

numerically that this is true even for the strong gravitation

Timit, as far as there i5 no singularity in metrics. In § 3 we
.. o ! . .
then consider the negative AS7T term as the self-interaction

potential, and show explicitly some examples of nonsingular
solutions. In & 4 we discuss the stability of these solutions,
and in & 5 scme comments sbout the obtained mass spectrum

are made.,



A

2. FIELD EQUATIONS

We start from the Lagrangean

« & = (-g)'/? {_T R+ s S o g% ~'V(52):} o = 8nG/ct L (2.1)

~Ny

wﬁere g is the determinant of the metric tensor 9y R is the

scalar curvature, S a scalar field, and a subscripted comma

means ordinary derivativetwith'respect to coordinates. V s

a potential only depending on the modulus of the field S.
Einstein‘s equations are obtained from the invariance

of the action integral upon variations of the metric potentials,

R -
LV

o} =
g .
= .
=

<

s O

. v s 3 ' ' !
R g = 28 S + (S S V)guv R - (2.2)

while the invariance upon variations of the scalar field yields

sit 4 s dvyds? - o | (2.3)

where a semicolon means covariant derivative. This equation 1is
indeed the Bianchi identity associated to (2.2).
We now consider a static, spherically symmetric system;

\

we write the line element in the form

" . s 3 i " ] L .
L 02 - e?%p? o (2462 L p2cin%0 dg? (2.4)

with the potentials n ., a , and S depending only on r. From

(2.2) and (2.3) onc then obtains the coupled equations

2

ny = rS] - o , (2.5)

. 2. 2 2., 20 ' .

Zrop = rST 4 1 - (1 - rfV)ett (2.6)

S.o o (ny - ay 4 2/r)S. - S 2% gy/ast - g (2.7
11 M ' 1 ¢ 7G3 : » (2.7)
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where a subscript 1 means d/dr. Non-general relativistic theory
is fecuperated by taking the weak field Timit of the Sygtem, in
which the potentials n and o are of the order 52 << 1,

Uéua11y V(SZ) is required to be positive definite,
norma!izingbthe Value of S(r) to gero for r » «, Such a field S
only has singular solutions. This result is not altered even
in the Timit of strong gravitational field, provided the metric
coéfficients do nof nave any singularity. In order to obtain a
cltass of regular so1ution;, we must release the restriction of

2

positive definiteness of V(S®), as is shown below.

We look for solutions whose asymptotic gravitational

behaviour is of the Schwarzschild type:-
n(r) = - a(r} ; P ' ' (2.8)

Since in the weak field limit one has7

SN
n(r\:-%Kr‘]j (210 = T) rPdr , ks 1, (2.9)
. ‘ ,
o '
a(r) = % K r 1 } Tg rz dr R r >> 1 R . ] (2.10)
O
one finds that (2.8) implies
50 0 |
2Ty - 1> = <Ty> , (2.11)

where < > means total space integration, and T is the trace of

1l

the energy momentum tensor TQ In the weak field limit, this

tensor 1s given by

™

U e 2 el ae 2 p - M
KT\) = (‘;1 4 \1)(‘3\) - LS-; 81 6 R (2.12)

then (2.11) dmpiies the pseudovirial theorem of Rosen6



>i 3<V> = 0L R L (2.13)

Sz) must give negative con-

One observes in this equation that V({
tributions to the volume integrai <V> . For various types of po
tential, we have verified numerically that the above conciusion
is correct . even in the strong gravitatién Timit, bylseeiné how
the asymptotic behavior of solutions depends on the values of
parameters which describe tﬁe boundary condgitions at r = 0.

‘ When a singularity of the metric potential a(r) is
admitted, we can show that even when the potential V(Sz) is
taken to be positive definité, there exists a consistent solu-
tion of the sca1ar.fier S,fwhich can be considered as a “kinrk"
in the Schwarzschi1d‘geqmetry8.

Here wevinyestigate the case where the restriction of
the positive definiteness of V(Sz) is released. Then we start
from thé'pqsitiVe potential gorresponding_to.the Klein-Gordon

field (VKG': uz 82) and add a negative term, in the form of

s

)=u5(1-—~}2—f5).’,' ' | S (2.14)

where f is a dimensionless constant factor.

We anticipate now a result which will oniy become
apparent in § 5. It is sufficient for cur purposes to consider
‘the cases where the metric potentials n and o are hoth of order

S << 1. The field equations then becom

2 .2 2.2 1 .2 .2

1
(redy = g e85 fw st - s )] , (2.15)
2 2 .2, ,
Syp ot 25,/ - w1 - £95%s = 0 , (2.16)

and (2.5). We find that the equations decouple themselves, in

Al



this order of épproximatiom; we initially solve (2.16) for
S(b), then a(r) and n(r) are cbtained from (2.15) and

(2.5), consecutively.

3. SOLUTIONS

In view . of difficulty in obtaining analytic solutions,
we integrate (2.16) numerically. The two parameters u and f

are conveniently absorbed  in the form

X = ur s y = fS R (3.7)

so that the function y and variable x are proportiona1‘to the po

tential § and radial coordinate r, respectively. From (2.16) one
then obtains

(1] i N 2 . ’

y o 2yt/xoo= y(1 - y7) , (3.2)

where & prime means d/dx- We impose, as boundary conditions to
the nonlinear equation (2.2), that y(x) be nonsingular every-
wnere, and that it tends to zero at infinity. Thése co%ditions,
taken together, form an eigenvalue preblem for the central
value y(0). The first five'eigenva1hes are given %n Table 1,
and the eigensolutions y(x) corresponding to the first three
eigenvalues are reproduced in Fig. T.

One observes in Fig. 1 the maximum concentration of
the field in the innermost regions, in ail sclutions. One also

e b . th " . . .
observes that the i soiution presents i - 1 zeros in finite

(e

regions, and that a1l solutions Have the usual Yukawa-type

asymptotic behaviour. Higher order states are strongly peaked



in the center.
The gravitational potential a(x) . is obtained from

the integration of

' ' . 2 1 :
(xot) =-]2-f x.(y2+y -—2‘)’4) . ‘ ©(3.3)

2

It is proportional to f “, and is regular everywhere. Fig. 2

represents thé solution for a(x) corresponding to the first
eigenvalue y(0). One remarks the hyperbolic behaviour of o(x)
for x - « , what is characteristic of Schwarzschild-type systems.

Indeed, one cbtains from (3.3), (2.13) and (3.2)

a(r) = G w/(c’r) , 1o e . (3.4)

where the mass m of the system (Table 1) is given for each so-

lution by
2 2 _ @
" u G m/c” = J y2 X dx = % J Yy x dx = % f y'zxzdx . (3.5)

The so]utioné for «(x) corresponding to higher eigenvalues of
¥(0; are similar: all start from the value a(0) = 0 , next |
assume negative values and later positive values,.and finally
vanish in tne Schwarzschild form (3.4).

The gravitational potential n(x) plays the role of

Newtonian potential. It is obtained from the integration of

n' o= f Xy - o > (3.6)

~

. - - - - O 3 ’ .
nd is also proporvtional to f “. It starts from a negative value

&t the center of symmetry,

-2 vl .



and increases monotonically outwards. In the asymptotic regions

it presents the usual Schwarzschild behaviour,
2 o ;
n{r) = - 6 m/(cr) N P . (3.8)

The solution for n(x) corresponding to the first eigenvaiue of
y{(0) is presented in Fig. 2; the solutions corresponding fto higher

eigenvalues benave similarly.

4. INSTABILITY

We now study the behaviour of .our solutions undey small
radial perturbations, and we obtain an expreséicn for the corres-
ponding characteristic time parameter.

Let y(x) be one of the éo]utions of the'stafiﬁ
equation (3.2), and define the time'dependenﬁ, radié?]y perturbed

sgiution

yR(x,t) = y(x) + Sy(x,t) . : ' (4.7)

From (2.3), «(2.14) and (3.1) one then finds that y* satisfies,

in the weak field 1imit, the eguation

- 2. . . 3 ‘

.‘Y'* = v y'i - y‘x + ‘yX‘ . . (4.2)

.’ . N . ) 2 _ 2 2 "] .

where a dot means 3/3{uct) and V°- = 37/9x" + 2x 8/9x. For

small perturbations one obtains, from (4.1) and (4.2)

N .

Sy & - vl o - 3y° lay = 0 (4.2)

' 7/



[- Vz + 1 - 3y if. = . F. . 'p§ = const . | (4.4)

The boundsry condition for fi(x) is that it is finite everywhere.
If negative eigenvalues 05 exist for a given static sclution

y(x), cne finds from (4.3) that the correspohding eigenmodes

fi(x) develope exponentially in time. One then asscciates to

each of those eigenmodes a characteristic time parameter given by

T;] = uc(--,o]-)”2 ; '_ (4.5)

This guantity does nct depend on the parameter f.
Equation (4.4) resembles the Schrddinger equation for

a particle in a central force potentialf

<
,Xﬁ
~—
1i
—d
l
(a0
S
——
Z

(4.6)

For the case where y(x) 1is the first eigensolution of (3.2)
one finds nume(ica11y,that»the Towest eigenvalue of (4.4 1is
négative (p, = - 15.29). This subject is further discussed in
§ 5. |

Higher gorder cigensoiutions of'(3.2) present a more

negative petential U(») in the centval recgions, as can be seen

e

from Fig. 1 and Lg. (4.8). It is then reascnable to expect that
small radial perturbations of {hese solutions also evolve

exponentially in time.

Qur gencral relativistic treatment of the noniinear

fictd wodel! gives a very simple interpretation of the pseudovi-
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rial theorem of Rosenﬁz it results from the équiv51ence of.
gravitational sourcé and energy, in the 1imit of weak gravita-
tional field.

‘This theorem does not permit localized, nonsingu]ar,.
static and spherically symmetry solutions - if the potential term

2) is positive definite. We released this restriction and

V(S
obtained numerically a family of SO]utioﬁs. Our'potentia1 V(Sz)'
depend§ on twé parameters, T and u . These parameters are
absorbed in the field variable {y = f S) and radial variable
(x = r), in such arway that the eigenvalue problem for y(x)
“has a parameter—independent'form. |

One findé, from (3.1) and (3.2), that f-]_meésures the
overall. intensity of the 'scalar field S. Our solutions are then
only valid for large values of fz..This is confirmed in‘ﬁhe
equatidns (3.3) and (3.6), which define the gravitational poten-
tials o and n . The inverse length parameter u gives an
estimate of the dimensions of the system, as is deduced from
Fig. 1. The diameters are of order of magnitude u_]

To-each given solution it corresponds a different mass
m, whose value is obtained from the asymptotic behaviour of the
gravitational potentials, The values of m are presented in
Table 1, in terms of the dimensionless quantity M_= (fzu)(G/cz)mf

OQur naive physical model is certainly not able to
represent the Targe number of properties of elementery particles.

-1

However, if we take for the length parameter u a value of

order 10 cm, which is the range of streng interactions, we

obtain for the characteristic time perameter T, a value
n '”24,., b - A v oo s 1 : C ~ : .
0 sec, which corresponds to tnhe uswval width of mesonic

‘ 44 s
~v 1677, to adiust our

ol

™~

resonances. Furthermore, if we take f



lTowest energy state to that of a piocn, then the sécond state
has the mass n 800 MeV, and.the ﬁhird v 2.7 GeV., This 1is a
reasonable level spacing, considering the masses of n' meson
and the cluster found in high energy multipie w-meson produc-
tion9’10. One should also remark that such a large value of f2
completely justifies thé 1iﬂearizéd apﬁroximaiipn taken in § 2.
As shown in § 4, our solutions do not present an osci
llatory behav{our against small perturﬁations around the equi-
Tibrium, so they are not convenient for the usual semi-clsssical
guantization procedurez. A further study is then naturally
‘suggested, of the mechanism ¢f instability in the strong field
1imit of general re1ativjty, together with possibie interactions

with other fields.
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Fig.1 - First three eigenstates y(x) of thescalar field
s = y/f, against radial coordinate X = KT

'QI’
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Fig. 2 - Gravitationals potentials n(x) = 3 log'gy, and
o(x) =% log (-g,.) of the first state, against
radial coordinate x = pr.
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Table 1

First five eigenvalues y(0) = fS(0)

and masses M = (F2pG/c%)m.

States y{0) M
~ |
I 4.3378 1.50
11 14.104 9.48
17 29.143 28.7
IV 51.385 68.3
v { 77.766 12¢8.
I




