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SUMMARY

A relationship is shown to exist between some elements of the group
of gauge transformations in electrodynamics and the ten dimensional Poinca~
re group. This result is local in structure, that is, it holds at some
specified point in the four-dimensional Minkowski space. All properties
presently obtained apply to free fields as well as to interacting fields,
The generators of the gauge transformations which satisfy the above relation
ship are derived. |
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4

I. INTRODUCTION
The gauge group of electrodynamics I& an additive group of

continuous transformations which mapps the space of all allo.
able four-vectors of potential into itself. By allowable here
we mean those four-vecitors which are solution of the field equa=-

W " ki »

Although the field equations are form invariant under these
transformations, the use of a theory where the field variables
are gauge dependentvconduct to well known difficulties. As
example, (in this paper we %ireat only the classical formulation
of eleptrodynamics) given the initlal Cauchy data for the systenm
at some time t==to, we cannot determine well prescribed values
for all field variables throughout the regidn~t.>to. This type of
difficulty may be overcomed by separating the set of field varia-
bles into two classes the first belng independent of the cholice
of gauge and the second being gauge variant. However, we still
have this second type of variables which are unphysical and which
must be dropped out by the choice of some gauge condition.

Thus, in the framework of the Lorentz covariant field theory
wve can use a formulation of the electromagnetic field in terms of
potentials and associated to this we have the possibility of
describing the theory by means of varlational principles, with
the potentials playing the role of the configuration variables. is
a consequence, varlational conservation laws as given by the

Noether theorems are obtained.

¢ is known that a similar situation exists in the theory of



s
genera; relativity, where the invariance group is also a function
group. However, in this theory we do not know how to eliminate
the coordinate dependent variables in a well prescribed way
(besides this, the coordinate independent variables, as given by
Dirac's Hamiltonian formulation are not all independent). A varia
tional principle exists for the theory but no conservation law is
derived in a unique prescribed form since here the whole invari-
ance group cannot be separate in a well prescribed fashion into a
group with discrete parameters and a group involving arbitréry
functions (as the gauge group of electrodynamics). Due to the
fact that conservation laws are related to transformations depend
‘ing on a set of discrete parameters, they are 20t to be uaniquely

determined in such formulations

Thusy it is an important problem to study what should he the
conditions under which it is possible to relate the function
group to some‘discrete-invariance group of the theory. In general
relativity this is a complicated problem. In this paper we treat
a somewvhat simple problem, the relations which might exist between
the gauge of electrodynamics and the Poincare group. In spite of
being a simple problem as compared-with;the above one, both are

mathematically relateds

Another wey of looking at this problem is the construction
of a Lorentz invariant theory written entirely in terms of gauge
inveriant quantities, in the case the electromagnetic field
intensities %ﬁyejThis.method~was treated in the 1iterature 1,

bowever it iz not possible to derive a Lorentz invariant varia-
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tional principle for this formulation, and thus we do not have
the existence of symmetry principles which are’associated to the
exlstence of a Lagrangian density. Also, the correspondence‘ of
guch method with general relativity is not obvious unless we
restrict to the linear approximation of the general relativistic

field equations.

Then, instead of proposing a formalism where the gauge group
is dropped out from the outsets; we try to formulate a type of
weaker formalism which being compatible with the integral Noether
theorems at the same time gives a correpondence between the gauge
transformations and the discrete Poincaré transformations. As we
have sald before, this method is of interest for situations where

we find more general continuous group of invariance.

It is shown in this paper that such type of relationship does
exlst for a sub=group of all possible gauge transformations. The
problen is greatly simplified by considering only infinitesimal
transformations in the space of the four-vectors of potential. In
thé case of general reldtivity this is equivalent to infinitesimal
transformations both in the spacé of the gy, as well as in the
coordinate spacéo Since all importént gquantities assoclated to
conservation laws in differential form are local quantities, this

kind of approximation is sufficient.

It will be shown that the method presently reported applies
both for free fields as well as for interacting fields. In the last

case we have only to exclude transformations at the point where



there are particles which interact with the field.

II. THE GAUGE GROUP AND THE POINCARE GROUP FOR FREE FIELDS

The behavior of the electromagnetic potentials under the

action of the Lorentz group uniquely characterizes those
quantities as a four~vector in the four-dimensional flat space
of special relativity, a result which comes from the relativistic

invariance of the electromagnetic field equations.

To this discrete invariance group we have to add another
invariance group‘of transformations, the gauge group, which
transforms the manifold of all potentials, solutions of the field
equations, into itself. This mapping is effected in a given
fixed reference system, that is, without any change of coordina-
tes in the four-dimensional space. In this sense, gauge trans-

formations are what is sometimes called an "active transformations.‘-'

It is also known that besides this type of éctive transforma-
tions we still have the invariance of the field equations under
conformal transformations. The conformal transformations are -
also active transformations but they are distinguished frdm the
gauge transformations since they depend on a fiﬁite number of

2

parameters <. This result holds only 1in special relativity.

Thus, we conclude that for particles with zero rest mass we
have a larger number of invariance groups than those existent for

particles of finite rest mass. Besides thls, these extra invari-
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ance groups which are necessarily represented Ly active transfor-
mations inciude two distinet types of transformations. one yepre=-
sented by a function group, the other by a discrete groﬁp, the

fifteen parameter conformal groupe.

Presently we consider the relationship which may exist between
the gauge groups or at least between some'sub»group of gauge trans
formations, and the Poincaré group. In doing so we are obtaining
a description of the zero rest mass particles which is much more
similar to all other particles, in the sense that we may drop out
the extra invariance presented by the gauge transformations if we
restrict to the transformations satisfying the above rslation-

shipe.

The firét~step towards a correspondence between a passive
transformation like the Poincaré transformation and an active trans
formation as the gauge transformation is to consider the space of
all four-vectors of potential. In this space the’gauge transforma
tions are a mapping of this space into itself,

Aw(x) = Aﬂ(x) + ﬁgp(x) o (1)

We may interpret, and this holds in general for more abstract
function groups, this group as a set of transformations depending
6n an infinite number of discrete parameters,.which‘may be repre-
sented by the coefficieﬁts of the several terms of the power series

expansion of the function A(x) around the origin.
A(x) =AC0) + (N ) +}° “xBA L)+ (2)
Yo ‘o > X 30‘.[3 o P

The funetion A(x) satisfies the scalar wave equation
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OA=0. (3)

In this paper only infinitesimal transformations will be
considered, the function A(x) is continuous, with continuous
partial derivatives up to any order., This last requirement may
be weakened if eventually we have to cut off the series at some
term, case where we need the partial derivatives only up to
that order. However, we will show that a solution of (3) may
be found in the form given by (2), and satisfying all the
necessary requirements without the necessity of any cut off.
Therefore, all coefficlents which appear in (2) are first order

infinitesimals.

The transformation (1) with A given by (2) is assumed to be
regular at all points x% Por free fields far away from its
sources which is the situation presently considered, there is no
further condition imposed on A in order to maintain this proper-
ty. We now write the Poincare transformations in the form of an
active transformation 3 by expanding in power oeiies of x% a1l
point dependent terms which appear in the transformation law of

the four=-vector A, .

L
h(x) - A (x) = - 2 *
( ~Aﬂx ‘~€<ai“>o“£ﬂ A (0) -

2
e (ﬁ) . a(éﬁg) E(_?_A;_&) _
o™/ o Ia axy o x73x” /o

2 Y\2x 2x*/o A ‘33(:°L3x" o Ia ax’9x*/ o 7o oJ N
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the €* and £ are the tem infinitesimal parameters of this
element of the Poincare gromp.

= gt 5%{3 e -h
As 1t stands, the relstivistie transformatiom law (4) is also a
n@ping of the space of all fourswectors ints itself. Indeed, by
applying the invariant D' Alembertian operator on ;g we Tind,

0 6 =0 a0+ [ ()
(for simplyfying the notation we called the infinite power serles
expansion present in the right hand side of (4) by [}‘,‘(x)), but

. o, . o« 9 (=" ¥ ?

g = o o« —— A =§ 2 p—— A 6
or, € O, ~€ — Oay, -5 2" — O 8, (6
which vanish for free fields, thus proving that A, is also a solu

!

tion of the fleld equation.

~ Looking for a similarity with the geometrical Poincare groups
we try to obtain a repres_eﬁta_tﬁ.m of the qu@mtions (1) and

(2) which depends on some finite set of paremeters. These trans-
formations have to satisty (3) %, so that we lesk for selutions of
the scalar wave ¢quation whj,chfdepend. on some finite set of para-

meterss

 For obtaining t:is we first expand [[]A in power series of

™A - 1 o {3’2 ;.
[a= CB;\)O +x ('e).'l::]/\)‘o + gx x| (3“;3{:}/\)0 +oeee  (7)

The equation (3) implies that
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(M, =0, (8-1)
(o, AN, =0, (8-2)
(a?- CIAy, =0 . (8-3)

S P e B s sPRQOSPCEEESTEDS

It may be verified that a function /\(gc) satisfying all the

conditions (8), and represented by an expansion like (2) is of

the form

and for all p > 1,

) A (0)
? 'R ) = = - M(O) + s X 3 2 (lO)
( Fieeeby > 15 Mipe oMy Fp = APieefpa

vnrere KH and K}W are o set of ten infinitesimal parameters.

h}lY g/-lA K y - KVF P

The S}(‘O) Joe which appear in the eguation (10) are
llol q

(o) ) M ? Ml
Py oo By H My ()
1 Py ; 1 -1
(Pl‘..,&.{) 'DL oo:b O
Lheve the osyabal "™ inficctes a sum over all permutations
f‘k) |
Qi) ﬁwﬂ‘

50 the indices Hlﬁnw e *

The proof thct the pover series exnansicn of A with coeffl-
cispts ziven Ly (9) end (16) is o solution of the conditions (8)

folliovre from ths

[P

£

!,'51.\4 5 '..C 9}
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n = e — (O) OL"' 0w KA S(O)
(a/‘l”“l‘nDA)o Hl f“ZitZ *v* HKn }*].'”Pn-l)u'

which was obtained from (10) and from the fact that the K, are

skew=-symmetric. The above relation holds for all mn > 1. Now, it

may be easily seen that the contracted quantities S,l(lzl & vanish

as consequence of the field equations plus the Lorentz condition,

O alt = 0, QFAH =
Thus, a function A given by
Atx) = ACO) + x* K (1) Ho
xX) = ) + x ™ g me——— X T e e X o
X p(p+1)!
¢ a (O) ¢ o9 K;\ S(O) ™ ade (12)

['ll A/"Z’”,{p

is a solution of the scalar wave equation, and depends on ten

Po Arece Poaa

first order parameters. BEvidently this is not the unique possible
solution of this eqﬁation, which means that the gauge transforma-
tions which have a function A of the above form belong to a sub=-
group of ali‘possible gauge transfermationsa We call this sub-
group by G + PFor this subégroup the relationships which have been
dlscussed before will be- determinedq ~Pirst of all we see that
each element af G depends on ten infinitesimal parameters and
posses a transformation law ‘which is similar to that of the
Poincaré group {given by the equation (4)). These two transforma-
Tions are not entirely identical since we know that the electro-
magnetic field strenghts do not vary under GS, but changes as an
antisymmetric second order tensor under the Larents transforma-

tions. In order to have a quantity which varies under both types



t=s
AN

of transformations, we introduce the symmetric second rank tense
. Under a Lorentz transformation we have

g}“V(X) o= ‘H E/‘l SOLV(X) 8°: S}.\d. (X) 'E;L Xx?a_ SHV (13)

el

and for a transformation belonging to G

}w(x) (0 = 2800 (14)
where A is given by (12). The equations (13) and (14) are’ still
not the same. However, we will show that a relatlcmahlp does
exist, or in more proper words,; may be imposed 1in a very natural
way between the transformations (13) and (14). First we cons,{der

the variations in A due to these two transformations

p
A (x) - (%) =

A Aop

These variations are carried out onm all points xP belcnging to

X (x) -=3§,4 (x) =

y ~El Alx) —€7 0 4y e 2P, Ay (15)

(x) . (186)

the domain of definjtma of A+« We consider the effect of this
variation at the origin &P # 0y whiecnh is a point arbitraﬁly

chosen inside the domain of definition ui x}" e get

'55\,(0) - 8yy(0) = I* Sep(0) = 69\ ()(?.?x , (17)
Su(0) = §,,(0) = F s0(Q) - Ky 8R) (18)
'A‘# (0) - 4y (0) = -g)u 4,40) - €%, 5/4)0 ) (19)
A,( (0) - AP(O) =Ky - (z0)

Since these transformations are similar in form, it is natural

to take
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A .
Kf‘ c&&aﬁ, (21)
KI‘= - B (& N A (0) -€ (3, AB)O) . (22)

We may further consider the two constants A and B as equal to

- one. We may give here a more complete dﬁfinit&ag-af qu as the
syb=group of gauge transformafians with a generating functien

of thé form given by (12) andigith parameters'given»by thé rela-
tions (21) and (22) for A and B both equal to one. Thus, the
transfoppations belonging to Gg and the Poincaré transformations
can be made~equa&3s£9n~a&£*gaﬁge #éfianx quantitiesy at the
point vwhere the observer 1s located (the origin of the coordinate
system). This equality df these transformations is sirictly a
local property; whenever moasurementis sre iade on polats outside
ebtain different results. This property
resembles the fact that loeally a Rﬁﬁmﬁﬁﬂia¢=5paee‘may be assi=-

‘the origing we wil

hilated to & local flat spacey in the sense that locally the

anline independent transformation is the Poincaré transformation.

We nmust note that at all points x different from the origin
the gauge transformations belonging %o .Gs are entirely
determined from the knowledge of the teﬁ-pqrameters %M“_and Ea‘of
the Poineare group. Mis means that ia spite of both transforma-
tions being not identical at all points in space-time, the Poinca
ré transfermations play the fundamentel part of the inveriance
group of the theory cince the remalning transformations are

determined as consequence of the relativistic invariance of the

theory.
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According to the above considerations we may construct a
formalism which uses the potentials as field variables in the
Lagfangian!‘andﬁthus‘displays all important features whiéh have
béén réf%ér§&iBéf6re, and at the same time the gauge transforma=
tions are treated as a secondary transfcrmafiqn,vthe fundamental

role being takeén over by the geometricallhincaré‘group,

It should be noted that A plays a dual role, first it may
be interpreted as an operator associated to the generator offﬁhe
gauge transrormations. Secbnd, it may be interpreted as a
geometrical quantity, in the case an scalar, with respect to the
transformations of the Poincare group, case where we obtain the
following variatlon,

Al ) = Al =AG) + (5 6% xh) 22
A ax?L

due to the faect that the derivatives of A are first order
infinitesimalsy we neglect these terms when multiplied by the

parameters of the Poincaré transformation, this gives
]
A (x') = A(x) .

This means that up to first order terms the function A 1s not
énly an scélar,-hat has a stronger geometrical property, is an
invariant.
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ITI. THE GAUGE AND POINCABﬁ GROUPS FOR INTERACTING FIELDS

So far we have considered the case of free fields, that is,
the field very far away from lts sources. The method presénted
in the last section may be extended to the case where there are

interactions of the field with point charges or currents.

In this case the domain of definition of A is further
restricted by the requirement that the vicinity of the external
point charges or currents are excluded from the domain of
definition of A. Indeed, the field at the position of the
charges is singular and there is no reason why the transforma-
tion itself should not be singular too at those points. In
particular, the origin of the coordinate system must be chosen
in a point where there is no charge. Under these requirements
it is simple to verify that all previous results apply equally to

the case of interactions.

In short, we have interacting fields but the gauge transfor-
mations are effected as i1f we had free fields, however, the
potential AP on which the gauge transformations operate, is the
total potential obtained by superposition of all parts of the
system.i Zxcluding the points where this potential is singular
from the domain of definition of A, we can transform the
problem for interactions in a form which is similar to that for

free fields by choosing the origin conveniently.



Ve IHE GINERATORS OF G
==

—

vie have sesn that Gs depends on ten infinitesimal parausbters
which are given in terms of the parameters of the Poincare Zroup
by means of the equations (21) and (22), for A ond B equal to one.
It is evidently interesting to determine the generateors of &S

R

which will be too in the total number of ten. For th» :lcteriina-
tion of these gensrators we use the Hamiltonian formulaticn ond
Joisson brackets since presently we treat classical systens,

to this we first take the decomposition of s5ll cguantities
assoclated to the field in their spatial znd temporal poris. Lo in
iniices will indicate quantities witl indices rmuining Z:rom wiie ©o

tlivee.

Since for the Maxwell Legrangian density the cannnical
monentum density conjugate to the scalar potentvial vanishes, ciily

Lhe veelor potenticl Ai is to be considered as a conliguracion

5

trpe variahle Y, satisfying the fundamental Jolsscn biosker »oin-

ticon

1;»‘3 o FJ‘:’ . A
2he grnsroto S; for the gauge transiorrmations is such tieon
Harg{x) = [}i(x;, I AR R oy
o — ,i
S 0%y Tor u reiction of the forn
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v

?: K @H o K}“}@R 3 (25)
. H P
giving & in terms of the ten partial generators ¢/ and P
From (24) it follows that %, must have the form

§=J, dpx E(x) A RCINp (26)
Using (23) we write (26) as |

?(x% =Jd3x L EIVIED =Jaoa FFA(x)/\’F(x) (27)
rs

where the integration on the right hand side is extended over
the hyperplane x°% = const.

The variation in the Lagrangian density under a gange trans-

formetion is (we consider here free fields)

8L < M), | (28)

which vanishes as consequence of the field equations plus the

skew symmetry of 32. » The variation in the Action integral is

; v

therefore, K

8T = - {\d Ay =ebae A =0
-'l&rjéx A,}.l W 167 %y /\,/4'

which may be written as
1 v Y
8 = = — f do FH A =] do F'u N (6 I
16w v p : y a}&
2 2

Thus, we conclude that %independs on the chqoise of the hyper-

plane of inteoratlon (is a constant of the motion).
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We use this result for taking the gwhich stands in (24) on
the hyperplane x° = constant, where x° is the instant of time in
which Ai is given. Thus,

@i(z Xo),ﬁ(xo)]= A’i(?,xo) -!-deX‘ 'n'k(}-c" , x°) Ai(;c’,xo) ,/\’k(i',xo)J

{29)
Using (12) we obtain for the above integral the value,

l |"‘ |P A - ( )
' o 0y (o
fd x & x )ZEZ(P'*I) 1...x P{K kExi(x,x )a;p o) |+

A = o, .(0)
seo + K l'lp “ni.i(X’x )’ f)xﬁl.'oﬂp-l k_j

.

Ot
o)

Yot

Zxpanding A, (x, x ) in power series of gco, wve easily verify tha

the equation (30) vanish, and thereforeg is the correct generator.

With the end of calculations, like in the eguation (24), is
sufficient to take the integratjion on volume present in (27) cver

a finite region enclosing the point x in which 4, is given.

i
Substituting (12) into (27),

- ( Po = 5(0) [ pHof1  Ho
de K, ] F'O dzx K’4 5 (p+1)l Fl"‘f‘p(g - Jdgx %,
P By Bo)

(31)
which is of the form (25) with
- (I;F (x°) .—.fp% dzx (32)
¢ }{"’°)- A Z( Y (°’),9‘ " J\dB;L 1 Pl...x“
p+l loco D .
AR p (HP1' Fe) (33)
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where JAL indicates antisyvmustrization on the indices 2, }h
Both @H and @M{ sre conshant of the motion, since presently

we consider free systems.

I N P .
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