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INTRODUCTION

The theory of continuous groups of transformations in the vicinity of
the identity transformation, that is, the theory of the Lie groups, was
applied to physical motions represented by ordinary differential equations
by Hill 1. By interpreting the possible motions as the solutions of a
given differential equation, he has shown that associated to the differ-
ential equation there exists a Lie group of symmetry, that means, a group
which transforms the whole family of possible motions into itself. This
symmetry group will depend on the structure of the particular equation
chosen. In other terms, each particular dynamical structure possess its

own group of symmetry. Clearly, the situation may be inverted: we

* Presented as an invited paper at the first Latin American Conference

on Gravitation and Relativity, held at Montevideo in october of 1972,



postulate a given symmetry group, for instance the Galilean group, and
look for all possible equations which are consistent with this symmetry.
This last way of looking at the problem is the way usually used in
particle dynamics or in field theory. However, in this paper we do not
use it. Rather, we investigate for each differential equation what is
the symmetry group. In connection to the above interpretation used in
field theory, our present way of looking at the problem allows to
discover what are the extra symmetries beyond those who were postulated

a priori.

In this paper we extend Hill's work to partial differential equations.
This extension is equivalent to the study of the family of surfaces, as-
sociated to the differential equation, which are mapped onto itself by
the transformations of the symmetry group. In this formulation a field
is interpreted as a particular cancnical form assumed by the equation of
the surface. Consequently, the concept of field is a variant one with

respect to the symmetry mappings.

The treatment of this problem, in this paper, is more extensively
done for two-dimensions, that means, in the case where exists Just two
parameters for the motion of the system. This case corresponds formal-
ly to the situation treated specifically by Hi11. However, in the 1last
sections we also consider the extension of this method to four-dimensional
situations. The differences which arise from the passage of two to four
dimensions are discussed, and is shown that the derivation of the symmetry

group is different for each circunstance, but the final result’is formal-



1y the same, aside some specific singular results holding only in two-

dimensions.

1. INVARIANCE OF THE DYNAMICAL EQUATIONS OF MOTION UNDER LIE GROUPS

In this section we will briefly review the results obtained by Hill.
In thfs content several equations of motion will be considered and each
particular class of motions which are obtained from these equations is
subjected to the transformations of the Lie group, which acts on the
plane where the motion takes place. Then, accordingly to the class of
motions considered, we will obtain each particular representation of the

Lie group, as a symmetry group for the motion.

This is mathematically obtained as follows: Consider the plane of
the two variables x, t. In this plane let us introduce the constraint

relations
¥(x,t) = 0

and suppose we can write it under the canonical form
p=x-f(t) =0

Then, depending on the particular form of f(t) we will obtain each

particular family of motions. The cases which are considered are,

f(t) = a (1.1)
f(t) = at + b (1.2)
f(t) = at> + bt + ¢ (1.3)
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Corresponding to the differential equations
dx

—_=0 1.4
n (1.4)

d2x
-&Tt-;--'-' 0 (1.5)

d3x
—=0 (1.6)
dt?
The case (1.4) corresponds to a family of straight lines parallel to the
t-axis. The case (1.5) corresponds to a family of straight lines starting

at. the point x = b (for t = 0) and making the angle B with the x-axis,
a=1/tgs

Equation (1.6) corresponds to a family of parabolas.

We consider now the most general symmetry group of transformations on
the plane (x,t) which transforms each of these family of motions into it-

self.

xl

*

where £(x,t) and n(x,t) are first order infinitesimal functions. For (1.4)

x +E(x,t)
(1.7)
t + n(x,t)

[}

we get a symmetry Lie group depending on an infinite number of parameters,
since the only restriction on these functions is

Etao

This may be geometrically interpreted by the fact that the family of



straight lines parallel to the axis t is invariant under the mappings
x' = x + E(x)

t' = t + n(x,t)

But & cannot depend on t, since this dependence will imply that each
element of the family of straight lines is mapped into a curve of arbitrary
shape. For (1.5) and (1.6) we obtain a symmetry Lie group with a finite
number of parameters, for (1.5) we obtain eight parameters and for (1.6) we

get seven parameters. 1

These transformations may be, similarly to the
previous case, interpreted geometrically as the possible symmetry transfor
mations of the family of curves associated to each one of the equations

(1.5) and (1.6).

Important sub-groups of these symmetry Lie groups are the Galilean
group, the Poincaré group and the conformal group of the flat space-time,

which possess respectivelly three, three and six parameters in the plane

(x,t).

2. LIE GROUPS OF SYMMETRY OF PARTIAL DIFFERENTIAL EQUATIONS WHICH POSSESS
x,t AS PARAMETERS
In this section we extend the previous conclusions to the case of the
partial differential equations. This will be done as follows: We introduce
another variable ¢ playing here the same role as x of the section (1), here
(x,t) play the role of independent parameters, similarly to the role played

by t in the previous section. Consequently the plane (x,t) of the section



(1) goes over the three-dimensional space (¢,x,t). Into this space we

introduce the constraint relation
Y($.x,t) = 0

as before, we write this constraint condition under the canonical form
Y=¢ - f(x,t) =0 (2.1)

and suppose that this function is solution of certain given partial differ-
ential equation, the analogous of the characteristic differential equation of
Hill's work. The closest analogy is stablished by considering linear homo-
geneous partial differential equations. The reason for that, being as fol-
Tows: in Hill's work all equations have to be homogeneous, or otherwise no
invariance Lie group is obtained. As example, in the simplest situation

of first order differential equations, the characteristic'equation dx/dt =0
possess a Lie invariance group with infinite number of parameteks, dis-
playing the geometric significance given in the section (1); however, the
differential equation dx/dt + A(t) x = 0 has no Lie invariance group, since
its invariance under the transformations (1.7) imply in vanishing £ and n.
To follow this situation as close as possible imply in considering only
homogeneous partial differential equations. Nevertheless, here the situa-
tion may still be generalized so as to allow for the existence of non homo-
geneous partial differential equations, since now x is replaced by the
field quantity and t by the pair x,t. Besides this, we have several
important second order linear non-homogeneous partial differential equations
in physics. Nevertheless, in order to simplify the treatment we shall

stick to the case of homogeneity in the characteristic equations to be



treated. The case of non homogeneous equations can be treated in similar

way, with a l1ittle more of work.

Before introducing these characteristic equations, it is of some
jnterest to determine the geometrical properties of the constraint surface
given by (2.1). Its first fundamental form, element of area and second

fundamental form are respectively given by

D A
I = dvedv nAde

avB = dx? + dt?+ dg?

1+ ¢;)dx2 + (+1+ ¢i)dtz +2 ¢, by dx dt

for
npg = diag (1, £ 1, 1), V= (x, t, ¢)
do= /1402 + 6% dxdt
1
11(1) = -~ dvedn = (1 + 02 + 02)7 (9, dx22 ., dx dt + oy dt?)
1
Hiz) = - dV-di = (1 + 6% - 03)72 (04, &X® - 6y dt%)

II(I) refers to Euclidian three-space (x,t,¢), and II(z) to refers to a
pseudo Euclidian space (x,t,¢). In both cases ¢ is taken as an spacelike
axis. The n is the unit normal to the surface, with components for each
choice of signature:

1
Boe (1402 202)77 (-4ys ~0ys 1)

The metric on the surface of the space (x,t,4) is then
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2
gxx gxt 1+ cbx ¢x ¢t
ij
9t It oy b

do =4/_+_g dx dt

The Christoffel symbols and the Riemannian curvature may be obtained for

+ 14 ¢;

so that

this surface immersed in Euclidian (or pseudo-Euclidian) three-space
(x,t,0) 2.

We may also suppose that the sub-space (x,t), the parameter space,

has an intrinsic Riemannian curvature, case where we have:

2
1= ] fiy dx! dxJ + do?
ial

for fij the metric on the plane (x,t), and we suppose that the full metric

on the space (x,t,¢) is of the form,

We now introduce the characteristic partial differential equation,
in any case the function given by (2-1) will be a solution for this equa-
tion. The first case is for first order equations, the similar of dx/dt=
= 0 of reference (1). The most general first order partial differential

equation which is linear and homogeneous, is of the form
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3¢ 3
A(Xx,t) — + B(x,t) — = 0 (2.6)
ax at

A particular situation which is of interest is for

9
—=0 (2.7)
X

9%
—=0 (2.8)
at

formally this corresponds to the situation where dx/dt = 0, in the refer-
ence ]. We then Took for the invariance Lie group of these partial differ
ential equations. The elements of this group are given in the three-space

(¢,x,t) by the infinitesimal transformations

o' = ¢ + E(d,x,t)
x' = x + n(¢,X,t) (2.9)
t' =t + A(¢,X,t)
Then,
do' = do + g¢ do + Ey dx + £t dt
dx' = dx + Mo d¢ + n, dx + Ny dt (2.10)
dt' = dt + A¢ dp + Ax dx + A dt

Since we look for symmetry mappings for some partial differential equation,
we must restrict to points in three-space which belong to the family of
surfaces given by the general constraint relation (2.1). In this case the

equations (2.10) give
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$yr dx' i dt! = ¢ dx + ¢, dt + §¢(¢x dx + ¢, dt) +

+ Ex dx + gt dt

or

¢;.(dx + n¢(¢x dx + ¢y dt) + ny dx + N dt) +
+ ¢%.(dt +A¢(¢x dx + ¢t dt) + Ax dx + At dt) =

= ¢, dx + s dt + g¢(¢x dx + ¢y dt) + g dx + € dt

since we want to determine first order changing in the quantities by and

$y0 We have that ¢;. = ¢, +e€ and ¢£‘=¢t +6; from the last equation we get
¢;. = ¢y - g ¢§ + (E¢ - nx)¢x - l¢ Py g = A b + &y (2.11)
¢.;.'l = d’t - ACb ¢% + (E¢ = )‘t)¢t - n¢ ¢t ¢X - nt ¢X + Et (2']2)

for the particular case where £ =0 =0 and A, = 0, we obtain the

s N
¢ $
tensor law of transformation for a covariant vector in the plane (x,t). The
choice & = 0 imply that in this case ¢ is a scalar function in the plane
(x,t). For these same simplified transformations, a contravariant vector
transforms as
Vi=V + Ny vV, + N v, (2.13)

vl

2 = v2 + Ax Vl + A

t vz
An example of such vector is given by (dx, dt).

Before treating the invariance of the first order equation (2.6),

it will be of interest to determine the variation on the second order
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derivatives of ¢. Such variation will be needed for the study of the
invariance presented by the second order partial differential equations.
For obtaining this variation we differentiate the equations (2.11) and
(2.12), and find after a very long but otherwise straightforward calcula~

tion:

¢X‘X' = ¢XX -3 n¢ ¢XX ¢X - (an _E¢)¢XX -)\¢(¢XX ¢t + 2¢Xt ¢X)
-2 b - (2 Mox = €¢¢)¢§ + (2 Eox " Nx)¥x = 2 A¢x P Ot
- A

“Mao Px T Mo 0% Pt T Aux Ot t Exy (2.14)

¢tltl = ¢tt = 3 A¢ ¢tt ¢t = (ZAt = E¢)¢tt = n¢(¢tt ¢X + 2¢xt ¢t)
T2 by - (2 Xgy "Egg)OE (284 - App)ey - 20y, by 6y

" Ao 9% 7 Mg B B T Myp O * By (2.15)

Ppoxt = bex ~ n¢(¢xx Op + 2 byy Oy) - A¢(2 byx Op * by &) -

=g bux T A bpp m (g Eny mEL) by 7 (ngy + Agy Eyy) €40y

(th = €X¢)¢t = (nxt = €¢t)¢x = A¢X ¢i - n¢t ¢;

- n¢¢ ¢t ¢; - A¢¢ ¢x ¢% + Ext (2']6)

Note that Equation (2.14) goes over (2.15), and reciprocally, under the

interchanges.
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X €&—» t
n €—»
¢ <> ¢

£ <> ¢

and (2.16) is symmetric under this inter-change of quantities. The same
type of property is verified for (2.11) and (2.12) (they go one into the

other by the above replacements).

In the particular case of a linear mapping on the plane (x,t); that
is, for £ =10, g = A¢ = 0 and nij = 0, Aij = 0, for (i,j) = (x,t), we
see that ¢xx’ ¢tt’ ¢xt transform as the components of a second order
covariant tensor in the plane (x,t). For the situation where we allow
the existence of quadratic terms in the mapping functions, that means, we
take only £ = 0, g = A¢ = 0, we have that ¢xx’ ¢tt’ ¢xt have the known

transformation law, similar to an affinity in the plane (x,t).

The index notation greatly simplifies the notation, and the long
calculation necessary for obtaining the variation in the second order
derivatives is derived without much too work. Besides this, this notation
is essential for carrying out the same analysis for a number of parameters
greater than two, since then the explicit notation gets much too complicat
ed. Due to this, we prove again the relations (2.11), (2.12) in this
notation; calling n! = n, n2 = A; so that x'i = xi + ni(¢, xj) where x! =
= X, x2 = t (all indices run from 1 to 2), we have

do' = dop + g’¢ do + E,i dxi
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or,

¢.i' dx'?

_ i i i
= ¢,i dx’ + g.¢ ¢,i dx’ + E,i dx
thus,

i
J

¢,i.(dx1 + n1¢ do +n dxJ) = ¢ 4 dx' + £y 0 ; dx' + £ dx’

giving, to first order,

¢indx1+n:¢¢i¢ de+n1

i i i
. RN REAR I RIS TP R I

N
+ E,i dxi

therefore

"ng by tELHE (2.17)

3 i ’j QJ s !J ’j

this relation is equivalent to the two relations (2.11) and (2.12). For the
variation in the second order derivatives, we have

'|k_ k_ i k
LR IPTEC S N P L VL R IR I

9 k
"Nk b 0 -

k

i k i k i
TN ik 0,5 B TN e 9 O gk X TN g bk ¢ X

. ko K K k
Mk €0 @0 75 g O+ B 0 b dFE by

k k k
+ §!¢ Q,jk dx~ + g;dk ax" + §!j¢ é,k dx

giving,to first order terms,

' - ol ol
SUIRA N RN R N R A STAN A S S TR N T

i i o i
* Py Pk T Muee Ok %1 %0 T Pyek %9 80 T Mg Pk bl

i
Mgk 8,1 F 6o e ®* oo, T O3 %K% 5,000k 5,k
(2.18)
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This equation is equivalent to the three equations (2.14) through (2.16).
Since this method is general, it applies directly to any number of para-
meters, and in particular to the case of four parameters x (for i going
from 1 to 4) as is the situation in relativity.

However, in this section we will use the notation of components in

order to have a direct analogy with the reference 1.

There exists a symbolic way for stablishing a comparison between the
transformation relations of\¢x. ¢t with the corresponding equation of
Hi1l's work, namely the quantity dx'/dt'. The same, of course, will hold
for a comparison between the set (¢;.x., ¢§'t" ¢L't') with é%%i . As we
have seen, we stablished initially the correspondence:

X >

t "'""""*th

this implies

(6, 6,)
v2 — ¢X ¢)2( ¢X¢t
cbt ¢x¢t ¢%
E —>E
Ex —— E¢



n A
ny ( X x)=
Ny Ay

This in matrix notation, using that,

|
T ——
Q2 Q
ot x
’“/
~~
3
"]
>
N

¢
t
3
i-—-—> X = 3
dt )
3t
gives 5
X
%% =V — . ¢ =293 =YV
3t/

3 (n ,)\A)
n
%% = n, ang(.x;( X x)
3¢/ \ng Mg
13
— = E, —> 3L
ot

Then, the Hill's formula for the variation of dx/dt,

viEv + E,V+E -y vé - ng v

will be formally extended to
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%" = 26 + £, 20 + 26 - (3) + (30)T5, - (arT) -39

a simple algebraic calculation shows that they are our relations (2.11) and
(2.12). Here they are written in a compact and elegant form. The same kind
of notation is applied to the variations on the second partial derivatives,

2
as compared to Hill's variation in E_E_.
dt

Returning to the orininal problem of determination of the invariance
group of the first order equation (2.6), we use the transformation equations
(2.11) and (2.12). However, more information is still necessary. We have to

know how the coefficients in (2.6) transform. Three possibilities are open:

i) Af(x', t') = A(x, t); B'(x', t') = B(x, t) - that is, A and B are
scalars in the plane (x, t),

ii) A and B transform as a covariant vector on the plane (x, t).

iii) A and B transform as a contravariant vector on the plane (x, t) - that

is, according to the condition (2.13).

As is (lear, we have to use condition (ii1) due to the form of trans-

formation of the derivatives of ¢. We obtain,

Aoy + B'os = Ap, + B, + Ey(Ady + Boy) - ny(Ady + Bb,0.)
- A¢(B¢§ + Ao, ¢,) +AE, +B £y ‘ (2.19)

Equation (2.6) will be covariant if
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4
>
ft
o

Giving for the symmetry group,

¢'

x|

¢ + E(4)

X + n(x,t)

tl

t + A(X,t)

Note that for this case the presence of the factor £¢ implies that in the
transformation law for (¢x, ¢t) we have extra terms not included in the

tensorial transformation law on the plane (x,t):

ﬁ;. (14 €00, = ng 0y = A 0,

[0

In the particular case of the equations (2.7) and (2.8), we get only the

(] + €¢)¢t = nt ¢X - }‘t ¢t

two conditions,

€, =0, =0 (2.20)

Which formally correspond to the condition gt = 0 of reference ]. In both
situations, the increment of the independent variable does not depend on
the parameters. The geometrical interpretation of this conclusion here
follows similar to the case for total differential equations: the condi-
tions (2.20) preserve the mapping of a plane perpendicular to the axis -¢.
In other words, (2.20) allow the mappings of such family of planes on it-

self. Thus, the symmetry group for the surface ¢ = const. is,
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o' = ¢ + E(9)
X' = x +n(d, x, t)
t' =t + A, x, t)

The geometrical interpretation of the invariance group of (2.6), and the
paraliel interpretation of the family of surfaces associated to this equa-
tion is not so simple as was for the previous particular case. Assuming
that A(x,t) has no zeros within a certain domain D, we may write

3¢ B(x,t) 3¢

e —

ax A(x,t) ot

and use this formula, along with their partial derivatives, for writing the
Taylor series expansion of ¢(x,t) around the origin, as function of x,t and
of the constants $(0,0), A(0,0), B(0,0) and ( $2) together with their
derivatives at the origin. The family of surfaces 3111 then be the locus

of points on the three-space (¢,x,t) which satisfy this series expansion:

of x2 x2t
¥v=¢ - f0,0) + (— ) [t+ xC+xtD+-—F+-—-M+...:]
0

st 2 2
32f t2 x2t x2

t(— )| —+xtC+—F+—G+ ... +
ot? of 2 2 2
% f x2t,

+(——‘) —— G+.oo] +..-=o (202])
at? o 2

for
B B B B B
C==-(=) ,D==(23,=),F=-(5,~ + (=293, =
(), (o3 () * (R 7).

o
[
—
(R
g
-
=
f
—
1
QU
>
o+
w
+
[+
Py
—
oo
Q
o
S
S
o
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in the particular case of the solutions of (2.7) and (2.8), which are
trivial solutions of (2.6), we have only the first two terms on the expan-

sion (2.21).

Sti1l another general example involving first order equations, may
be given by means of
99 9
P— +Q—=R
X ot
for P, Q and R three continuous differentiable functions of (¢,x,t) on a
domain D of the three-space (¢,x,t) 3. Since this example seems much too

abstract for having interest, we will not treat it here.

In the remaining of this section we treat the situation for second-
order partial differential equations, which deserve special attention since

they are the more important for mathematical physics.

Consider the general second-order homogeneous partial differential
equation (the case for non-homogeneous equations will be considered later,
in an example of direct interest in physics)

3%¢ 3% ¢ 3%¢ 3¢ 3t
A—+8B +C +D— +E—=0
ou? du dv av? ou av

where A, B, C, D and E are functions of the parameters u, v. This equation

can be transformed into the forms

32 ¢ 3 3
-A—-B—=0 (2.22)

du av ou v

3%¢ 3¢ 20
e = A' —-B' —=0 (2.23)

au? su oV
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by a real or imaginary substitution of the parameters 4. Thus , we may
consider only these last two equations. An special case of interest s
given for A = B = 0 in (2.22),

32 ¢

=0 (2.24)
u 3v

This equation assumes the form of the two-dimensional wave equation in the

plane (x,t) if we identify the parameters u, v by the relations:

u=x+1t
v=x-~-1t
or
3%¢ 3%
—— A —— 2 0 (2'25)
ax2  at?
The solutions of this equation define a family of translation surfaces on
the space (¢, X, t),

¢ = f(u) + y(v)

From (2.14) and (2.15) we find for the transformation of the left hand

side of (2.25), under the mapping given by (2.9),

Opixt = Oprgr = Oy = By by O + 2 0y4 bp - 3 0y, o)

" AglOgx Op * 2 Oyp Oy = 3 Oy Og) = 2 My by + 2 At Oy *

+

§¢(¢XX = ¢tt) - Z(Ax = nt)¢xt = (2n¢x -E¢¢) ¢: +

+

(2 )‘t¢ - E¢¢)¢% + (2 €¢X = nxx + ntt)¢x =
T O ¥ 2 By T Aoy - 20y, Ty dosdy -

Mgy Px T BE0x) T Agg(rdy = 8F) + By - Egy
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Invariance of the equation (2.25) then implies in the conditions:

n¢ = O (2.25"])

Ay =0 (2.26-2)

N, = Ay (2.26-3)

Ny = A (2.26-4)

2 gy " Myx FNpp =0 (2.26-5)
Aex t 2 Egp ~ Ay = 0 (2.26-6)
Eyx ~Epg = 0 (2.26-7)
2 ngy = £y = O (2.26-8)
2 Ayy ~ gy = O (2.26-9)

Of these equations, the numbers 3 and 4 are characteristic not only of the
Lorentz transformations but also of the conformal transformations in flat

spacetime. The solution of the system of conditions (2.26) is of the form,

£ =ad + r(u) +s(v) (2.27-1)
n=b + h{u) + g(v) (2.27-2)
A=c¢ + h{u) - g(v) (2.27-3)

for a, b and ¢ three infinjtesimal constants. Thus, we obtain an infinite
parameter group of symmetry for (2.25). For obtaining the usual form for
the Poincaré group and the special conformal group in the plane (x,t), we
expand the functions h(u) and g(v) in Taylor series around the origin.
h(u) = h(0) + u h'(0) + u?/2-h"(0) + ... (2.28-1)
g(v) = g(0) + v g'(0) + v?/2-¢"(0) + .:. (2.28-2)



24

Up to linear terms in the parameters u, v we have the sub-group
neb+ex+dt
(2.29)
A=c+dx +e.t
(note that for symplifying the notation we have denoted by the same symbol

the constant factors in (2.27-2.3) even after the series expansion). In
(2.29) we used the notation,

e =h'(0) +g'(0)

d = h'(0) - g'(0)
Thus, retaining the 1inear terms in the previous series expansion we obtain
the Poincar@ group in the plane (x,t) (with three parameters, the quantities

b, ¢ and d), and the scale transformations with parameter e. 5

Going to the sscond order terms in the expansion (2.28), we get

neb+ax+dt+ %-w(x’+ t2) = k.xt
(2.30)
Awc+dx+et- %-k(x‘+ t2) + woxt
where, w = h"(Q) + ¢"(0)
= k = h"(0) - §"(0)

which represents the special conformal group with six parameters in the
plane (x,t). The interpretation of the parameters being as usually:
translations: b, ¢
relative velocity parameter: d
scale parameter: e
relative acceleration parameter: w
timelike accelaration parameter: k
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Regarding subsequent references to this group, we will use the notation Co
for denoting it. As is known, in four dimensions each element of C0

contains fifteen parameters.

An extension to third order power of u, v in the previous series

expansion, give the following structure:

- 1 02,0 22y _ b 1 x3 2 1t 2
n=>b+ex+dt+ 5 w(x“+ t%) - kxt + rh ( 3 xt ) + E-p(Tr + X t)(2.31)
; 3 3
A=c+ dx +et - % k(x%+ t%) + wxt + %-p ( ﬁ; + xtz) + %-n(%;+x2t)
where,
n = hlll (0) + gll (0)
p = hll| (0) - glll (0)

these transformations add two more parameters to the previous case, the

quantities n, p. Therefore, here we have an eight parameter group.

With respect to the dimensions, we are considering ¢ = 1, therefore
space and time have the same dimension. Thus, the parameters e and d have
no dimension (the later representing a velocity); the parameters b, ¢ have
the dimension of length. The parameters w and k have the dimension of
the inverse of length, and finally n and p have the dimension of the

inverse of the square of a length (a super-acceleration).

The present analysis of considering further approximations of the
exact transformation equations (2.27) may be continued, but we will not do
this here, since this process is a straightforward continuation of what we

did up to now.
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A different type of symmetry group arises in the event that we
consider the identity mapping onto the plane (x, t), that is, n = 0 and
A = 0; with the further restriction that a = 0. For this case, the trans-

formation equations are simply

¢'(x) = o(x) + r(u) + S(v)
X' = x

t' =%

For this situation, the infinitesimal function E(x, t) satisfies the wave

equation
Exx " Egg = 0

consequently, this particular symmetry transformation just express the

known superposition property for solutions of a linear differential equation,
namely, it mapps a given translation surface ¢ = f(u) - ¥(v) = 0 into another
nearby similar surface, as : ¢' - f'(u) - ¥'(v) = ¢ - &(x, t) - f(u) - ¥(v)=0,
for £ = r(u) + s(v). This symmetry mapping may be regarded as a gauge trans-

formation for the scalar 6

wave function ¢(x,t). In passage we note that
here we have no gauge invariant quantities involving first order derivatives
of ¢, as is the case for a vector wave equation. The only gauge invariant
quantity which can be formed with ¢ is given by the left hand side of the
wave equation

O¢'=0O¢=0

and thus, it vanishes over all region of the parameters x, t.

Turning back to the general second order differential equation written

on page 21, we see that for the choice of coefficients as,
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(and writing u = x, v = t) we get the hyperbolic second order differential
equation which we called as the wave equation. Its symmetry group was
determined subsequently. Another possible choice might be

A=1,B=D=E=0,C=1

In this case we obtain an elliptic second order differential equation. If
we still keep the same notation of using x, t as the parameters, the equa-
tion is the Laplace equation

Sy ¥ Pt =0 (2.32)
It should be observed, a priori, that here t displays the character of a
spacelike direction, simi]ar to that of x, as compared with the case for
the hyperbolic differential equation. For getting this conclusion, we
use the property that in special relativity the metric is indefinite, and
thus favours the hyperbolic character of the linear second order different
ial equation. Equivalently, an hyperbolic second order linear differential
equation has the Poincaré group as the symmetry group in the linearization
of its full symmetry group. These results will be mathematically stated
by the determination of the symmetry Lie group for the elliptic second
order linear equation (2.32). A calculus similar to that made for the
corresponding hyperbolic equation (see the calculations preceeding the Eq.
(2.26)) gives the following conditions for the symmetry mapping functions
£, n and A,

e = 0 (2.33-1)

Ay = 0 (2.33-2)
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N, = Ay (2.33-3)
Ay = -y (2.33-4)
2 ngy = Egym O (2.33-5)
2 Ay = Epp = O (2.33-6)
2 Eyx ~Myx ~ Mgy = 0 (2.33-7)
2 Byy = My " Agp = 0 (2.33-8)
Apx * Mgt = O (2.33-9)
gy * E¢p = 0 (2.33-10)

working out these conditions we arrive at the following simplified relations:

E=ap + ¥(x, t) (2.34)
for v a solution of
Yyx * ¥gp = 0
and
Ny ¥ Ngg = 0 (2.35)
lxx + Att =0 (2.36)

where n and A satisfy the conditions (2.33-3) and (2.33-4). A trivial
solution of the Laplace's equation which satisfy these last two conditions

is the linear representation

X'=x+ox +8t+y
(2.37)
t'=t-Bgx+at+6
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Under this transformation, a point with coordinates (i) is transformed by
the matrix (do not consider here the parameters vy and §)
U= (1 +)I +A

where I is the 2 x 2 unit matrix, and A is the skew symmetric matrix

0 B
A=
(+ o)
in the event that the scale factor o is zero, the matrix U is orthogonal
and thus B represents a rotation parameter. For a #£ 0 evidently U is not
orthogonal. Then, the linear symmetry mappings are here the scale trans-
formations and the rotation in the plane of the parameters (x, t). This
makes clear that here x and t are similar quantities, this fact is a
characteristic of a positive definite metric. For the case of the hyper-
bolic equation the rotation is not present since we dispose only of one
space-like direction. Evidently, in a general example with n dimensions,

or in particular with four dimensions as is the situation in relativity,

the rotations will be part of the symmetry group.

Now we extend the symmetry group to quadratic terms in the parameters

X, t. Writing

n=n + lz-ax2 + bxt + %-st2
3 = ] ]

+ — ex2 + fxt + — gt?
AL > > g

where n and AL refer to the linear transformations given by (2.37). We
impose that these mapping functions satisfy the Eqs. (2.35) and (2.36), as

result we get the conditions:
a+s
e+g

1] ]
o o

so that
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r 1 1

= + — ax? + bxt - — at?
T TR 2

<

1 1
A=) +—ex?+ fxt - —et?
L2 2

\
Imposing further that (2.33-3) and (2.33-4) are satisfied, we obtain that
a=f,b=-e. Consequently, the correct transformation equation up to

quadratic terms in x,t will be:
. ,

1 2 1 2
= + — ax* + bxt - - at
TS 2
J (2.38)
: 1 2 1 2
A=) =-~—Dbx* + axt + — bt
g L 2 2

This group also contains six parameters in similarity with the special
conformal group seen before. However, it cannot be made similar to the
conformal group since the Lorentz transformations are not present (they
are replaced by the rotations). Nevertheless, since in some sense there
exists a connection befween an hyperbolic and an elliptic equation by the
process of considering the non relativistic limit of the first type of
equation, we might expect that in this process we can obtain a similar
1imit for both symmetry groups. This is indeed the case, but for showing

this we have to take first of all the two following steps:

i)  the parameter g has to be put equal to zero (the previous symmetry
between x and t has to be broken, since now t will be made an

absolute quantity, modulo the scaling factors);

ii) we have to use explicitly the constant ¢ (speed of light in vacuum).
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Taking this into consideration, we rewrite (2.38) as

( X''=x+ax+y+ 12 2 ppye -1 2 (¢ t2)
2 2 2 c¢?
p
t‘=t+at+6-l —b--x2+-il-xt+-]-bt2
L 2 ¢? c?

note that b has dimension T'l, similarly to the k used before. Taking the
non relativistic limit of these transformation equations, we get

X'22 X +ax +y + bxt - l-at2
2

t':‘:/t+at+6+-;-bt2

Now, the Galilean transformation is obtained by noting that since t is
absolute, modulo the scalling factors, the translation factor y may be

replaced by an usual rigid translation plus the translation term - Vots

Y — Y - vot

and we get:

space translations: vy - Vot - %-at2

(the parameter a is an acceleration)

space scale factor: (a + bt)

(note the existence of a scale factor depending linearly on t)
time translation: &
time scale factor: o +-% bt

(note the existence of a scale factor depending linearly on t).
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But this is exactly the same structure which is obtained in the non
relativistic 1imit of the special conformal group derived for the hyper-

bolic second order differential equation.

Independently of this conclusion, we will show in the next section
that the transformations (2.38) act as a conformal transformation in a
space (x,t) with positive definite Euclidian metric. From the viewpoint
of physics this group has no interest, unless its non relativistic
limit is taken, according to the process of taking B8 = 0. In this case
it goes over the non relativistic conformal group (the Galilean special

conformal group).

For closing up this section, we consider the symmetry Lie group for
the Klein-Gordon equation. It should be noted, that since the beginning
of this section we are considering just one field component ¢. This is
done by two reasons: first, it allows a direct geometrical interpretation
of the formalism in terms of a certain family of surfaces on the three-
space (¢, x, t). Second, it represents the simplest generalization of
the formalism treated by Hill for total differential equations. Obvious
ly, the analytical process here developed may be extended for a field

with several components, and this will be treated in a next section.

Consider the quantity
D (9) = by = by - m2 ¢2 = 0 (2.39)
As is well known, the conformal invariance of this equation is reached
only after taking into account a variation in the mass m,
m''=m+ m

Due to this, we a priori consider m as variant under the Lie transforma-
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tions. The same process of transforming the left hand side of (2.39) as
was done before for the cases considered, giVeé the following conditions

for the &, n, A and ém, which hold in order to have the invariance of the

equation.
£=0
m
wm T T N
N, - At =0
Ax N = 0
A¢ = n¢ =0

Clearly, the solution of these equations is similar to that obtained for
the wave equation, with the only modification that now m varies according
to the previous relation. Thus, here n and A have the form given by
(2.27-2) and (2.27-3). It is interesting to get the explicit variation in
mup to cubic powers of x,t in the transformation function n. Using

(2.31) we get,

-8M e+ wx - kt +«% (nx? + nt?) + pxt (2.40)
m
in this formula only the conformal coefficients appear (the e, w and k),
besides this, there is also contribution of the coefficients of the higher
powers in (x,t), the quantities n and p. This already shows that the
terms in third power of (x,t) in the mapping functions are also related to

conformal mappings.
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3. THE CHANGE IN THE LINE ELEMENT UNDER THE SYMMETRY-LIE MAPPINGS

In this section we study the variation of the line element on the para-
meter plane (x,t). Since on this plane the equations considered up to now
are all associated to a flat spacetime geometry, we start with the two pos-

sible situations:
i) a pseudo-Euclidian geometry;
ii) an Euclidian geometry.
The first case holding for the equations of the hyperbolic structure,

and the last case for the elliptic equations. The first situation, which

is the more important , is treated first. We have
dx' = dx +n, dx + n, dt
dt' = dt + Ay dx + A dt
using the conditions (2.26-3) and (2.26-4), we get
dx' = dx + n dx +n, dt
dt' = dt + ng dx +n, dt
Up to first order terms, the variation on the line element ds? = dx* - dt2?,

will be,

ds'? = (1 + 2 nx)ds2 (3.1)

Going up to cubic powers in the transformation law, we get for this conform
al changing in ds?:

ds'2 = (1 + 2(e + wx - kt + 1/2(x%*+ t?*)n + pxt))ds?(3.2)

The several terms on this expression may be written in compact notation as
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follows: call the pseudo-Euclidian metric by Nij = diag. (1, -1), xi =

= (X,t), al = (w, k) where the last component is timelike. Then, the

covariant 3y has components (w, -k), and

J

Y a' xJ = a, %I = wx = kt

J J

Introducing the matrix

n p .
bij=';' <p n>; n'J by =0
so that

bij xi xJ = 1/2(x? + t?) n + pxt
we have,

ds'2 = (1 + 2(e + ny; al x3 4 by 5 x1x3))ds? (3.3)
This shows that the cubic powers on x, t on the transformation (2.31) are
also conformal mappings. Note that the variation in the mass in the Klein-
Gordon equation is given in terms of the same expression which appears in

the variation of ds2. This is a well known result.

For the case of Euclidian geometry, we have from (2.33-3) and

(2.33-4)

]

dx! = dx + Ty dx + Ny dt

dt'

dt - Ny dx + ny dt

Therefore, to first order terms we obtain,
ds'? = (1 + 2n,) ds®

for, ds? = dx? + dt?.
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Then, the interpretation of the conformal mappings is similar to
the previous case. As we have shown both groups coincide at a proper non

relativistic limit.

4. GENERALIZATION FOR MQRE THAN ONE INDEPENDENT VARIABLE

Presently we treat the case where there exists several quantities
similar to the ¢ considered previously. Following the original analogy
with particle dynamics, this corresponds to several motions representing
the dynamics of a system of particles. Calling by xi(t) the coordinate x
of the particle "i" at time t (here we also take "one-dimensional
motions"), we have the correspondence:

i .
X ->¢1

t — (x,t)

In general i may run from 1 to n; for forming up a vector we take n = 2,
It should be observed that this analogy is only formal as compared with
the previous case of a scalar field, since now each xi will correspond
to a ¢! which is not a scalar, but is combined with all remaining ¢J

for forming some geometrical object, for instance a vector.

A first look on the possible generalization of the transformation

equations (2.9) for this situation should be to take:
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=o' + £ (9, x, t)

N
*
n

x +n(ed, x, t) (4.1)

t + A(ed, x, t)

for i, j = 1, 2. However, this will not conduct to the proper solution for

a given characteristic equation, as for instance the vector wave equation.
2 _ A2 i -
(axx att) ¢ 0

For obtaining the correct solution of the transformation symmetry group we
have to add to &' a dependence on the quantities n1j(n1 =n, n? =A).
L]

R A i (4.2)

x'i

xi + ni (¢j3 xl")

A discussion of this question in done on the appendix, where we treat in
details a more simple but mathematically related problem: the case for ¢

which transforms as an scalar density.

As before, the relations (4.2) are supplemented by the constraint
conditions
i_ i i
X ¢ -f(x,t) =0 (4.3)
which exist on the abstract four-spaced ¢*, ¢2, x, t. That is, we
introduce into this space two surfaces by considering that the four-space
splits into two spaces of the type (¢, x, t) each one with its family of

surfaces of the form (4.3).
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5. GENERALIZATION FOR A FOUR DIMENSIONAL PARAMETER SPACE

Here we consider the situation for an unique independent variable ¢,
but introduce four quantities x1 (Tatin indices, in this section indicate a
variation from 1 to 4) as parameters. Since this, is the case, in general,
for relativity, this situation is of special interest. The Lie transforma-
tions are,
i

X' = xi 4 ni (¢, xm)

o' = ¢ +E(d, x")
The invariance of the wave equation (the metric "ij has signature +2)

LR < F

under these transformations, imply in the conditions:

n! =n? =p* =n* (5.1)
1 2 3 "

na,ﬁ + ns;d = 0, o # g (5'2)

nt e nt%ao (5.3)
nt =0 (5.4)

N )
_ 7

€4 =0 (5.5)
ij -

n E,ij =0 (5.6)
ij .r ri c

ntn gy 2 £ 4i=0 (5.7)
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(in this section greek indices go from 1 to 3). Independently of the pos-
sible solutions for these equations, we can check directly how the trans-
formations behave in the space of parameters (xi). For doing this we need
only to know that the mapping functions n'i satisfy the conditions (5.1)
through (5.4). The change into the 1ine element

ds = Ny dxi dxj

is given by

ds'? = n, dx'V dx'd = ds? + (n

o 4.Y
j nY,a) dx” dx' +

+
OsY

a N I o 4 4 4y 2
+ 2 g, . dx” dx* - 2 n , dx™ dx* - 2 n*,(dx*)
) o ]

Using (5.1) through (5.3), we get

ds'? = ds?2 + 2 n* ds?
>4

Denoting n! by n, so as to accord for the notation used previously, and
using again the equation (5.1), we obtain a conformal variation similar to

that obtained in two dimensions (see Eq. (3.1)).

ds'? = (1 + 2 n )ds? .

We now study the solutions for the equations (5.4) through (5.7).
First of all, we will see that in four dimensions the conformal transforma
tions of Co do not satisfy the equation [::m1 = 0, verified in two dimensions
(here we also use the fact rfi does not depend on ¢, as is seen from
(5.4)). Indeed, from the general formula (A.12) of the appendix, we have

to first order,
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i_ 1. J Jk J ki
n > a njk XY X" + njk av¥ X7 X
(note that Eqs. (5.1) through (5.4) are satisfied), then:
i .1 Jk i, Jk S
On a n “jk +2a; n njk = Gj n

which shows that for two dimensions (n=2) this expression vanishes, but for

n=4 it will not vanish, instead, it takes the value

(5.8)

Therefore, the solutions for the conditions (5.4) through (5.7), here, will
be different from those corresponding to the same situation in two dimen-
sions. The solutions have the form,

£ = A(xi)d> +bo + ¢+ U(;u') (5.9)
such that

0g =0

and ni is given as the solution of the equation

On' =2 A, (5.10)

besides this, n‘, the solution of (5.10), is restricted by the conditions
(5.1) through (5.3). The quantities b and ¢ are infinitesimal constants,
and A(xi) is an infinitesimal function of the parameters x1

holding for U(xi).

, the same

The quantity A(xi) will determine the structure of the symmetry
group for the wave equation in this case. Again it should be noted the
difference of this situation with the corresponding one for two dimensions.

For this 1last situation the equations determining the descriptors ni may
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be separated completely from the equation which determines £. In this
process the determination of the full conformal group on the plane (x,t)
follows its own pattern independently of what happens for &, and consequent
ly any "spin" with respect to this group on the plane (x,t) has to be intro

duced initially in the descriptor £ as was done in section (4).
The simplest choice:
A(x‘) = 0, b = scale factor

gives the linearized fransformations of the Poincare group plus scale trans

formations on the parameter space (xr),

E=0bp+c+ U(xi), Ou=0
ol (ns ©, Py A) = (0%, %)
ﬁ1= C, tex+oy+yz+ dlt
Im =cC, -oxX +ey +vz+d,t
1p = Cy - ¥YXx - w+ez+dt

»

where we have used the conditions (5.1) through (5.3). The four parameters

>
c, + d'X + et

-*
(co, ¢) represent the translations, the (a, y, v) the three possible rota-
tions, the d represents the relative velocity parameter (with a minus sign)
and finally, € is the scale parameter,
The next possible choice is
A(x‘) = -2, x", b = scale factor

From (5.10) we have,

On' = -2a (5.11)



which shows fro (5.8) th:t this case cerrespinds to incorporate the special

conformal transformatiors ¥ C, in the symvatry sroup.

The gereral soiution of (5.11) is of the voru

. (o) (1)
n'= n '+ on! (5.12)
(0); _—_ .
for n = the genera! solution of the hociiogceneous equaticn, in the case, the

(1)

descriptors of tie Psincare »lus scale transforrations; and n  a solution
of (5.71), i the case, tie descriptors of the special conformal transforma
tions. Therefore, for the present choice of A(x]) we conclude that Co is

the symmetry group focr the wave equation in four dimensions.

From (5.3) we have

£= - (a; x')o + by + ¢ + U(x1)

where here U is a solution of the equation
Oou=2 a® ¢’2

writing,

(note that we are using the notation of the previous sections, of indicat-

ing the scale parameter by the letter e) we have,
£=-(e+a, xi)¢ +C + U(xi) (5.13)

Noting that here (5.12) corresponds to the transformations (2.30), now put
in four dimensional fom, we neve fiom (3.3), which holds for this case,

- i_1_ s
Ny =e+a;x =7,



Then, (5.13) takes the form

__1 s
g = 4n’$d>+C+U

Consequently, the wave equation in four dimensions, displaying invariance
under C0 will be the wave equation for an scalar density of weight 1/4 with
respect to the conformal transformations of C, (an scalar for the Poincare

transformations} 8.

This conclusion was not necessarily verified in two-dimensions,
since in this situation we may have an scalar wave equation invariant under

Co-

The process of giving values to A(x1) may be continued. Due to the
special interest into the next term, we give iere the next possible choice.
Writing

ATy = -a x"+ob X" xS+ b xS (5.14)

where b is the trace of brs which in fcur-dimensions does not nave to
vanish, and o, B are two numerical constants to be determined. Then, the
Equation (5.10) takes the form

i:- .ij . - . S‘ b s
On 2 n (aJ 20 bJs X 2B Njs X ) (5.15)

For matching this result with the four-dimensional conformal transformation
containin super-acceleration coefficients, we use the general formula
written on the appendix which generalizes (A.12). However, this formula
was determined in connection with the two-dimensional problem (which was

the problem more extensively treated in this paper), where b = 0. Thus,
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we still can add to this formula a term like ¢.b x3 to the point dependent
translation factor ai (x) of the appendix. Since frow the beginning we do
not know what should be the numerical factor in front of this new term, we
put i1t as @ numerical factor ¢ also to be determined. Linearization of

the general formula for the conformal transformation then gives:

ig__l_i J ok Jok .2 J Jk 1 i J.em
n za “jkxx+“jkaxx"'3b5kxx b: x

i
- - . X
X 3“2411 J X

i jouk
+ c.b x njkx b

computing its D'Alembertian, (in two-dimensions this gives Dni = 0)
Dn"=-2a"-§b,‘;xk+(£3‘.+12c) bx] (5.16)
Comparison of (5.15) with (5.16) gives, o = - % s B = % + 3c. Then, we have

for (5.14), |
iy _ . r_1 r.s .1 r.s r.s
A(x") = - a . x 3 brsx X “"é‘b“rs" X" +3c.bn. x X
and from (5.9), 9
E=(-e+ A(xi))¢ +c¢c'+U (5.17)

Finally, the constant ¢ is adjusted in order that this variation in ¢ be
the correspondent to a variation of an scalar density with weight-} for
the conformal transformations. This is equivalent to require that

i

i 1
me+Al) =g o

for the previous rpi involving ai , bij’ b and also the scale factor e.

This is reached for ¢ = - -1-15- , and at the same time we have to recalibrate



£
i

2 . 2

the constants bij and b as: bij > E by y> D +-§ >.

As before the term U in (5.17) is such that 0& = 0. Thus, (5.15) or
(5.16) will have the form
Dni =-2a1 -%Ei X +——bx.

and its general solution is of the form,

(%) (M)
T’l] = n 1 + 1 1
1) . . . .
for n ° the descriptor containing acceleration and super-acceleration para-

meters, that is

G

N T J.k ik 4, 27 gk i1 .3 oeum
n o = > a njk XYx©T o+ njk a¥ x x + 3 bjk XY X X §'n2m bj x¥ x7 X
| .
‘——bﬂkX1XJxk
12 J

where Bjk = %’bjk’ b = g:b. However, this formula still has to be consistent
with the conditions (5.1) through (5.3). This implies that bij= q ny4s for
g an infinitesimal parameter. Substitution of this value for Eij in the
above formula shows that the terms in Bij and b cancel out. Therefore, there
is no contribution of “super-acceleration" terms for the symmetry group in
four-dimensions. Eventually, it may happen that certain combinations involv-
ing fourth-order powers of the coordinates may contribute to ; i, but we

-do not enter into further details, which 1involve a very long calculation.

Then, we conclude that the relevant symmetry group in this case is Co.
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6. THE VARIATION IN THE FLAT SPACETIME GEOMETRY GENERATED BY THE LIE TRANS
FORMATIONS AND THE CURVATURE
We may interpret the variation on the line element given by (3.1) which
holds for two or four dimensions as a change on the metric tensor of the
flat spacetime geometry. Then,
ds'? = (1 +2n,) ny, dx' dxd
gives a new metric,

the inverse to this conformally flat metric is,
gij =(1-2n,)) nij
The Christoffel symbols resulting from this metric and from its inverse are
given by
i \

- i . im
Tik = 85 M xixk ¥ S M xayd =07 Mg M yaym

It should be noted that the only part of the mappings which do not contrib
ute to deviations from the Minkowskian geometry are the Lorentz transforma

tions. For these transformations ny = 0.

Now, given two arbitrary metrics §}j and 93 which are related by a
conformal transformation,
%5 7% 9

—id
9

o290 gij

the corresponding curvature tensors are related by 10
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——

=20 =
e “Rpijk = Rnigk * %k %95t *

93 %k " %3 %ik” %k %j
(Bhk 945 = %5 Yik) 20 (6.2)
where,

O35 = 9,43 79,1 9,3 953 =(03))5= (9 9y

ij
A = . .
197979493

and a vertical bar means covariant differentiation. The change in the

components of the Ricci tensor is given by

7 _shkxw [
Rij =g hijk = Rij + (n—2)cij + gij[?zc + (n-Z)Alé] (6.3)

where n is the dimension of the manifold (all latin indices go from 1 to n),

and .
.. . . 3 o 90
A, =91‘]0-~=91J( - {k}

313 1 : ij
ax' axd  axK

Now we use the following notation: we denote the pair (gij’ E}j) by

(nij’ gij) in order to keep the notation used in the beginning of this
section. Therefore, originally we use cartesian coordinates in flat space
time and consequently the affinity is zero, and

R 0

hijk =
according to the above notation, we denote Rhijk by Rhijk‘ To first
order we have,

o =n,

Then,
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QL

>
a
%4
=

;o
[t}
(]
E;

And from (2.6) we obtain
Rhijk = Mhk Mxixixd ¥ Nig 0 xaxhek = Mg n pdyiyk = nge n hd (6.4)

For the Ricci tensor we have

Rij = (n=2)n 1 i xj + nyy Ony - (6.5)
In two dimensions this tensor vanishes, since 1in this case []nx =0,

Note that for two dimensions there will exist just one independent component
for the Ricci tensor Rij’ since then R, = 0, Ry, = - R,,= EJnx- The index
“2" use here corresponds to "4" of the four-dimensional case. The curva-
ture tensor for two dimensions also has just one component, the quantity

szxz’ with value

R1212 = an =0



This component is related to the scalar of curvature R, by R = R/2. In

1212
this case R/2 is the Gaussian curvature in the parameter plane (x,t). Thus,

all these quantities vanish for iwo dimensions.

The Riemann tenscr in four-dimensions is given by (6.4) for all indices
going from 1 to 4. Since in this case (for the four-dimensional hyperbolic
equation) Co is the symmetry group, containing at most guadratic terms in

the coordinates, we nave that Rﬁijk vanishas.

Thus, the space-time geometry remains-fiat for ail types of non-linear

symmetry groups considered.

7. NOTE ON THE FIRST ORDER COWSISTENCY CONDITIONS OBTAINED FOR THE ELLIPTIC
EQUATION

Consider the piane of the compiex variables Z = x + it. Llet w = f(2)
be a single valued and analytic function on the Z-planre. Write, w = x'+ it’

Then, from (2.9), (2.33-1), (2.33-2) we have

w=x"+1t" =x +n+ i(t+2) = u(x, t) + iv(x, t)

Since f(z) is analytic on the Z-plane, it satisfies the Cauchy-Riemann

differential conditions,
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or

My = Ags Ng = " Ay

which are the conditions (2.33-3), (2.33-4) obtained as part of the conditions
for invariance of the elliptic second order equation. From a known result of
the theory of complex functions, the transformation w = f(z) is conformal if
f(z) is analytic on the Z-plane, and f'(z) # 0. Thus, the (2.33-3), (
(2.33-4) just’state the fact that the Lie symmetry transformations for the
elliptic second order equation contain conformal transformations. Formally,
this conclusion is extended for the hyperbolic equation by writing t - x_ =

]
= it.

8.  NON LINEAR PARTIAL DIFFERENTIAL EQUATION IN TWO DIMENSIONS AND THE
SYMMETRY GROUP

For simplifying the treatment, we shall restrict to the case of an

unique independent variable ¢. In the previous sections we have considered
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only differential equations in flat spaceatime, and the reason is that those
equations usually do not contain furtier independent variables besides the
¢ (as for instance the wave equation, the Klein-Gordon equation etc.), and
consequent]y they render a simple analysis. Evidently, the present method
may be used for treating with several independent variables (as was already
done on the section (4)), and thus, may te extended for curved spacetime,
where we treat the metric gij and ¢ as independent variables, and the x,t
as parameters. We chose the particular case of non-linear equations for

treating by tne first time with curved spacetimes.

We shall consider the following proolem: we write a non-linear equation
for ¢ in flat spacetime and determine its symmetry group. After this we
pass to a curved spacetime and see what is the variation in the symmetry

group, due to the transition nij - gij on the metric.

We take tne equation,
i2 _Jjk _
NN 6 550 g =0 (8.1)
since the indices here go from 1 to 2, this equation is of the form

2 2 _ 9 42 _ -
d’xx + ¢tt 2 ¢xt =0 (8-2)

From the formulas (2.14), (2.15) and (2.16) we get to first order:
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¢;%x' + ¢%%t' -2 ¢§%t' = ¢;x * ¢%t -2 ¢;t +2 g¢(¢>2<x + ¢%t -2 ¢;t) +
+n&£¢;¢x'Z%t%'4¢a¢u¢t+4%x%t%+8¢%¢ﬂ
+ hy(-2 02y Op = & dyy By Oy = 6 0% Op + B O3y by + 4 by by b))

+4 nx(¢>2<t - ¢§x) +4 >‘t((b)z(t - ¢%t) * 4(ny - Ax) Pux Oxt *

+

4 (O = ngddpy Oxp = 2 Mpgl(Oyy 03 + bpy 0F 0 = 2 00 64 64)

2 A¢¢(¢XX ¢§ ¢t + ¢tt ¢% -2 ¢Xt ¢X ¢%) + 2(2 n¢x -€¢¢)(-¢XX ¢§ +

o+

¢Xt ¢t ¢X) + 2 (zxt¢ - E¢¢)(-¢tt ¢% + ¢Xt ¢t ¢X) +

-+

2(€¢x " M) bxx Oy * 2(£¢t T App)Opg gt 2 Ay Oy O -

= 2myy by Oy A0 7 Bxgoyt 0p gy - Eue)ye Oy

+

4 A¢x(¢xt ¢% - ¢XX ¢x ¢t) + 4 n¢t(¢xt ¢; - ¢tt ¢X ¢t)

+2 E—xx ¢xx +2 zc:tt ¢tt -4 gxt ¢xt

giving the following independent conditions,

- A, =
Ny 0, ¢ 0
Ny = Ag
ng = Ay
Agx = Mgx = Agg = Mgy =0

Ext = Exx = &g =0
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with solutions,

£ =k +bx+ct (8.3-1)
n=a+dx + ft (8.3-2)
A=e+ fx + dt (8.3-3)

The mappings on the piane (x,t) are here the Poincare transformations and
scale transformations (the Poincaré transformations have to appear in any
case, since we have taken initially the differential equation in
relativistic form). The transformation on ¢ given by the first equation
(8.3) is here a trivial symmetry transformation since the differential
equation is of second order. Tnerefore, we see that the non-linearity
of the differential equation in flat spacetime has the effect of a very

large restriction on the symmetry group.

Now, we go over a curved spacetine, with a metric gij which is not a
field of inertia. In two dimensions, gij has three independent factors,
the g

110 9,, and g,,. The equation (8.1) takes the form,

ig _jk
g gJ(b'ijq),,Q,k-Zg

R S R LR (R T T S
(8.4)

Here, the independent variables are the gij and ¢. However, we take

as given, since otherwise the equation has to be sypplemented by the

field equation for the gij’ and the discussion would be much too

complicated. According to our method, the full Lie group now acts on

a six dimensional embedding space where the axis are represented by

9,15 95,0 9,,5 5 X, t. The transformations on this space in infinite-

simal form are,
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r
9.:J = gl'j + wij (gﬁk’ o, X, t) (8.5'])
4¢' = ¢+ 5(9y 5 ¢, X, t) (8.5-2)
x'=x+ n(gzka by X, t) (8.5-3)
Lt' = t + A(glk; ¢s xs t) (8'5-4)

The "constraint surface" in three-space (¢, x, t) given by (2.1) for the
family of solutions of (8.4) is determined in principle by the knowledge

of the further constraints 1

955 - Wy(x:t) =0

1]

Xij
On the region of the six dimensional embedding space where the four
constraint conditions V¥ = 0, xij = 0 hold, we can compute the variation

on the first derivatives of 9ik by an extension of the same calculation

done before for ¢ i We find, 12
' _ o2k -
9j,s' = %ig,s T %5 Yak,s Y Yig,0 s Y Yig,s
r,2k r r
-n = g.?,k,S gij,r - n’¢ gij,r ¢,S - n,S g'ij,l" (8.6)
for, r
2k 955 rook 0
w.ij"‘— = 3 'n —
990k 99k

The Equation (8.6) is reducible to the usual variation of the derivatives of

a Riemannian metric under coordinate mappings in the case where

L r’.g'—ls- = =
n9¢- 0. n 0, wijs(b 0
S _ s
Wij = " M,5 % T N,i 9sj
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Similarly, on this region we can determine the expressions for the varia-
tions of ¢’1 and ¢,ij' These expressions are the generalizations of the
formulas (2.17) and (2.18), for the case of a curved parameter plane (x,t)
(where exists a metric gij which is a dynamical quantity). The Equations
(2.17) and (2.18) are associated to a flat parameter plane (x, t). The

results are,

. o i 2k
P T TNt TN % T e T ET Yy
s,k
-n — ¢,S glk,j + g,j (8.7)
where,
kB
g’ = —
%99k

and,

v o ol -
Sormt TP m TN {},i(r Syt O ¢,r;] n(r ¢ m)i

i §
Moo ®1 ®or Om " Mo(r ®am) %8 T Nm 0L

+

€3¢¢ ¢’r ¢sm ¥ €s¢(r ¢:m) * £,¢ ¢,rm ¥ g:rm

22K - S,lk
P %m0 T aky(m ®urys ek, m ¢,;]
+g 2K 2k s,k
oM $ $
s, 2k
- = , 2k
Sgky(m T rl o tE == Iok,r Ins,m ~

s,k no
SN0 Yk,r Snpym ®.8)
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where round brackets mean symmetrization over the indices, without the
numerical factor 1/2, 1t should be noted that in spite of our present

work on two dimensions, the formulas (8.5) through (8.8) are valid for

any dimension.

Writing,
! -
ST ERANFRSEE
Olir T O X

r ' r r
{zk } = {zk} + Q)

where these infinitesimal increments are given respectively by (8.8),
(8.7) and combinations of (8.6). We can obtain the following variation

for the 1.h.s. of the fieldequation (8.4), which for abbreviate the nota
tion we denote by %),

PP IE EATSRIIY A Fia PO

i§ _ ., 8 dk gr s (g4 gIkgm
s2(rd -y g o {RY) e 52 e T} e e

- gil gjk ¢ ij ¢,S) (8.9)

where we have explicitly used the fact that here we work on two dimen-

sions. The w is the trace of wij’ W= g1j wi . Thus, the condition

for invariance of the equation & = 0, will be
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ijfm 12 ik r:
2(-t J{ij} X 8 ¢’ {13\<lk') o
iJ if _Jjk i _jk
+ 2(7 J - Xy 9 J {EK})¢ ij + 2 Qlk (g J { J}$

- 912 ng ¢,1j ¢,S) =0 (8.10)

A possible solution of these conditions is obtained for the usual symmetry

group of general relativity, the M.M.G., which here is given as

£E=0
i i,2k - _ .5 _ .5
N =0sn'===0, w54 =0, wy N %s " N,i Ysj
_ S = - S _ S _ S
X N ts e Ty N s "M %4s TN s

and where sz is given by the usual variation in the Christoffel symbols

induced by point to point mappings of the M.M.G.

Presently we will not enter into further details of other possible solu
tions for the conditions (8.10), except for an special situation which

will be discussed in the following.

There exists a situation which within the context of this work is of

special interest: the Weyl group of conformal transformations of the

13

metric tensor gij‘ This group will be denoted as C We try to see

g.
if Cg may be a symmetry group for (8.4).

The weyl group is obtained from our general transformations (8.5) by

taking there,



58

and by convenience, writing

£=0

and trying to see if the symmetry group for (8.4) may have under these

conditions a w; of the form,

J
ro r
wij(x ) = A(x )gij

that means, a w;; such that, for arbitrary ICOR

Wijo =0

2k 1 | SNPIPS AR 4 K 2

“ij i °j

For this situation, we get

r _1 rm - _ rm
%k =79 (Somic * Enkg " Sakm) " A9 Toom

for,
= A

P S . (S LT
Camk = 5 (8 Sm* 8y Sy ik ¥ Ak Yo

From (8.10) it follows that in this case there will be no solution for
A different of the trivial solution A = 0. Therefore C_ is not a

g
symmetry group for (8.4). This conclusion should be expected since for
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the Weyl formulation (in the sense of a conformal invariant theory in curved
spacetime) the affinities have to be corrected. In other words, we may

recover Cg as a symmetry group for (8.4) if we introduce compensating fields
into the affinity. By this process we go from the Einstein affinity to the

Weyl affinity which is conformal invariant under the Weyl group.

CONCLUSION

By an extension of a method proposed by Hill for determin-
ing the symmetry transformations for any given, isolated, dy-
namical system, we determine the symmetry transformations as-
sociated to free fields. By a free field we understand any
isofated field. Thus, we may extend the present treatment
also for interacting fields, case where we have the "free
system" composed by the two interacting fields. In general,
the symmetry transformations assocdated to a given field
may be modified by the presence of another field, that s,
by an interaction. As example, the second kind gauge sym
metry of the coupled Dirac and Maxwell fields is not a sym-

metry of the free Dirac field.
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The mathematical theory used by Hill was the Lie
theory for ordinary differential equations, which
presently is extended for partial differential equa-
tions. As compared with the usual treatment of
field theory, the present approach has several
different peculiarities. Fundamentally, we may trace
the different ideas underlining both treatments, al-
ready to the situation treated by Hill in particle
dynamics: Any chosen isolated dynamical system

possess its own Lie transformations of symmetry,

independently if they have a Lagrangian or not.
Then, we do not 1look for all possible dynamical
systehs symmetric under a given transformation,
for dinstance the Galilean transformation. In
this last case, these systems are directly derived
from a set of Lagrangians which present invari-
ance under the Galilean transformations. Presently,
rather, we consider each separated dynamical sys-
tem (dynamical in the sense of the field equa-

tion) and 1look for its characteristic symmetries.

Field theory 1is based on the fundamental

concept that the coordinate symmetry group is



the Poincare groun. Our present method is not

against this concept, since usually tha Poincare

group 1is a symmetry group for a very large
class of partial differential equations (those
of hyperbolic character). Eventually, we may

obtain 1its non-relativistic version {the Galilean

group) depending on the type of equation under
consideration. Clearly, we have to say that
also the order of the differential eduation is of
importance. A first order partial differential
equation has an infinite parametric Lie - group
of symmetry, which is much more general than
the Poincare group; however, no Lagrangian does

exist for those equations.

The more 1important idea behind the present
method, is that each isolated system "builds
up" its own . Symmetry group. Now, depending on
the existence, or not, of a Lagrangian (presenting
invariance under these symmetry transformations),
we may translate this into the known language
of conservation laws (or not). If no Lagrangian

does exist, such symmetries will not be observed
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as conservation laws. As is known, general rela-
tivity is a theory of this type: the gravita-
tional field has 1its own symetries, those of
a curved spacetime, possessing (or not) eventual
ly some number of isometries. In this sense,

the gravitationa? field is the first example of a
field which 1is separated from all the other
(thé coordinate symmetry group is more general than

the Poincaré group).

Other important result which is obtained, is
that the ‘general Lie transformations has descrip-
fors, associated to the coordinates, which may
depend on the field functions. This is already
a generalization of the Poincaré transformations.
The existence, or not, of such generalized Lie
transformations will depend, according to our
method, of the characteristic field equation
chosen. In this work, we have proven that no
generalized transformations of this sort will ap
pear if the characteristic equation 1is an usual
field equation, that means, a Poincaré-covariant

equation.



However, it is possidle to generalize
such "Poincaré-covariant” equation in such form
that it presents a generalized symmetrvy of this
form. A more detailed treatment of this problem

will be done in a future paper.

Regarding this Tlast result, of the
existence of generalized point transformations, we
may consider that a point 1in the manifold is
completely determined by i%s coordinates plus the
value of the field for these coordinates. We
may then consider a point to point mapping
of the generalized transformation as a transforma
tion which mapps this type of "point" into anoth
er similar point. Tais is different from the point
to point mappings of the Poincarée group, which
does not depend on the field acting on the mani
fold. The existence of such generalized point to
point mappings was already considered in  the

literature ]4, more directly in connection to the

case of general relativity ]5.

According to our present method, we see

that we may also consider the existence of such
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generalized coordinate mappings even in flat space-
time. Paralelly to this last conclusion, it is in-
teresting to note that the wusual gauge transforma-
tions (electromagnetic, isotopic, etc.) may be
formally generalized to gauge transformations where
the gauge function depends on the potentials

(electromagnetic, Yang-Mills, etc.) ]6.
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PPENDTIX

1. Here we show in a direct way how to prove that the conditions (2.26)
are the correct conditions for the invariance of the wave equation under
the general mappings considered. We shall do this prove in the case where
¢ is an scalar, & = 0, and the mappings affect only the coordinate plane
(x,t), that is Ny = 0, A¢ = 0. In this case the uswal procedures for
handling with tensors hold, and they are directly used for proving the

invariance of the wave equation. Thus, under the mappings

x' = x + n(x,t)

t' =t + A(x,t)
with inverse,

X =x' -n(x', t')

t =1t -n(x',t")

the left hand side of the flat-two-dimensional D'Alembertian varies as

2.1 ]
Oxrxt T O prgr = Oy o * gt EE' - Oy > = byx il =
ax" ox' ox'? ox’ ox'
an' ot 92X o’ ax
= Oyt = by 2 Pyt

ox! ax* X ax' ox'
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' ot an'  ax an' ot
- — —— 4 — e, —_—
Pet 3x'  9x" Pxx 2t att | Xt g 3t
32n ax it a2
+ —— - — O — ———
#x t'2 Pt 3t Pe ot "o 3t'2
' ax ' ot
Yt To s Tt oo so

to first order this gives,

] ] ] ]
Oxrxt T Bprgr T O T Ppp T2 Oy My T 2 by Ayr 2 by My ¥

] ] ] L .
+ 2 ¢tt Atu - ¢x(nx.x. - nt.t.) + ¢t(xt't'— AX‘X')

Therefore, the conditions for the invariance of the wave equation are:

' '
Xx|= nt.

' )
A~t| = nxl
O'n' =0
o' =0

Since the primes may be dropped due to the fact that the difference
between n' = n(x', t') and n(x, t) is a second order term, we arrive
at the conditions (2.26) for this type of approximation (neglecting ¢

and the derivatives Ny and A¢).
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2. Generalization for an scalar density of weight W, solution of the wave

equation

Here we generalize tha scalar wave ecuaticn in order to obtain the

same equation for an scalar density. That is, we have

(35 = 2g¢) 00 ) = 0

but allow ¢ to transiorm as an scalar dansity under the restricted mappings

on the plane {x, t). An exarple of such guantity is given if we consider

the integral (here we use four dimensions

f
LRV T Y7
Iy = () d, »

15

originally we are in f{lat spacatime, but due to the non-linear form as~-

sumed by the conformal part of the transformations, we have that

Q>
x

d. X

-+

i

[
=

b !

% # 1, consequently ¢ has to 2e an scalar density with weight +1.

2 C2
e

s~

A
-

o

Presently we consider two dimensicns because this simplifies the calcu-

lations, and all conclusions are directly extended to four dimensions.

For this case we have to modify the transformation equation (2.9), 16

since it implies that for a ¢ solution of the wave equation

¢'(x'1) = ¢(xi) + a¢(xi) +U(x,t); DOU =0,
and by expansion on the 1.h.s.,

6'(x') = 6(x") + a g(x') + UGy -l g (A-1)
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for a constant. But an scalar density with weight W changes as
' (x') = ¢(x') ~Hngo -n' o (A-2)

which cannot be taken similar to (A-1) since nss is not constant. Note

that for the Lorentz transformations nss = 0.

]
The necessary modification on (2.9) is obtained by imposing that now

g depends on the n : R

6" = 6+ E(dy nSg,x ) | (A-3)

x'V o xl 4 ni(¢, x5)
(the indices here go from 1 to 2). The formulas (2.17) and (2.18) now as-

sume the form.

. S r r
KA IR RN TR VR I S T PN 0 X T UP L (A-2)

’1 ] L] ] ]

: _ 1 i
¢ rmt =% m " “.¢[§,1(r ¢,m) R ¢,rn] T (r ¢,m)i

i

i
.M ¢,i

1.
"Mee 80 0 Sn T Ng(r Sy 01 70

L s ]

* €9¢¢ ¢,r ¢sm * gs¢(r ¢:m) * £s¢ ¢’rm * E,rm

S S S -
* gﬂw n,s(r Cbsm) ¥ gsq)(r n,m) * gl’) n,srm (A 5)

From (A-5) we get the following caditions for the invariance of the wave

equation:
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i -y -

LI 0 (A-6-1)
nx = At’ nt = )\x (A"G"Z)
kIl -ntde =0 (A-6-3)

r ir s _ir A-6-4
On -2n E,¢i + 2 £¢w Mgyn = 0 ( )

S,i

O +2 E;\Pi n,s

+E EJn,§ =0 (A-6-5)

In the formulas (A-4) through (A-6) we used the notation, ¢ = n:. Clearly,
in the first order approximation, £ has to be linear in the quantity V¥ .

Thereforerwe can write,
£(6,¥, x') = F(o, x' )V + 6o, x1) (A-7)

The solutions for the equations (A-6) together with the condition (A-7) is
of the form

EJni‘= 0 (A-8)

E=-2Hng+ap+UX) (A-9)

for W and a two constants and,
gu=0, v=2 Ny

Since here the Jacobian of the transformations in the plane (x, t) which
satisfy (A-6-1) is (also use (A-6-2)).

ax' s
l =1+ neg © 1+2 Ny

ax

we conclude that (A-9) describes an scalar density with weight W (note

that W is a finite constant, in other terms, is a number).
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For W=0 we racover the previous result given by (2-27-1). From the
formal mathemutical analogy between the equations of transformations (4.2-1)
and (A.3-1), as well as, from the mathematical similarity of the transforma
tion laws for an scalar density and a vector under infinitesimal mappings
0:

with nid) =

¢'(x") = o(x") ~Wngo-n e
top r 3 s
$i(x7) = 05 (x7) = bg = 07 4y o

we can infer directly that the Ei for a field ct:,i transforming as a vector
under infinitesimal mappings with niq> = 0, will be the natural extension
9
of (A.9) for this case:
E, = - n, 6, - Ax ¢, + 2 ¢1 + U.x
(A.10)

gz ==ny b, m A 4 4 be¢, + U,t

The terms which do not mix the components are the gauge contribution for

the vector field.

The equations (A.10) hold for a ¢; which is a solution of the wave

equation. The conditions (A.8) are verified here, and:

ﬂx')\t'ntﬂ)\x, Oua=20

also a and b are two infinitesimal constants.
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3. Note on the determination of the conditiong (2.26) for the parameter

plane (x,t).

In the determination of the solutions (2.27) to the equations (2.26),
we used the property that the conditions (2.26-3) and (2.26-4) imply into
wave equations for n and XA, and consequently the general form for the
solution of these conditions is to set n and A equal to:

n=>b+ h(u) + g(v)
A=c + h(u) - g(v)
Then, by series expansion we arrive at (2.31) up to cubic powers in X and

t. However, we may obtain a similar expansion without using the equations

Dn=0, DOx=0

We use only the two fundamental conditions

n, = A

X t
Ny = Ay
Writing,
g = Ay = P(x, t)
ng = Ax = ¥(x, t)
we get,
dn = ¢(x,t)dx + ¥(x,t)dt
dA = ¥(x,t)dx + ¢(x,t)dt
therefore
n=at J w(x,t)dx + Iw(x,f)dt
A=b+ f ¥Y(x,t)dx + fv(x,t)dt
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Expanding the functions ¥(x,t) and ¥(x,t) in power series of x and t, and
performing the integrations, we obtain n and A up to any desired order of
approximation. Going up to cubic powers on x and t by this process, we

arrive exactly at the formula (2.31).

4 - Determination of the finite form for the transformation with descriptors

given by (2.31),

Lie proved that the transformations of the group C(°), the group which
we have denoted as the "special conformal group", may be presented as the
product of an inversion by a translation followed by a product of another
inversion 7. In this concern, scale transformations are not included. Since
usually in the Titerature these last transformations (without scale) are
called as the special conformal transformations, the result of Lie applies

to these transformations.

We give a brief review of the concepts involved:An inversion through

the origin, or transformation by reciprocal radii is defined by

where x is a fourvector and x-x denotes the scalar product of x with it-

self, Performing a translation by amount -a,

X' =T (x) =x-a
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It should be observed that all translations here are rigid translations,

forming part of the Poincare mappings. ‘e have:

X-a
Py Ty(x) = Polx-a) = = P,(x),
(x-a)-(x-a)
that is, as result we get an inversion throuch x = a.
Taking the product
X

. < xx "

Ca(x) = PaPo(X)=PoTaPo(x) = PoTal ;TI') = o Xox ?) =¢J&_ -a)e (= -a)
XX XX

for a = 0 we get the identity transformation. An easy calculation gives:

X = a {x*x)
x' = Ca(x) = (A.11)
1-2a x + (a<a)(x+x)

This formula by the appropriate series expansion retaining only first
powers of the constant four-vector a gives the infinitesimal conformal

transformation involving the parameters of acceleration.

For our present choice on the constants in the equation (2.30), we

have to choose the acceleration terms with a numerical factor 1/2:

a-» 1/2 a

Thus, the (2.30) are the linzarization of an expression 1like (A.11) there

making a » 1/2 a:
X - %-a(x.x)
x' = (A.12)

1 -ax+ %-(a.a)(x.x)
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Now, it is not difficult to see directly what should be the modification on
(A.12) for obtaining the similar formula for the transformations (2.31)
involving the first term which is a deviation from C(o). We have to drop

out the concept of kiping only rigid translations; considering the genera-

1ized point dependent translation ]8.
T VRN T S IR VRN RV A_ Mo
x'" = ra(x ) =X 52 E'b X =X (x)

Then, by a similar process as before, we write the generalized transforma-

tion xA xl
B(x") =Py 1 P (xY) =P, T, <-—-\ = P, /—— - a)‘) -
o , XX | \ X-Xx

X A '

—_— =

XX

=

Q

-
r—\
‘x
]

]

QR
~_3
*
l &

]

Q
<L8

After some calculations we arrive at

A

X 1

(x.x) - 5 b”

T

b xT (x.x)

1A
2

A ga(xx) _

1ax+-—(aa)(xx)-—3—bup x“xp+—E>upa -:];b(Jp gpg(xx)

which by linearization gives the transformation equations (2.31).

This process may be éxtended for any approximation in power series
expansion on (x,t) for our general solutions (2.27-2) and (2.27-3) for the
wave equation (or Klein Gordon equation), Its finite form for the conformal
part involving the acceleration parameter and all subsequent generalizations

is obtained by the generalization:
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o : B L N | N O | T
Ta(r1g1d translation) - Ty " = > at + 3 b 0 X"+ y vp X X"+ ...

the generalized conformal transformation will then be
A WA A
X't = Bo(x") = P 1, Po(x")

The presence of non-rigid translations is directly connected with the fact
that these conformal mappings introduce a curvature on the geometry of
spacetime. As we have seen, the final metric tensor being conformally

flat has in general a curvature.

5. Note on the proof of the group property of the infinitesimal transforma

tions (2.27-2) and (2.27-3).

Here we do not take into consideration the (2.27-1) since we are not
directly interested in this transformation. We consider only the mappings
on the parameter plane (x,t), which are those of direct interest in the
study of the symmetries of the coordinates. Of course, the present proof

may be easily extended also for the full transformations (2.27).
Let an element of the transformations (2.27-2,3) be
nl(x’t) = h1(u) + gl(v)s KI(X,t) = hl(u) - QI(V)

which maps a point (x,t) into another point (x', t').

X' = X + nl(x,t)

tl

n

t + A1()(lt>
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Take another element of the set of transformations,
n,(xst) = h,(u) +9g,(v), A, (x,t) = h,(u) - g,(v)

such that it transforms (x', t') into (x", t"),

X" = x' +_n2(x|, tl)
t" =t +)\2(X', tl)
then, to second order in the descriptors,
an, (x,t) an,(x,t)
x"=x +n, (x,t)+n, (X, t)+n (x,t) + A (X5t) ———
ax ot
<
3, (x,t) A, (x,t)
t" =t A (X,t) + A_(X,t) + n, (Xx,t) ———— +A (X,t) ———
_ A0 2 : ax 1 at

Consider now the transformation with descriptors nz,lz acting on (x,t):

X

1}

X +n,(x,t)

ot
1

t+ 2, (x,t)

L
]
ot
+
>
-
—~
x
‘-*
Nme”

anl(x3t) arh(xst)

=X + nz(X,t)"'nl(X,t) + ﬂz(X,t) —T‘—" + Az(x,t) —_a_t‘—"
X

X, (x,t) A, (x,t)

+ X,(x,t) ———
X ot

t+ A, (x,t) #2,(X,t)4n,(x,t)
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then, the difference between the two coordinate points (x", t*), (x", T)

will be
an, (x,t) on, (x,t) oan, (x,t)
B - X = n(x,t) Ty A, (Xot) ———— - n, (x,t) =
ox ot '}
an, (x,t)
= A (X, t) ————
at
A, (x,t) A, (x,t) M, (x,t)
T - t" = n,(Xot) —— + A, (Xst) ——— = n (X,t) ———— -
3X ot X
M, (x,t)
- h(xt) ————
ot

which is the commutator for the transformations under consideration. Now,

from the definition of the form of the functions n and A we get,

MG (u) dgy(v)

ot du dv

Bnk(x,t) dhy (u) dgk(v)
+
9x du dv

Bxk(x,t) dh (u) . dgk(v)
ot du dv

akk(x,t) dhk(u) i dgk(v)
X du dv

for k =1, 2. Therefore,

[ dn, dh, dg dg,

X x" = 2 hz———-hl—-—+g2___-gl_._
< i du du dv dv
dn, dh, dg, dg,

vT-t'=2 <h, —-h —~-g, —+g, —
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Writing,
dh dh
h, — - h, — =1 o(u)
du du 2
dg, dg,
9, — = 9 — =5 x(V)
2 dv v 2
we have
X" - x" = o(u) + x(v)
T -t = e(u) - x(V)

This shows that the commutator of two mappings of the form considered is

another similar mapping. Then, the set of transformations with descriptors
n(xst) = n(u)+ g (v), AL (xst) = h(u) = g (v)

form a group.
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