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SUMMARY

We introduce the electromagnetic ecquations relative to a rotating system with
the help of the space-time metric discussed by Kursonoglu, and investigate its
soiution in the case of an elestrie current flowing\ parallel to the rotetion
axis. We found that in the stationary case the rotation effects manifest them-
selves through & change in the argument of the Besgel function giving the
radial solution} this change being ebsent for problems with cylindrical sym-
metry about the axis of rotation. However, in the time-dependent case even the
symmetric solutions are modified, the Bessel functions being substituted by
hypergeometric functions. The dependence in © and z (the angular and axial
coordinates) of the separated solutions is unaffected in sll cases.



i1 -~ INTRODUCTION

The introduction of the electromagnetie effects into the
scheme of the General Relativity has followed, since the first
developments of this theory, two different WEY'S o The first one
tries to take these effects into account through adequate changes
in the energy-momentum tensor, whereas the second looks for a
reformulation of the General Relativity, in which both gravita-
tion and electromagnetism are taken, from the beginning, 1in the
same footing (unified theories?. However; the many difficulties
met by these two techniques, both from the mathematical and
physical point of view, gave rise to a third method of .approach.
This method consists in generalizing the usual electromagnetic
equations by the simple introduction of the requirements of the
General Relativity (covariance), assuming; at the same time, that
the perturbations of the electromagnetic field in the geometry
determined by the gravitation can be neglected. Although less
ambitious than the former ones, this last approach methed may
prove to be very useful in giving the approximate intersaction
between the twe fields, and in selecting thelproblems in which
the application of the more elaborated theories is expected to be
worthwhile., Among the problems discussed with the help of this
method we may quote here Priedmants and Zitterts Universes, the

quasi-uniform gravitational field and Schwarzchild's geometry]@SG

More recently many papers have been devoted to the study of
the rotating systems, but, 80 far as we are aware;these efforts

have been directed only to the investigation of the' properties of



the gravitational field, without considering its interaction with
the electromagneatic propagation, notwithstanding the interest
this problem seems to deserve. This was the reason whiech led us

to undertake the present work.

Among the papers dealing with this subject;,. we shall employ

(6)

the results obtained by Kursonoglu 3 Which will be briefly

described in the nexﬁ section.

2. FORMULATION OF THE PROBLEM

Kursonogluts work refers to a fluid with cylindrical symmetry
about the axis of rotation, the energy-momentum tengsor of which
is given by
ax ax” )

T = (% -P) — — + Pgi”, (1)
ds ds

where p is the density of the medium and P its pressure. The

resulting geommetry is expressed by
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where the z-axis is chosen to be the axis of rotation and w is

considered as the angular velocity. From (2) we obtain
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Maxwell equations for General Relativity are:
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Using (4) and (7) we obtain an explicit form for (&)
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Since the electromagnetic equations, as stated in (8), are too

involved to be solved in the general case, we shall only consider
some particular situations of interest. The simplest of themis
obtainéd,by taking jo=J;=J, = ¢6 = ¢i = ¢E = 0, corresponding to
a current flowing in the direction of the z-sxis. Assuming the

separated solution
Pz(py 8, 2, £) = R(p) @(O) 2(z) T(t) , (9)

we obtaln for points outside the current (j3= 0):¢
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By taking x =wp/C the radial equation is transformed into
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Iwo particular cases of (11) will be considered here:

2.1 =~ The Stationary Solution
Putting 2= 0 in (11) we get

2
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Introducing the change of variables €=

x2=n2] R=0, (12)
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(12) is transformed into
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the solution of which is:

R(EY = Tn(§) = In| | [ky + Pl (14)

wvhere Jn(t) is the Bessel function of order n. From {14) we see

that for problems with cylindrical symmetry (n=0) the usual solu
tion is not medified by the rotation. ~For n # 0, in order to
obtain the values oi the field on the z-axis independent of w, the
arbitrary constants appearing in the solution must be functions of

w in the way given belows
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singuliar solution of the Bessel equation as defined by Hankel 7

When we employ 4n (10) Z' = = kz Z as the part of the solution

depending on z, the new radial solution for A1 is
k C
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which is a modified Bessel function only for ko (1. When == o -1
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the solution of which is
R=Ax" +Bx ", (18)



For problems not depending on z we have
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which gives Apn-l-Bpmn’ when w =0, Let us now compare the behaviour
n

of the regular solutions 2" nf'(d-)-%) J’n( %ﬁ ?) and pn for large

values of n. Using Carlinits expression for J,(nx)} when n —>o0o0angd
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we obtain for the rat’o of the two solutions:
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which goes to zero when n —>wo, for x # 0. It is easy to show that

(20)

the two solutions above are of the same order ofx'ly in the neighbour-
hood of the axis of rotation for whieh wp/C g(n"%)o Therefore,
the difference between the two solutions becomes Incereasingly more
pronounced for large wvalues of n.

22 ~ The Time-Dependent Solution

The simplest type of time-dependent solution isbb‘tained from
(11) by taking k, = n = O
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which is an hypergeomstric equation. Its regular solution at the
origin is given by

Rl(g} = F(Oégf—"grrgs) $ (24)
with o= /2w, B= = Q/2w and Y= 1. The solution, singular at
the origin, is obtained from (23) by putting 9

R,(E) = Flay =y 1, §) ing + Z:c 5 (25)
n=1
Which finally yields"
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For the cages of high or low f’requenéies (according to w/Q
is respectively much ‘smallef.r or much larger than one) expression
(24) can be easily simplified, its contribution to the magnetic
field being written as
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Similar approximations can also be found for the singular solution
(26), ag the reader may readily verify.

® k%
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