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1. INTRODUCTION

It 1s not very easy to understand and interpret in terms of
elementary interactions the experiments in which beams of particles
are scattered by nuclear matter in general. Neutrons and protons
are closely packed together to form the nucleus,; so that the inter-
action of the incident particle with only one of the nucleons with-
out the others strongly participating is almost impossible. During
and after the interaction of the incident particle with one of the
nucleons,; this nucleon will interact strongly with the others. The
incident particle itself will very likely interact with two or more
nucleons at a time, or suffer multiple scattering, since the scatter
ing centers (the nucleons) are so close to each other. On the other
hand,'the nucleons are not at rest inside the nucleus, and their
motion should be known if properties of the elementary two-partiecle
interactions are to be used or deduced. This knowledge is not a-

vallable for most of the nuclel.

The deuteron 1s a rather speclal system among the nuclel. The
two nucleons in the deuteron are separated by a relatively large
distance, so that the incident particle may interact strongly with
only one nucleon at a time. If the interaction between the inci-
dent particle and one nucleon lasts only a relatively short time,
the presence of the second nucleon will not affect much the state
of motion of the first nucleon during thils interval of time, and
the characteristics of the two-particle interaction will be ap-

proximately obeyed. Alsos the deuteron possesses .such particular



features that may enable us to approximately describe scattering
events in terms of two-particle interactions. These properties of
the deuteron were first recognized by Chew 1 who introduced what
is called the Impulse Approximation to treat the problem of scatter
ing on deuterons. The conditions of applicability of the Impulse
Approximation were qualitatively discussed by several authors

1-3 Chew and Goldberger %

expanded the formal expression
for the transition probabilitj for elastic scattering of a particle
by a complexe nucleus in terms of two-particle scattering ampli-
tudes and showed how the terms corresponding to the Impulse Approxi
mation appear naturally in this case. The Impulse Approximation
5 =6

hag been applied to pion-deuteron and to XK meson-deunteron
scattering 7 -8 | Gourdin and Martin 9 improved the calcu-

lation of inelastic K - deuteron scattering by taking inte account
the interaction of the two nucleons in the final state by analogy

with the case of the photodisintegration of the deuteron.

We intend here to make a more complete quantitative analysis
of the meson-deuteron inelastic scattering. We start by writing
the formal expressions for the scattering amplitude (Sec. 2). This
amplitude is then expanded in terms of two-particle scattering
amplitudes (Sec. 3); and physical meaning is given to the terms in
this expansion. The terms representing double scattering of the
incident meson and those representing a meson-nucleon scattering
followed by a nucleon-nucleon collision are explicitly written in
Sece 4. The analysis of the spin dependence is discussed in the
Appendix. In Sec. 5 and 6 complete evaluation is made of the
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terms representing double scattering and nucleon-nucleon interaction
in the final state. Expressions for the cross-sections for ine-
lastic meson-deuteron scattering are written in Sec. 7. Charge ex-
change scattering and the Coulomb interaction of two protons in the

final state are discussed in Sec. 8.

2. FORMAL DESCRIPTION OF INELASTIC MESON-DEUTERON SCATTERING

We first want to write the expression for the transition ampli
tude for inelastic scattering of mesons by deuterons in terms of the
quantitles deseribing the interactions between pairs of particles.
We here consider only transitiomns from the initial state, which
consists of a free meson incident on a deuteron,; to a final state
which is a system of three free particles; one meson and two nucle-
ons. We do not consider processes in which particles are created

or absorbed.

Let us call U the potential describing the nucleon-nucleon
interaction. It is responsible for thekformation of the bound
neutron-proton system. Let K be the total kinetic energy (sum of
the kinetic energles of the three particles), Vp and V, the po-
tentials responsible for the interactions between the meson and the
proton and neutron respectively. The total hamiltonian of the
Interacting system 1s H =X + U + Vp + Vn. The initial state satig
fies (K-FU)yi = By ¢i and the final state three free particles
satisfies Kkﬁf = Ef ¢f.o An outgoing scattering state ¢&(+),

which i1s an eigenstate of H corresponding asymptotically to a plane



”
plus an outgoing wave of a free meson and a deuteron system, satig

fles

3, = 3 + (B~ k-U+1e)] (T + V) %*) =
= Yyt (B KUV, -V e 1) ()Y, (1)

An outgoing scattering state tbf("') with asymptotic behaviour
corresponding to plane plus outgoing waves of three free particles

satisfies

¢’f(+) = ¢f+ (Ef-K+ie)'1 (vp+ vn+ u) ¢f("') =
‘=¢f+(Ef-K—Vp-anU+ief¢(Vp+vn+u)¢f . (2)

Eq. (1) and (2) can be written in a single equation,

) = pu (B-m+16)l (H-m)P = Q¢ (3)

where ¥ is any of the states of the set of "plane-wave states” of
the system of three particlgs. This set includes the states in

which we have a deuteron and a meson as two separate plane waves,
and the states in which we have three separate plane wavés. ‘P(+)
represénts the corresponding outgoing scattering states. As P and
‘P("'_) form two complete sets of states and there is a one-to-one

correspondence between the elements of these sets, Eq. (3) defines

coﬁ:pletiely the wave operator ﬂ_,_. A wave operator Q_ connecting
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¥ with the ingoing scattering states ‘P(“)

can be defined in an

analogous way.

We can write expressions for operators T+ and T 4 which we
call collision operators, related to these wave operators; and such
that the square of thelr matrix elements between states of equal
energies are proportional to the probability of transition between
the two states. The elastic scattering has been treated by Chew.
and Goldberger (4) | ye now consider the case of inélastie mesqn;
deuteron ‘scattering. Gell-Mann and Goldberger (10) optained that
the expression for the transition amplitude from the meson-deuteron
state to the three-free-particle state is given by (Typ010p1 =
= < ¢fI(U+VP +Vn)l?Pi(+)> . By using the same method, another ex-
pression can be obtained, equivalent to the above for E1 = Ef, but
written as a matrix element between states ¢>é")

of between ¢f and ?,01(+). We obtain (Tinel)fi=<4>§.")I(Vp+vn)lfl’i> .

and “1 instead

We can then define the two operators

_Ti'nel (U+Vp+Vn)+(U+VP+Vn)(Ei K-U vp v, +1¢g) (vp+vn)

and ‘ ' (4)

- =1,
Tiner = (UHVp+ Vp)(Ep «K=U=Vo= Vo + 46)"H(V + V) + (V +V,) (65)

which are extensions of the the definition of Tinel to include off-
~-the-energy shell matrix elements. Here the parameter Ey is the
energy of the meson-deuteron state on the right of the operator
+ .
Tiner and B, 1is the energy of the free-particle state on the left
- . + -
of T;,e1° Comparing Egs. (4) and (5) we see that Tine1 204 Ty
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differ not only by the values Ei and Ef of the energy parameter in

the denominator, but also by the extra U that appears in Ii;el° We
can prove that this difference disappears on the energy shell. In
fact, since the integrals over closed surfaces of the flux of ¢=f
and ¥; vanish, and K is hermitian, we have <tbf|tﬂ %y > =
= <¢f |- K + (U+K)I?J!1> = (By =Ep) < (bflel'i > which is zero for
E, = E,.
We can obtain more general expressions for operators T+ and
T” which apply to both elastie and inelastie scattering. With the
definitibnS'of e, ‘P(+), <P(m)9 Q. s _  given above we have that

+ +
Tinel and Tel can be written in a single expression

TV = (B-Ep) + (H-B)(Ey~ B+ 16)"H(H-B;) = (H-E,)Q(E,)

(6)
and T;nel and TZl can both be given the form

T" = (H-E;) + (H-Bp)(Bp - H+16)"H(H-E,) =S).Z(E'f)(I-I-=-Ei()7)

3. EXPANSION OF THE COLLISTON OPERATORS FOR MESON-DEUTERON INELASTIC
SCATTERING IN TERMS OF TWO=PARTICLE OPERATORS

The purpose of our analysis is to obtain (approximate) ex-
pressions relating quantities which can be obtained from the experi-
ments, i.e. quantities like matrix elements of collision operators.
S8ince almost no information is available at the present about the
potehtials :Vp and Vng_it is in terms of two=particle collision

operators that the meson deuteron scattering is to be analysed.
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(4)

For the meson-proton system we define the collision oper-

= - - + : + .
ators tp Vp‘+ Vp (Ei K Vp 1€) Vp and tp = Vp Vp
. (Bp mK=-V_+ 1€)™L v where E; is the energy of the plane wave

state on the iight and Ez that of the plane-wave state on the left
when these operators are teken between two states. These are ex-
tensions for regions off-~the~energy shell of the usual operators of
the scattering theory. We need these extended definitions because
we shall be concerned with off=-the-energy shell matrix elements.
For the meson-neutron and the nucleon-nucleon interactions we define

oo P -+ -
analogous expressions tn’ tn’ tu’ tu’

These definitions given for the t+ operators (we drop for a
while the indices n, p, u) assume that they are to be taken between
states such that on the right one has an eigenstate of the kinetic
energy operator, with energy Ei‘ This definition is not complete
for our purpose, in thé sense that it does not tell how the operator
acts on an érbitrary state, 1.e. on a superposition of free particle

states diu(with K:¢h = E! ¢Q)o t* must have the property
t T = + -- «V +1e)1 ]
tT %9 ¢n> cQ[V V(ER K~V +ig) 'v 4’;1)
We can find an explicit expression for such an operator, namely
+ -1
T = X [v+v (Ej =K =V+1E) v] $.><d
3 1YYy

Similarly the complete definition of the operator t~ is

-_ -1
t” = Zj:¢j><¢j[V+Y(EJmK-»V+iE) v]
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For brevity we shall supress the b»- et and summation symbols
when writing the expressions for the t-operators, but keeping in
mind these complete expressions when operating with t+ and t- on
packets of free waves. For the calculation of cross=-sections we
shall be interested in the on~the-energy shell matrix elements of
the collislon operators for meson-deuteron scattering. So we take
By =By =B, 7,7 . =T, . = Tine1s OUr task in this section is
to expand the expression for Tinel in such a way that the two-parti
cle collision operators tp, tn’ tu appear 1n the most important

terms Instead of the potentials VP’ Vn’ U.

The initial state consisting of a deuteron and a free meson,
can be represented at a given time by a superposition of plane-wave
states of three free free partieles l¢i> -§1 e I ¢ >5 where ¢
is determlned by our knowledge of the structure of the deuteron,
namely the deuteron wave-function in momentum space. By applying

-1

the operator identity A~ =gl 4 41 (B - 4) B™L to the expression

defining t; after multiplication on the left by (ER«-K + iE)gl we
obtain

-1 - _xy=l L
(Ey - K=V, +1¢) v, l 4>Q> (E, +1& -K) ty I 4>1> (8)

where ER is the kinetic energy of the particles in the free state
¢, . Analogously we can obtain
]

-1 _ -(w . -1
<‘:|>‘l lvIJ (EQ-K-VP-*-.’LE) = < 4>ﬁ ltp(,,EQ K+1E) (8-l)

These are very useful relations. We can write analogous expressions
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for Vn and U.

By using the above menticned operator identity, and relations
like (8) and (8') we obtain

Tyne1 |9

- ey kv )L
= §ck{(u+vp+ vn)+(u.+vp+vn)[(mx+1e K-v )l v+

-1 -1
+(E2+1E~K-yn) Vot (E+1e-K-T~-V V) (Bg= E+T+V,) .

« (Bp+1€-K=V )"V + (E+ie -K=U=V, =V )™ (E ~E+T Vy)
-1 - + gt

« (Bg+1e-K-7V,) Vn]} { ‘PQ> %cﬂ{g"'tp*‘_‘n"' (U+vp+vn).

- -1 -1 .+ +

« (B +ie-K-U-V,- Vp) T (Eg- B) (B +ie -K) (£, + t,) +

[ -1 | =1+
+ L(U+Vn)h+(U+Vp+Vn)(E+i€-K-U-Vp-vn) (U+Vn)](EE+1£-KJ tp+

+ L(U+Vp)+ (U+V +V, ) (E+ e~ K- U=V =V )"(U+ vp)](Elﬂ.e- K) tn}l‘i?

Let us evaluate the contribution from one of the terms in the
brackets. In order to do this, we apply the operators inside the
brackets to the final state <¢fl on the left

4 ¢f| [(U+ vn) +(U +vp+ vn)(E + 6= K=U-= V_p - Vn)"l _(U +vn):' .

(E, + 16~ )T t; | 4>= <4 | {t;+t;+tl; (E+1e-x)"T (V,+ V)
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=1 - -1
(E+i£-K-U-Vp-Vn) U+t (E+ 18 - K) (U+Vp) .

: - - - = -1 o= - - - -1
. (E+1e =K U Vp vn) v, .t VP(E+5.E K=0 Vp V) (U+Vn)+
=1 -1
+U(E+15-K-U-vp-vn) Vn-ﬁ-vn(E-rienK-uUmvp-»Vn) U}
- +
(Bp+ 16 -K)™" &7 |9y >

We thus obtain

- P R ey=l Lt - R I
{PelTy oq 1% >= %’.cg<¢f|tp+ o+ by (B, + 1€ =K) t,+ 6, (B + 1€~ K) tot

+
+ t;(El+ iE-K)-l t; + t;(ER4-iE==K)“1 tn + remainder I ¢h> (9)

where

- , N A - _wy=1 + +
remainer = T, .. (BE+ie=X-1U) (E2 E)(EQ-FiE K) (tp'Ftn)+
+ terms of higher order (10)

The purpose of this series of transformations has been that
of eliminating the "unobservable! potentials and introducing the
"observable" collision operators. We have thus expanded Tinel in
products of the type t Go ! Go t"% ... (where G, = (E«-Kﬂ-ie)"l =
= free particle propagator) of higher and higher orders, which
correspond to multiple scattering processes,; together with terms
which represent corrections to them coming from essentially three-
body effects. By "terms of higher order" in (1i0) we mean terms

which when expressed in the form of products of collision operators
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and propagators will consist of a product of two or more propagators

and three or more collision operators.

It is easy to understand the meaning of the terms in Eq. (9).
These with t; and t; alone correspond to single scattering by the
proton and by the neutron, respectively. The collision operator
contains a &-function of momentum varlables as a factor so that
the momentum is conserved in each collision. However, energy
cannot be conserved in the two-particle collision, 1'e°‘<¢flt;|¢3>
and < ¢r|t;|¢g> in Eq. (9) are necessarily off-the-energy shell
matrix elements. Since we impose conservation of energy in the
whole process, Ef = Ei = incldent meson energy + deuteron mass.
But ﬁl = incident meson energy + proton mass + neutron mass f |
proton kinetic energy + neutronrkinetic energy, so that El)rEf for

any .

Terms like {.‘f cg<¢|>flt;(E2=K+ia)"1 t; | 4’1} represent
double scattering processes. Here the incident meson collides with
a proton of a certain momentum labelled R ; the system of three
free particles of energy EQ then propagates until there is scatter
ing of the meson by the neutron, leading the system to the speci-
fied final state. There is conservation of momentum, but not neces-
sarily of energy, in each of these two collisions. The térms
t; (Bg+ie -K)™F ¢
lision of the meson with one of the nucleons followed by a collision

and t; (E2-+i8-K)-1 t; represeht the col-

of the two nucleons; and are the simplest form of "potential correc-

tions" to the multiple scattering model. The terms of first and
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second order are diagrammatically represented in Fig. 1, where

nucleons are represented by heavy lines, mesons by dotted lines.

The "remainder! represents multiple scattering processes of
higher order, and essentially-three~body processes which cannot be
expressed in terms of two-particle collision operators. They bring
out the fact, for example, that the two nucleons are not free, and
strictly speaking cannot be considered as such during the interval
of time during which collision processes ocecur. For example, pions
can be exchanged between the two nucleons while interactions with
the incident meson are taking place. These effects are illustrated

in the diagrams of Fig. 2.

We can obtain a different expansion for T, in the follow1ng

inel
way. We first apply T, .. to <¢p| from the right, obtaining

‘ _ -y -1 , v v y-1
<4>f|Tinel = <1>f| {tp-Ftp (E+ie=K) [vn+ (U+V_)(E+ie -K~U v Vo) T x

X (vp+vn)]+ t,+ tn(E-l-ie =K) [Vp+(U+Vp)(E+ie -K-U-Vp-Vn) (vp+vn)] +
- -1 -1 _
+ ta(Ere-K) (V4 Y Y ) (EHE KUY -T) (van)]}

By applying this expression from the left on |¢i> = %%I ‘#k) we

ébtain, collecting terms up to second order,

<l Typen 19 > = Topcdpltn + 67+ ¢ (B =K) "] + ¢ (Bre-K) 7L 6 +

p

+ t7 (E+1e -K)7t (1?1";-”;;)_ + remainder | ¢ > (11)
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where

e -1 -1
{$¢|remainder|¥,; >= ZcQ<<l>f|tu (E+1€=K)™" T (B-K=U+i€) (B -E+T) x

(12)
X“(ER~K+1E)-1 (t;*-t;)l ¢i>+'terms of the same and higher orders.

Comparing the two expansions (9) and (11) we see that they
differ, firstly in the single scattering terms by the fact that in
5 and £ and in the other we have t_ and tj which

p P
are different for off-the=-energy shell matrix elements. Secondly,

one case we have t

in (9) the energy parameter in the propagators of the second order
terms 1s Ey, while in (ll)‘we have E. The "remainder" for (11) is
of one "6rder? higher than that for (9). This could suggest that
(11) is a better expansion than (9). However, the contributions
coming from these remainder terms are difficult to estimate. Also,
we do not know anything about the behaviour of off-the-energy
shell matrix elements of collision operators. Thus we could not
really justify preference for one or other of the two expansions.
We can expect that their difference is smaller than the error in-

volved in neglecting the residual terms of the expansions.

We can try to write (9) or (11) in terms of two-particle
scattering states. Let us consider (11). We can group the "single
scattering" and "potential correction® terms into the form

- <1l .+, . 4+y _ (=) +, .+
Cel[1etg @rae-0he 5 = bl Nt el

where | ¢Eé-)‘> represents a free meson plane wave and an ingoing-

-wave scattering state of the two-nucleon system. Tt is a solution
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of the Schrodinger equation with hamiltonian K+U and specified

asymptotic behaviour. Eq. (11) then becomes

CbplTy 193> =<o{30 1% + 60019, +<1>fl{ 65 (B+ie -K)7F g 4

+ t; (B+ 1 -%)™L t; + remainder } i¢i> (13)

The first term on the right hand side of (13), with its in-
golng-wave scattering state in the left hand side of the matrix
element, resembles the usual form of the Final State Interaction

’

Theory llf,

The double scattering terms can also be expresséd in terms
of meson-nucleon scattering states. Since ¢? is a three~free-

~particle state with energy E,
(=} - - -»1],_ [ _ _ -1]
{bpp <*1>f|[1+ to(B-K+1€) <bel |1+ V(BE-K+1E-V))

is a solution of the Schrodinger equation, with hamiltonian K-FVp
representing a free neutron and an ingoing-wave scattering state
of the meson-proton system. We have an analogous expression for
¢§;), the meson-neutron scattering state. Thus Eq. (11) can be

wrltten

(el Ty 173> =<1 Gy + 4019, > + {16719, > +
+<¢£‘;)lt;l¢i>' < el (t;"' t:)|¢i> + remainder (14)

The approximation whereby one assumes that <¢?IT1n91]¢&>'=
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=<<1>f|(tp+ t )|%;> 1s usually called Impulse Approximation. Much
has already been said in the litterature - ™3 ' on the conditions
under which multiple scattering of the meson and the effects of the
nucleon~nucleon interaction are smallrcompared to single scattering
processes. The meson being fast and its interaction with the
nucleon being of short range, we expect that during the short inter
val of time in which the meson nucleon interaction takes place, the.
nucleon=-nucleon binding has small effects. The short range of the
meson~-nucleon interaction as compared to an average internucleonie
distance in the deuteron, would cause double scattering processes
to be much less important than the single scattering ones. The im-
portance of the second order processes will depend, among other
things, on the value of the matrix elements of the collision oper=-
ators tp, tn’ tu’ j.e. on peculiarities of the particular system
studied. If we keep all the second order terms we may have under
ecertain conditions a good approximation to the meson—deuteroﬁ Ine~-

lastic scattering.

4., DYNAMICAL VARIABLES

In section 3 we expressed formally the collision operator for
the inelastic meson-deuteron scattering in terms of the several two-
-particle collislon operators. We now introduce explicitly the dy-
namical variables describing the system and show how the main terms
of the expansion we have obtained depend on these variables and: on

the quantities describing two-particle processes more directly.
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Let us define the following symbols. § - meson momentum in

lab system; Eq - meson total energy in lab; T, ns E.., B, ~

proton and neutron lab momenta.and total energies;' E?E totai,mo-
méntum of the proton-neutron system; fﬁ’- proton neutron relative
momentum (momentum of proton relative to centre of mass of‘fhe
neutron-proton system). Indices o and f will iﬁdicate the values
of the varlables in the initial and final state respectively. M
will indicate the nucleon mass and m the meson mass. We have the
relations XK =3 +®, T= (B, p - E, n)/(E, +E)). Let us call
— —
kp and kn the meson-proton and meson-neutron relative momenta,
defined by Ii'p = (B, T~ B B/(E+E) andk = (B, G- E o DY/ B+ E) .
We use O&§~function normalization for the plane waves. The
momentum space representation for the initial state is
(f: T l_ﬂ‘}ﬁi(a;s %2)>= 5(”@*&%) S(Tgw—k.o)?ﬁn(i) where $p(2) 1s
the (normalized to one) deuteron wave function in momentum space.

We keep the spin variables impliecit for a while to avoid unneces~-

sary complications.

As tp does not act on the neutron and contains as a factor a
§~function responsible for conservation of momentum in the ecolli-

sion involved, we can write

— — R — — — — —
<P', ', ?’ltplfﬁ H, §>= =8(1=1) &7+ q'—p-q)<f5[rplkp> (15)
thus defining the operator rp. Analogously can be defined operators

rn and ru.

For the term in the expansion of <f¢f|Tinel|¢i)» representing
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single scattering by the proton we obtain

<Pp(Tps Bpy Bl 6,19 (T KD > =

Pp Mg, +Bq, Do
= -&(F,- B ¥ (n, y¢ Mg~ Bar Br | | o774 Ur (16)
M+qu M+Eq°
where 3} = ﬁ} + E} and.iz = E; +'§; are the total momenta in the

final and initlal state respectively. The nucleons have been
treated as non-relativistic. Analogous expression can be written

for the term representing single scattefing by the neutron.

Now for the double scéttering terms. Introducing complete
sets of free-particle states between operators and propagators,
using expression like Eq. (15) and the explicit representation of
| final and initial states; we obtain

-_— - — — — —
<$p(Tps Tps Tp) It (E-K +16)7L t19,(Ty Ky = 0)> = 8(F,-7,) x

{

«E p M(q )+E ]
Xd3<-—2L—=|rl So” qm>(EE+1.<5)1 :
M +Eq, M+Eqm
Ma, B nf Mqo
. < —41———-———-|r [-————-——-—> a’ (2) (17)
M+Eq P MeEy, ,
where = H =1, q =Ty~ L -0y, and By = 2M+(2+02)/ 5y +

-l-'\’ ma-l- qi .

For the double-scattering term in which the first collision
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1s on the neutron we obtain an expression sgimilar to Eq. (17), with

the proper changes of the roles of the neutron and proton variables.

For the term tu(E-?K-Fie)'l tp which oceurs in the expansion

of Ty,e1 ¥We obtain
<p(Tps Tps Bp) |6, (B= K+ 1070 £ 9, (T, K, = 0)> = 5(Pp - Py) Typ =
6(pf-p. )J32<Qflr %, >(E - Em+1£)'1<k Ir Ik, > ¥p () (18)

- = — - pod — ol Vot
where p = + g, -~ dp and B = Eqp + 2M + ¢ /(2M) + (L+7q, - qp)=/(2M).

Analogously for the term tu(E-K4-ie)'1 tye
We thus see that all the terms contributing to the expansion
of Ty.eq have B(E;'PE}-EE-—EL) as a factor, as they should. ILet

us introduce the operator Rinel such that
—p —
(Tine1lss = =8(Pp=P3) (Bypgq ey (19)

The meson-deuteron inelastic scattering cross-section is
glven by

2r)d
Z:(

where X represents the appropriate sum and average over the final
and initial states and v is the velocity of the incident meson in

the rest system of the deuteron.
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5. THE DOUBLE SCATTERING TERMS

We now proceed to the éxplicit evaluation of the terms contri
buting to the matrix element of the collision operator T, ... The
terms corresponding to single scattering of the ineldent meson are
already glven explicitly by Eq. (16) and analogous. To obtain the
contributions coming from double scatté%ipg and potential correction

terms we have to evaluate integrals as those in Egs. (17) and (18).

We first notiece in the integrands the presence of the matrix

elements of T r.. with arguments which depend'on the variable

p? Th? Ty

-
of integration. In Bq. (17) the dependence of the arguments on £
is explicitly exhibited. The values of ! that contribute to the
integral are those available in the deuteron wave-function, i.e.
those which make QZKI/D(R) large. These values of £ 1lie between
zero and about 150 MeV/c. As T varies in modulus and direction
within this range of valuess the relative momentum of the two col-
liding particles'and the scattering angle vary. If g, i1s not small
the relative momentum of the meson-nucleon systém will vary within

a not very wide solid angle and the scattering angle will correspond

ingly not have a large fluctuation.

‘Using the relation (E-E ¥ ieiaﬁ P[1/(E-E_)] g 8(E-E )
where P means principal value, we can separate the integrals repre-
senting the second order processes into two parts, one taking into
account the contributions coming from values of Eﬁ on the energy
shell Em = By and the other 1nvolving values of B, which are differ
ent from E. In Eqs. (17) and (18), E =E 1is the energy shell
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for the second interaction in the double scattering processes repre
sented by them. On=-the-energy shell matrix elements of the col-
lision operator for the second correspond to off-the-energy shell
matrix elements in the first scattering. The larger the value of
¢y the farther from the shell EK = E is the matrix element for the
first interaction. This is so if we use the expansion (11) for
Tinel’ as we did in Sec. 4. If, instead, we adopt the expansion
(9) the strong contribution will come from values of R such that
E, = EQ,
the second order processes.

which is the energy shell for the first interaction in

S0, strictly speaking, a knowledge of the behaviour of the
off-the-energy shell matrix elements of the collision operators of
the meson-nucleon systems 1s essential in our problem. This knowl
edge 1is not available at the present, however, and we shall then
have to assume some sort of behaviour of these matrix elements off-
~-the~energy shell, perhaps that they have a constant value. As the
deuteron wave-function contains momenta up to a value which is not
very large, only matrix elements which are not very far from the
energy shell will have important contributions,and it may be not so

bad to assume a constant value.

Let us consider the process in which the meson is scattered
by a neutron and then rescattered by the proton. The matrix ele-
ment is given by Eq. (17), where if the intermediate meson is non-
-relativistic we have E_ = 2M + (n? + g2)/(2M) + m + (E;JE%-Eja/(Zm).
Let us call
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K = (q-0p)p/n

= 2 |
C=p (qu"' pf/(am) -m - KZ/(Zm)) (21)

where M= Mn/(M+m). The integral in Eq. (17) is singular in a
2 _ 3 e _ K; - no ' >

spherical surface ky = (2=-K)" =K-+2C= ks where ko and k are

the momenta of the meson in the final and intermediate states,

relative to the centre of mass of the meson-proton system.

Let us assume that < Irpl > and < lr,l > in Eq. (17) are

congtants equal to a. and a_. respectively, so as to be extracted

o] n
from inside the integral signs. Using the Hulthen wave-function
fﬁD(r) = N|exp(~ o r) - exp(=-p r)]/r for the deuteron, we obtain

for the on-the-energy shell part

1apamJé}1)=fd3?<ci} ,ff{rpla;,?ﬂ-11r)6(E-Em)<gm,£}Irnlffo,-ﬁ%(k) =

2+ (K- kp)2 2+ (K+Xkp)?
= apa, )‘(Z'rr)B/2 % % [Rn = 4 = 5 (22)

= {n .
ﬁ2+(K-kf)2 BZ 4 (K +kf)2

In the integration over the sphere E = Em the relative meson-
~to-proton momentum varies only in direction, its modulus being
constant. 8o, extracting < Irpl >  from the integrand means only
to assume that it is independent of the scattering angle (that is,
that it has an S-wave-like behaviour). On the other hand, the energy
shell E2 = Em for the scattering by the neutron is a sphere with
centre at the point -IJ(’(M+m)/(M-m) and radius |M a;-mﬁ}l(H-m)'l.

This sphere does not ecross the surface E = E s and so orfly off-the-
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~energy shell matrix elements of r, are involved in the integration

in Eq. (22).

For the principal part of the integral in Eq. (17) we obtain,

by considering the matrix elements as constant

a2 = p / a5 W Bplep| T oD (E-By) s Tylry |30 250 () =
- 328 |, -1 _PEK N\ 3/ 2K
aja, p(2r) X [tan (c " 4}@2> tan (C o (23)

Two of the three quantities C, K, kf have a certain freedom
of varlation with respect to each other, which is only restricted
by the energy conservation in the whole process, Ef = Ei‘ We have
evaluated numerically Eqs. (22) and (23) for the case of incident
K~mesons of momentum q, = 200 MeV/c for several values of the mo-
menta of the particles in the final state, trying to cover all the
spectra of possible values. We obtained that the two parts, J(l)

Pn

and Jég), are in general of the same order of magnitude; one or

other predominating in the different regions of the spectrunm.

It is instructive to study the way in which the integral in
Eq. (23) is formed. It is particularly interesting to know whether
or not important contributions to this integral come from values

. —— —— —p
near the energy shell. Using the variable km = R = K we can write

2 2 2 2
{2) _ (ZW)%(E)jm iy dky [Qn B+ ey -K)" 0 Pty *K) J
pn “lo Gtk aPra K2 T aZa(e 10

(24)
Studying in detall the integrand we obtain that the important

contributions to the integral come from values of km which are not
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very far from the energy shell. If instead of having the deuteron

wave-function (which gave rise to the two subtracting logarithm
functions) we had a flat wave=function in momentum space (which
would correspond to the deuteron having a small radius); there
would be stronger cancellation of the contritutions coming from the
neighbourhood cf the pole; and more important contributions would
come from large wvalues of kmp il.e, from regions far from the energy

shell.

Thus we conclude that keeping <(ﬂrp§)> constant in the inte-
gration is possibly not a bad approximation, since the most im-
portant contributions come from values not very far from the energy

shell.

For the double scattering process in which the mescn first
hits the proton and then ig scattered by the neutron, we c¢btain
results of the same form as Egs. (22} and (23) with the roles of

proton and neutron exchanged in the definiticns in Eq. (21).

We now compsre the magnitudss of the contributions of the
single and double scatbtering processes to the transition amplitude.
For a final state in which the momenta of tThe partizles are E}g §}g
E} we have that fthe scattering amplitude for single scattering by
the proton is proportional %o =aa,p ¢D (nf) and if the scattering
is by the neutror it is proportiomal to = amlab(pf)a The values
of these amplitudes vary along the spectra of pcssible wvalues of
Pps Dps but to have a valus characteristic of the important part

of the spectrum, we may take the value of the deutercn wave-function
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at U= 0, which is of about (Zw)% N/«Z. The magnitudes of the ex-

pressions that multiply apan(av)3/2 Np/K in Egs. (22) and (23)
have intervals of variation which are inside the interval (0, 7).
For small values of K tﬁése expressions tend to zero so that the

factor 1/K outside is cancelled. Assuming an~ &, we then obtain

2nd order

2 3,1 +
» (2m)° apa = a(o/4am)®* x — [o(mb)] (25)
1st order &0

vhere o(mb) is the total cross-section for meson-nucleon scatter-

ing measured in milibarns.

6. THE “"POTENTIAL CORREGTION" TERMS

Let us now consider the second order process in which the
meson collides with the proton, which recoils and is then secattered
by the neutron. The integrand in Eq. (18) 1s singular on the
surface of radius 0p and centre at the point - % (&; - a}). This
sphere 1s the energy shell for «(?}[rulﬁg)>, while the energy shell
for <fﬁ§|rp[ﬁbe> is a plane ortogonal to (E; - E}). This plane
does not cross the sphere if we impose conservation of energy in
the whole process. The integral in Eq. (18) is similar to that in
Eq. (17), and we could make considerations about the behaviour of
the Integrand near and far from the energy shell analogous to those
we made for the double scattering terms.

Let us call

A = qp = dq (26)
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Considering the matrix elements of r  and r, in Eq. (18) as

r

constants respectively equal to a_ and au‘we obtain for the on-the-

p
-energy shell part of the integral

. ' 2 _
2 2 yad
(26-10.) a=+(EA+2,)
iapaqu pa'u( M/a)(2r) N( i/2) [fln TV Qf)a in [32+(~£-A+ Qf )2]

(27)
and for the principal part

(2)z 3/2 -Af RS ‘
ag8,T2)= a e, (WaXzr) N[tan (2?_%132_*@2) tan™ (Qa__ > MEN

, (28)

with I = aa (1110 + 182)). 1r the first collision is with the
p_ Zu’p Tup T “up :

deuteron we obtain expressions similar to Egs. (27) and (28), the

only change being that a_ is substituted by an-

P
The nucleon-nucleon system has a larger cross—section than
the meson~nucleon systems. So the approximation of assuming a
constant value for the matrix elements in the principal-part inte-
grals might be not so good in the case of nucleonenucleoq inter-
action as it was assumed to be in the case of the meson-nucleon
interactions. .The introduction of some sort of cut-off may be
necessary. On the other hand, for meson incident momenta over a
certain value, the recoil energies of the nucleons will be such
that the nucleon-nucleon Iinteraction in the final state will oceur
rather strongly in Sy, P and higher waves; It thus seems impertant

to take into account the finite rénge of the nuclear forces and to
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inelude higher waves in our treatment of the nucleon~nucleon inter-
action. Both these tasks can be more easily accomplished if we
write the expression in Eq. (18)in configuration space. Assuming
that <_];'lrp|-l:> is & constant a_, and introducing the Fourier

. p
transforms of the quantities in the integrand, we obtain

- = - 9.. g -
<fltpli> = - § (Pf-Pi)/.(fI?) e~ 3 o1 “D(r) dz T
where ¢b(r) is the deuteron wave function in configuration space,

and

SFled = <zl (B-K=16)7F ¢ | > = ~(27)"/2 feig"’r(E-E «-:I.E)(?lrulnf)d;!{'

Rl

is the configuration space representation of the scattered waves in
the nucleon~nucleon interaction. ¥ 1is the relative proton=to-

=neutron ccordinate.

—
For the cases of S~-waves we substitute (R'lruli}> by a, (a

constant) and obtain

<Fley = - a,w2)s; anf(er) /2 [15,(0,0) + ng(2,0))]

The first part, jo(lfr) comes from the on-the-energy shell part of
the integral, while no(ﬂfr) comes from the principal part. Now
this is a valid solution of the Schrodinger equation only fbr values
of r that are outside the range of the nuclear forces. For r—0, |
nb(ﬂfr) tends to infinity. To avoid this we have to introduce a
cut=-off in (Elrul-Q}> so that it tends to zero as (Q'-ﬂf) increases.
This would affect the part no(er), transforming it in a function

which converges as r — 0, leaving the part Jolfer) as it is. The
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The best way to introduce this effeet is directly in the result
above: we can elther cut-off for distances smaller than the range
of the nuclear forces, or introduce a convenient convergence factor,
for example (1~e~%T) where Z is a parameter related to the range of

the forces 9.

Analogously, the contribution coming from the P-wave inter-
' - — == —p

~ action is obtained substituting (flr,l8e> by b, cos(ly fe). We

obtain

(Flfp> = -b, (M/2)0, an(om)~3/24 Pl[cos(ﬁbf ,;)]{ijr(er) +

.,,.1?; ['jiufr) Cj.(er) + nl(llfr) Si (Efr)]}

Outside the range of the forces we have the ‘simpler expreséion
<r|fp> = ~p (M/2)4, an®(2r)™3/2 4 Pl[cos(ff ,?)]{ijl(ﬂfr) + n(er)]}

This can be transformed in a function which converges as r —0 by
introducing in the part n,(f,r) a convergence factor (1-e™2T)2, this

rule can be extended (9) to any {-wave.

We shall then have, taking only S and P waves in the nucleon~

-nucleon interaction,

- .
Inp+Iun = Mgf(a-,r)ya%( ap+an_)jo [-ijo( er)+no( er)(l_e-Zr )] .

. jo(% )¢D(r)radr + Mﬁf(an-)B/abu(an—ap)cos(ff s_Z\) .
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QT
. j . [-nlwfr) + 1) (1r) (1272792 3,(§ D)) 2 ar (29)

The integral involving jo(ﬁfr)jb(% r) gives Eq. (27), the only
change being that we now have (a.p + an) instead of only ape The
integral with no(ﬂfr):jo(% r) gives the result of Eq. (28) minus the
same expression where we substitute c—ol+ Z,p—+P + Z (this is due
to the cut-off factor that has been introduced). For the part of

Eq. (29) corresponding to on-the-energy shell P-waves we obtaln

(a,-a;)b, 1 Lél)cos(—{f ,Z)Ebu(an-ap)cos(ff SBY(M/a)(2r) 21w x

BE+ (L, + 47
{([s 5+ Y (20,0 In 32+(2f=-§)2
2 2 +£)2
2402 + L A2 o+ ( o
and for the integral involving nl(ﬂ fr)jl(-g r} we obtain
(an'ap)bu Lga)cos(ﬂfsl\) = (a -ay )b cos(Qng)(M/A) (2#)3/2 N x
2.2 2 B A ]
xq( +ﬂ + AS) tan” [ - -
ol A ]
- @®+22+d p2) tan™l e
o f 4 /(Aﬂf) an (012-"??-%&2) | (31)

minus twice this same expression with o —ol + Z, B—P+ Z plus the
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same expression with the substitution w—ol+ 27, -0+ 2Z.

For O — 0, all these expressions contributing to Iup+ Lin
tend to zero, in spite of the presence of A in the denominator.
For pf-yo, the S=-wave parts and also the P-wave on-the=-energy
shell part, Eq. (30), remain finite, but Eq. (31) increases like
l/Qf, and the matrix element diverges if we consider bu as a
constant. This can be modified by noticing that the P-wﬁve scatter
ing amplitude bu must tend rapidly to zero with the relative mo-
mentum of the two colliding particles (bunJQfB for low energles).

To compare the magnitudes of these nucleon-nucleon inter-
action effects with the first order terms, we can do as we did in
the discussion of the double scattering terms: verify that the
functions that appear can only vary inside a limited interval, and
then take typical values for them, as well as for the first order

terms. We obtain

2nd order = o

e G, (barnsj
1lst order A v NN

where of = 45.7 MeV/c and oy (barns) is the nucleon-nucleon total
eross-section measured in barns. For low energy n-p scattering in
the triplet state we have Oy = 244 barns, and the relation above
Indicates that the effect of the nucleon-nucleon in'lﬁeraction in the
final state can be very strong. For example, for incident K mesons
of momentum qo = 200 MeV/c a momentum transfer of 150 or 200 MeV/c
is *typical®™, and the ratio between 2nd and lst order matrix elements
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can then be of about 1/3 or 1/2. We thus expect that cross~seetions

are strongly affected by the nucleon-nucleon interaction in the

final state.

7. EVALUATTION OF CROSS=-SECTIONS

We have obtained explicit expressions for all terms, corre-
sponding to first and second order processes, that contribute to
the transition aﬁplitude for meson~deuteron inelastic scattering.
We have now to square this transition amplitﬁde and make the neces-

sary sums over spin variables.

We here assume that there is no spin-dependence in the
meson-nucleon interactions. As the deuteron has spin 1, only tri-
plet final state wili occur. Using the decomposition of the nucleon-
-nucleon triplet P-wave in terms of eigenstates of J as given in the

Appendix, we have

e

(Ryoq)pq =<2l {A + Pt[GBQil(bo—bz)(l_/la)(cp-c”n) T (o). g

+ _(bl-bz)(l/S)(o‘p-lfon) . f (cp-!-dn). lf + b, cos(Qf;Qi)]Q(Qi)}li>

where bys bl’ b2 are parameters descrlbing the scatiering in the
J =0, 1, 2 states respectively. Rearranging the terms we can put
this in a form convenient for use of the formulae given in the

Appendix. We obtain
2 . L * 1 * 1 * * * ok
ALC: D I Ll W g (Po*3by#8by) BIA + & (b #3b +6b,)A B +

l__ 2 1 2 ¥ .
+ 3 [% |y +b,]1= + 5 |bo+2b2] B B (32)
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where A includes the single and double scattering effects, and the
potential correction terms involving S-waves in the nucleon-nucleon
interaction, and B includes the processes with nucleon-nucleon
interaction in P-waves. It is interesting to notice that the pa-
rameters by, by, b, appear in the last term of Eq. (32) in a combi-
nation different from the combination with statistical weights
bo-FBbl, +5b2 which is‘the only one that occurs in the scattering
of unpolarized nucleons. This is, of course, due to the corre-

lation of the spins of the two nucleons in the deuteron.

For the case of the inelastic XK' -deuteron scattering, we
have the possibility of a double exchange process in which the K
hits the neutron‘giving K°® ana proton, and then the K° hits the

proton producing X" and neutron. We then have

A= ay(ng)+ad (o) -aa [100) 45820~ (aa + aZ)[1slD) 4 5(2)]-

pn pn Pn éx np np
- (1), +(2)
(aP-+an) 8y, [i D 'FIup ] (33)
where Iﬁ%), Igg), J§i), J;g) are given by Egs. (27), (28), (22),
(23). Jn%) and Jgg are obtained from Jéi) and Jég) by exchanging

neutron and proton variables. B will be given by
B = [iLgl) + LéZ)] cos(i}sZD(ap-an) (34)

The guantities bo’ b1, b2 are related to the P-wave phase shifts
for the neutron=-proton interaction in the triplet state by
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-2 -1 j 16d
by =2 x 3(2m)™"(M2e)™" sin 8y "L . So a, is related to the
triplet S-wave phase shift by a, =2x (2mr)™? (Mﬂf)-l sin 63)' elbo |

In the expression Eg. (20) for the cross section we have
E.-E, = Eq_ + 12/M + (3.=q.)2/ +2M - M, -E (35)
£7%1 T g T p %797 7 (aM) M = Bqy-

The integral over Pf can be done at once, since Ef "Ei does not
depend on the direction of —i;. but only on its modulus. The integral
over qp will be limited to the interval from 9 =0 to a A max
which is the root of

2 i} ol 2
5p pax T 3 max /(aM) = %o 9 gax 05O/ (4y) = Baot Yo = 2~ a5/ qm)
where 8 is the angle between ?1'} and E:}.

e —
We can express ‘/’D(nf) and ¢D(pf) as functions of £, and A
by writing |

- LA
——p
i= .r

"iﬁ.‘ . L
¢D(pf) = (Zv)_B/afe £ e 2 Pp(r) dz T =
= ar (20723 21+ 0) By [oos(iy )] [ (hga) (36)
and -
Ylng) = ar (212 S(20+ 11 B [eos(RDIT (1p50)  (37)

i

where we have called

00 .
rﬂ: (Qf’A) =f0 3[ (Rfr) J!(% r)¢D(r) ZIZ'2 dr =

2,902,.1 .2 2,92 4 L p2

a“+0S+3 A B+ 25 + = A

= N/ (2550 QQ< L2 ) -QQ( L ) (38)
L0 LA
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where the Qis are the Legendre polynomials of the second kind.

For simpliclty let us neglect double scatfering processes.
We have seen that in the Kf—deuﬁeron problem their effects are
small due to the smallness of the K+ nucleon‘scattering parameters.
Then both quantities A and B that appear in Eq. (32) can be expressed
in terms of A, Qf and the angle between Z: and E}. Thanks to the
expansions in Eqs. (36) and (37), the integration over all di-
rections of E} can be done without need of the approximation,
which was made in the previous papers dealing with the analysis of
the meson~deuteron scattering, that the energy Ef in the final state,
given by Eq. (35), does not depend on if. We obtain |

(2r)?

do =

- QR

v

() (202 [0 (o |ay + agl? ay [-11() + 202 -

(am)® (2r)~3/2 rl,(ﬂf,A)lap+aan [ Iﬁl) Iu ]
V2 2
+ arley+ agl® of [1307 + * 1) ]' [% (bg* 3by+ 5bp) (1) + 120 +

* %*
+ 39= (b°+3b1+5b2)(-11.1(11).+ Lff))](41r)2(21r)‘3/2|"‘1(!f,a)|an-aplz +

41

1 2 .1 2 2
Py [—2' lbq + b212 +-9- [bo+2b212] Iran-apl‘2 [1'1(11) + L1(12) ] (39)

+
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The iIntegrals [-'n in Eq. (38) decrease rapidly to zero as

increases above a certain value. This can be seen in the following
way. The function rZ‘WD(r) = Nr(e™™F «e™PT) has the value zero at
r =0, Iincreases to a maximum at(wr)x1l, and then decreases rapidl&:
at @r)¥ 5 its value is 1/10 of the value at the maximum. The
functions Ji(ar) with f3» 1 start from zero at r =0, and remain
very small up to arx®, where a bump starts. Soy if R 1s so large
that the bump in the function jﬂ(ar) starts, say, after.ar = 5y
where re §0D(r) is very small, Pﬂ will be very small. So we expect
that oniy few terms in the sum ZI(ZQ*-l)rEZ that appears in the
expression for the cross-section will be important. For the largest
values of Qf and A/2 the integrals [ﬂﬂ will have the largest
values, because then the bumps in jQ(er) and Jp (% r) will occur
for smaller values of r, and there will be stronger inersections
with r2:¢b(r). We can adopt the following criterion to decide where
to stop the sum. For a given incident momentum q, we choose the
highest values of Qf and A/2 that are compatible with energy conser
vation. Substituting these values in the explicit expressions for
the Legendre polynomials QQ we can find the value of £ for which
(224ﬁl)ri2 can be neglected. For K mesons incident with momentum
.qo = 200 MeV/c for exampley we find that cutting the series at
L=24 ‘causes an error which 1s smaller than 3% at the extreme
values @, = 150 MeV/c and A/2 = 120 MeV/c. For other values of
!f and A the error is much smaller. For high incident energies
we have to take more terms in the sum if we want to keep the error

negligible.
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If the scattered mesons momenta are not experimentally

measured, it is interesting to integrate Eq. (39) over the spectrum

of values of dp for each scattering angle ©. The dependence of the

neutron=-proton scattering parameters a, bo’ bl’ b2 on the relative

momentum Qf can easily be taken into account in the integration.

8., CHARGE EXCHANGE SCATTERING AND THE COULOMB INTERACTION IN THE
FINAL STATE

If the incident meson exchanges charge with one of the
nucleons of the deuteron, we may have two charged nucleons in the
final stafe. An example is the process K+ + d~—*Kp + p + p. As
the two nucleons will not have a very high relative energy, their

Coulémb interaction can have a strong effect in the process.

The terms in the expansion of the collision operator for

charge-exchange meson-deunteron scattering which correspond to a

single scattering (with charge exchange) of the meson by the neutron

and to this scattering followed by a proton-proton interaction give
(forgetting for the moment the antisymmetrization due to the
presence of two identical particles in the final state)

<EIEX11 >+ < £l (B-k+ie)™ t8X[1) =

-

r
. ¢b(r) d3F (40)

Mo

= - 8(F,-PFp) a_ ¥ T

where the amplitude for meson-nucleon charge-exchange scattering
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has been taken as a constant 4,4 Over the range of integration.
<¢(-)|¥) is the configuration space representation of the scatter-
ing state (with proper asymptotic behaviour) of the proton-proton
system with nuclear and Coulomb interactions. Outside the range of

the nuclear forces we have

-4 nw oi [(g +1+in)

(=)2 . -3/2
V= (27)
g lr € =0 (2Pt

i.r oy "
(Z:M!fr)Q e T (=1 )Q PQ [cos(ﬂf,r)] X

L6
x {F(l+1+in, 28+2, -2ik,r)+ (e 1) W, (R+1+in, 2042, ~21szfr)} (41)

where n = pea/ Lpy with p being the reduced mass of the proton-proton
system, and GQ are the nuclear-phase shifts (spin effects are here

ignored, for simplicity).

Our problem is to evaluate the integral in Eq. (40) using Eq.
(41) for <¢‘i(""‘)“[i"> « If we assume that there is no spin dependence
in the charge=-exchange scattering amplitude Box ? the final state of
the two nucleons will be a triplet state. Antisymmetrization will
then require that only waves of odd values of ! will be present.
This means that small values of the relative momenta of the two
nucleons will not be often presenty n being then small compared to
unity. On the other hand, odd-wave phase shifts for the nucleon-
-nucleon system are small. All this indicates that the part of Eq.
(41) containing the nuclear phase-shifts i1s negligible, or can be
well represented by the pure-nuclear interaction already treated in
section 6. This approximation corresponds to writing the odd-wave

scattering amplitude for p=-p scattering as a suin of the scattering
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amplitude for a pure Coulomb interaction with the amplitude for a
purely nuclear interaction, namely 'tu=tg + t§ . Let us then
consider the pure Coulomb part. Its contribution to Eq. (40) is
(leaving out the factor -3(Pp=-F,))

-4nr % [T (R +1+in)

C =a,l(2r)3/2 ,
Pex © =0 (29)!

P, [cos(Tp, D] (am)(~1)t x
(a2)

0o it.r
Xf O(Zi!fr) e T ;jk(%r)q’n(r)l? (L+1+in, 2+2, -Zilfr)radr = E:Cn
r= ' -

Now we substitute F by one of its integral representations (13),

and integrate over r first. We obtain

—+ 2t (20+2) <a+1)
cC = -a.ex(Zwr)"B/‘2 m:hr NZ (Qfﬁ) P [cos(Qf: ] r C

I"(Q-r- 1~ in)

1 2 ~0-1
(L +in) (@ -in)js O~ .. 2
XJO du u J(1-u) n {(Z +[u+iﬂf(2u-1)] ) -

( [p+1t(2u-1)] )-2-1} (43)

Making t = w/ (1-u), the integral in the expression above becomes:

— 4t (+ = = at {ol—»
/ £=0 4 f (t-tl)“l(t-t_a)‘“']L £=0 {d' @}

with >
= o2 - (30 )] /[ + wanp?]
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to() = [-a? - (§-¢))2] / [£ 4 @2 (44)

and analogous expressions for tl(ﬁ), 1:2(|3). The poles at t = ts
t = ¥, are not in the path of integration. Integrating over the
contour indicated in Fig. (%) we obtain

-3 _. -1
C = a(anr)™ V2 ¢ nTr4‘rrN(2'rri)'3(l-e-2ﬂn) :
0 (20+1) N
: A P N A]
2!1: eV T o [COS( £28) >

s {+in
X — + (a+1Q.) —_ +
[4 £ ] (dtﬂ (b=t W) =t ()
. dﬂ tl+in N
att (t-tZ)‘Z”:L £=t, () P (45)

The evaluation of the termsg in this series ins strajightforward.

Subtracting from Eq. (40) the single scattering term we obtain
(without having yet antisymmetrized the final state)

—1 e _ - - |
<flt, (BE=~K+i€) toXlid= - G(Pf-Pi)%:{CQ-
- aex(‘-’_c“')(ZTT)-B/a(ZQ*'l) B lcos(?f_s_53l G (2554) } +

+ <f|t§(E-K+1e)'l ED (46)
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Now, the wave scattered by the Coulomb field, which gives rise to
all the part in the above expression which is inside the X symbol,
willl consist of only a few angular momentum waves, due to the fact
that n is not very small. Thus,; the series above will converge
rapidly, only a few terms 5eing necessary for our purposes. This

has been confirmed by actual numerical computation.

For definitene§s, let us consider the process K d—K°pp. Iet

us call a, the amplitude for the Kop—uyKop process. If By does not

p
depend on spin variables, antisymmetrization of the final state with

respect to the coordinates of the two protons will elminate all even
parity states. Squaring the property antisymmetrized amplitude, and
sumning over spin-variablesp we obtain for EII(R

1ne1)f1|2 an  ex=
pression of the form Eq. (32), with

1 B
- o (1) _ () (2) _ (2) |_
A =12 z.odd: Cy 5 fex fop [MPZP}. inlpa * Tpohy JP:LPz]

(47)
T PO G D BN D RN O B
. > ex 'p PiP> PoPy ) PoPq
and
B= = \/E 8q CQS(E;‘S-A*) ,:i]'-\fll) + L’L(IZJ‘I (48)

where P12 Py indicate the two protons in the final state and iaf’
ﬁéf are their momenta. R, is the vector i‘(ﬁzf ~'Eéf).
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APPENDIX - SPIN SUMS-

The most general meson~proton interaction can be described by

an operator Ty = ap + E; .'E; where E; is the proton spin matrix
and ap and‘E; do not depend on spin variables. For the meson-neutron

interaction we have T, Ta, t 6; .'3;. The general fermion-fermion

inferaction has a much more complicated dependence on spin variables.
In our problems we shall be concerned with relative energies of the
nucleon~nucleon system which are not very high, and for definiteness

we here assume they interact in S and P waves only.

If the two nuecleons interact in S-wave only, the most general

- - — —_
form for r, is r, = ey Py + ey P,y where P, = (1 - Oy ch) /4 and
Pt = (3 + E;, 0,) /4 are the projection operators for the singlet

and triplet states of the nucleonnnuéleon system. In the terms (up
to second order processes) of the expansion of Tinel there appear

products Ty rp, Ty Tp? rp r, beslides the single scattering terms rp

ang T So, as far as spln variables are concerned, the most general
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form of matrix element which we have to consider (if the nucleon-

=nucleon interaction in final state is purely S-wave), is the
matrix element of
R, = A+B.op+ C.o+ (n.o-p)(E.c-n) +PS(F+H.c‘p+I.0'n + Pt(G+J'.0'p+_K.an)

‘ (4.1)
calculated between the initial and final state of our system of one
meson and two nucleons. The first three terms refer to single
scattering of the meson by a nucleon, the fourth one to the double
scattering processes, and the others to meson~nucleon collisions

followed by nucleon-nucleon interactions in S-waves.

The initial state is a triplet (spin of deuteron is one). The
correlation of neutron and proton spins in initial or final States
can be taken into account by means of the appropriate projection

operators. We get the following results.

i) Final state is a triplet state.

1 R _ * % * k_ - — .
ng:LlRlptlﬂ <flalPt|i) = %{B(A +G J(A+G) + (A +G )(D.E) +

+ (A+G)(D B )+2 (B +3 40 K Ye (B+J+C+K)+2 (D .D)(E .E) -
- 0 .EH®D.E + 2 0T BETD } | (4.2)

i1) Final state is a singlet state.

—
‘-‘"

%ij_<iIRI P E><t|RPL|1>= ‘{(H Tt (H—I—C+B) ( -.E)(E D)
L]

_'._*

+ (D .D)(E .E) + 1[(3 +H -C -I ) (D/\E)m(BH‘I—C I) (D AE )]} (4.3)
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Now let us take the two nucleons interacting in P-waves. In

this case, if the total spin of the two nucleons is S = 0; only one

value of the total angular momentum is possible, namely J = L = 1,
There 1s no spin dependence of the nucleon~nucleon interaction in

this particular state, and its contribution can be absorbed in Eq.
(A.1) by suitable modifying the quantities F, Hy T of the S-wave

case.

If 8 =1, three values of J are possible, namely 0; 1, 2 with
three corresponding independent scattering amplitudes by blg b‘2°
We shall then have to calculate the matrix element of 12 -

k. k
— - — - £
P = = e w3 o + 9 +
t{mlz (b bz)(crp on} mki (crp 051) kmf b2 cos
+ % (by= b NS+ T) kmi("‘ +3) e (Q+ 8.0 +T.c..)
3 1= by crp o,/ ki a-p G/ o kf Q oUp 00}1.

—

Here T;i and kf are the relative momenta inithe centre-of-mass systemof
the nmucleons before and after the collision. The term b, cos© (Q + §:o—'1;+
+ '_th;;) can be considered as absorbed in the equivalent (with respect
to spin variables) terms of Egq. (A.1). We can write the expression

above in a more compact form, which maintains all the necessary spin

dependencey

- —b - — —3 — — —_—— —_— — -—-s--—a-)-—-b—p)
R, = Pt[(Locrp)‘(N.,O'p)in (L..o'n)(NOO‘n)+M(L.,oi))(Noc'n) +M(L.o, (N,o*p ] -
(Q+S.O‘p To‘c'n (A°4)

We have to square the matrix element of R = Rl-and sum over

the possible polarization of the two nvzcaleons.l?l2 will not contribute
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to final singlet states, and the transition probability to singlet
states will be given by Eq. (A.3). For final triplet states we
have

% Z(iIR P lEYLIRP L) = !l'r Tr_(RIP.R, P, )+
& o
+ & To Tr (RIP R P+ PRI+ & T Tr (RQPLRP) (4.5)
The first term of the right hand side is given by (A.2). For the

second term we obtain

§ moy0r, (RIPR,P ¢ B3P R P ] -{ §(A."'+a"")[(.3+H>(3.'ﬁ)qr21(¥+§').(i’a M+
+8 (3" I+ 0"+ x").[(LAm 21 Q + 2 (B+TVT.Y) +
+ TR @D +FL @+ D=2 §q[an(n“‘. )E ) +

+ (?-B(E L)+ (-H-l-l)(;‘.ﬁ )(L.N)] +§ 1(54- '.l‘)-[ p'g* o(L A?) +

1.( LAN) + m /\N)(D JL)+ M(D A"')(m I) + M(B A”)(b"'.iﬁ +

M (DA TNE

+
H

.1?)]} + oomplexe conjugate

rer' the third term in (A.85) we obtain

i mzpmn[agrtnart] §q q{cm R pweas W AT a0+

* 2(?.:-)(?.3)(-14@; u)} gi[q (s-m-l-q(s *T ) {2(3 A?)(:..s) *

* z(:m?i(:n .;;)# (TAR(H A:?)*L H_(E*A;:).N =T (FAL). ;: *
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— — —p
* —> x ~

(L@ + D@ D1 +

+
Wjoo
©
+
T
:’l
/U;h
+l
gl
——

+ (N*.")(I-.:._')(1+M*M)}+ %[(sn T*)A(§+¥)]. (@ M N e r) «
% n Rl o * ok
%[N +( S+ )] (L.N)[L.(s +T )](1+M-M -M M) +

+(ITD) [ﬁ'.(sfm )](-1+M+M*-M*M)}+§ [L*.("é*a-_f)] { (v D) [ﬁ:(s*«t tr*)] (1+
s MM )+ . [i"’ (s*+ T*)](-I—M-uM*- M*M)} +

+4 L ){[iv".(?+ :f")] ["L’.(EW)]+[£’.(?+ ?)]?«’.(34-&’)] }+
¥ *

+ -% (M*+M*M)(—l;{.f) {F‘.(&F)] [?.(?+?)]+[?.(Ei¥)] [;;-(S +T )]

(A.7)
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<¢f1Tine1|¢:}.> = e ——— +

Qni.

-+ remainder

Fig. 1 - The main terms of the expansion of the matrix element of the scattering
operator for meson-deuteron inelastic scattering in terms of two-particle
processes. —_ ——

—
e ’—‘

e

remainder — ' r\

e e . g
bt e st g
€31

Fig., 2 - Examples of contributions to the residual terms in the expansion repre-
sented in Fig. 1. These are essentiaily three~body effects which cannot
be represented by two-particle scattering operators only,

Figs 3 - The path of integration in the complexe plane to evaluate Eq. (44).
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