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Abstract

In order to explore further the mechanism responsible for scale-free networks, we introduce
two extended models of the BA model. The model A, where the system incorporates the addition
of new links between existing nodes, a new node with new links and the rewiring of some links
at every time step, all sites are born with some initial attractiveness. We calculate analytically
the degree distribution. The system self-organizes into a scale-free network, the scaling exponent
�¿ 2. The model B is a new model; we consider that some old links are deleted with the
anti-preferential probability. The result indicates that the system evolves itself into a scale-free
network, the scaling exponent � varies from 2 to 3.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Complex networks describe a wide range of systems in nature and society, whose
nodes are the elements of the system and edges represent the interactions between
them. For example, World Wide Web (WWW); internet, genetic networks, ecological
networks, citation networks, movie actor collaboration network, etc. Life systems form
a huge genetic network, whose vertices are proteins and genes, the links represent the
chemical interactions between them. Similarly, the WWW represents the largest net-
work, whose nodes are HTML documents (web pages) and the edges are the hyperlinks
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(URL’S) that point from one document to another. The great challenge today is the
accurate and complete description of complex systems. The most basic issues are the
statistical mechanics of complex networks. Researchers are interested to unravel the
structure and dynamics of complex networks [1–5].
The degree of a node in networks is the number of its edges. The probability P(k)

that a node in the network is connected to k other nodes (k =0; 1; 2 : : : ; ) is called the
degree distribution or connectivity distribution. The degree distribution is a simple but
very important characteristic of networks.
Traditionally, random networks was described with the random graph theory of ErdIos

and RJenyi (ER model) [6,7]. The degree distribution of such random graph is a bino-
mial distribution, it can be approximated by a Poisson distribution for large N . Recently
Watts and Strogatz (WS) [8] have introduced a small-world network. The average path
lengths between nodes in this network is surprisingly small, leading to a small-world
phenomenon. The shape of the degree distribution in the WS model is similar to the
Poisson distribution of a random graph (ER model).
A common feature of the ER and WS models is that the degree distribution P(k)

decays exponentially for large k, displays an exponential tail. Such networks are called
the exponential networks. Thus the topology of the network is relatively homogeneous,
all nodes have approximately the same number of edges. Consequently, nodes with
large connectivity are practically absent [1,9].
BarabJasi and Albert (1999) introduced Krst scale-free networks in their seminal

works [3,9,10]. They explored several large databases describing the topology of the
large networks, including the WWW, the actor collaboration network and the citation
network, etc. The empirical results showed that the degree distribution P(k) in these
networks decays as a power law, follows P(k) ∼ k−� for large k. The exponent � is
scattered between 2.1 and 3. These results oLered Krst the evidence that some large
networks can self-organize into a scale-free state. Such networks are called scale-free
(SF) networks. This is a signiKcant discovery in complex networks. The power-law
tailed degree distribution is remarkably diLerent from the Poisson distribution. It is
a fat-tailed distribution. SF networks are inhomogeneous, leading over time to some
vertices that are highly connected, a “rich-get-richer” phenomenon that can be easily
detected in real networks.
What is the mechanism responsible for SF networks? BarabJasi and Albert [9–11]

suggested that growth and preferential attachment play important roles in the network
evolution, the SF nature of real networks is rooted in these two generic mechanisms.
In fact, most real-world networks grow by the continuous addition of new nodes,
and exhibit the preferential attachment. These two ingredients, growth and preferential
attachment, inspired the introduction of the BarabJasi–Albert model.

1.1. The BA model

The algorithm of the BA model is the following:

(1) Growth: Starting with a small number (m0) of nodes, at every time step, we add a
new node with m(6m0) edges that link the new node to m diLerent nodes already
present in the system.
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(2) Preferential attachment: When choosing the nodes to which the new node con-
nects, we assume that the probability 	 that a new node will be connected to
node i depends on the degree ki of node i, such that

	(ki) =
ki∑
j kj

: (1)

BarabJasi et al. [9,10] developed a continuum theory to calculate analytically the
degree distribution P(k). The theory can address the dynamic properties of SF networks.
Assuming that k is continuous, and thus the probability 	(ki) can be interpreted as a
rate of continuous change of ki(t). Consequently, ki(t) satisKes the dynamic equation:

9ki
9t = m	(ki) = m

ki∑
j kj

=
ki
2t

(2)

with the initial condition that node i was added to the system at time ti with connectivity
ki(ti) = m.
The theory predicted two major results:
(1) First, the degree ki of a node i depends on time t as

ki(t) = m
(
t
ti

)
;  =

1
2
; (3)

where the exponent  is called the dynamic exponent. Eq. (3) indicates that the degree
of all nodes evolves in the same way, following a power law.
(2) Second, the probability density for P(k) (i.e., the degree distribution) follows

P(k) =
9P(ki(t)¡k)

9k =
2m2t
m0 + t

1
k3

∼ 2m2k−�; �= 3 ; (4)

where the exponent � is called the scaling exponent, predicting � = 3, independent
of the parameter m. Eq. (4) indicates that despite its continuous growth, the network
self-organizes into a stationary SF state.
All these results are agreement with the numerical simulations. The BA model oLers

Krst the successful mechanism accounting for the SF nature of real networks.
The BA model generates a SF network with a Kxed scaling exponent 3, while the

exponents measured for real networks vary between 1.05 and 4 [1,9]. How can we
change the scaling exponent?
Albert and BarabJasi [11] introduced an extended model of the network evolution that

gives a more realistic description of the local processes. This model incorporates the
linked new edges between existing nodes, the rewiring of links and the addition of new
nodes with new edges. At each time step, one of the above three operations is performed
with respective probabilities. They calculated analytically the degree distribution P(k)
by using the continuum approach. The result shows that the networks can evolve two
diLerent topologies. In the Krst regime, P(k) has a power-law tail, but the scaling
exponent � depends on the parameters of the model, a range of � between 2 and 3. In
the second regime, however, the numerical simulations indicate that P(k) approaches
an exponential.
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The goal of this paper is to explore further the mechanism responsible for SF net-
works. We introduce the two models of evolving networks that give more realistic
descriptions of the local processes. In the model A, we incorporate the three local
processes at every time step: the addition of new links between old nodes, a new node
with new links and the rewiring some existing links. All sites are born with some
initial attractiveness. We show that the system evolves itself into a SF network, the
scaling exponent � is greater than 2, its super boundary (greater than 3) depends on
the parameters. In model B, we perform three operations at every time step: the
addition of a new node with new edges, new edges between old nodes and some
old links are deleted. The two ends of the new edges between old nodes are chosen
all with preferential attachment (diLerent from the model A). A node is selected as a
end of the deleted line, with the anti-preferential probability, it is more reasonable for
deleting links. We show that this system self-organizes into a SF network, the scaling
exponent � varies from 2 to 3.

2. The two models for scale-free networks

The BA model is a minimal model that captures the mechanism responsible for the
scale-free networks. However, there are discrepancies between the BA model and real
networks. The modeling of SF networks will put the emphasis on capturing the network
dynamics. Some microscopically evolving processes may inPuence the topology of
networks. Here, we introduce the two models that give more realistic descriptions of
the local processes in evolving networks.
In some real networks, a series of microscopic events may shape the evolution of

the networks, including the addition of new nodes, new links between old nodes and
the rewiring of some links. Consequently, we introduce the following model.

2.1. The model A

Starting with m0 isolated nodes, and at each time step we perform the following
three operations:
(1) We add l new links between existing vertices: select randomly a node as the

starting point of the new link, while a node i is selected as the other end of the new
link, with the preferential probability

	(ki; �) =
ki + �∑
j(kj + �)

: (5)

This operation is repeated l times, where all nodes are born with some initial attrac-
tiveness �¿ 0. The introduced parameter � governs the probability for “young” sites
to get new links.
(2) We add a new node with m new links: a new node is connected to node i

already present in the system, with the probability 	(ki; �) given by (5).
(3) We rewire n links that have existed in the network: select randomly a node i

and a link lij connected to it. Next we rewire this link and replace it with a new link
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li′j that connects node j and node i′ chosen with the probability 	(ki′ ; �) given by
(5). This operation is repeated n times.
The system parameters satisfy the condition: l; m; n; �¿ 0, and l+ m¿ 0.
According to the continuum theory, we assume that ki changes continuously, and the

probability 	(ki; �) can be interpreted as the rate at which ki changes. Consequently,
the processes (1)–(3) all contribute to ki, each being explained as follows:
(1) The addition of l new edges between the old nodes:

(
9ki
9t

)
(1)

= l
1
N

+ l
(
1− 1

N

)
ki + �∑
j(kj + �)

; (6)

where N is the size of the system. The Krst term on the right-hand side corresponds
to the random selection of one end of the new link, while the second term rePects the
preferential attachment used to select the other end of the link.
(2) The addition of a new node with m new edges:

(
9ki
9t

)
(2)

= m
ki + �∑
j(kj + �)

: (7)

The term on the right-hand side represents the increasing degree of the node that is
connected to the new node.
(3) The rewiring of n links:

(
9ki
9t

)
(3)

=−n 1
N

+ n
(
1− 1

N

)
ki + �∑
j(kj + �)

: (8)

The Krst term incorporates the decreasing degree of the node from which the link was
rewired, and the second term represents the increasing degree of the node that the link
is reconnected to. The total degree does not change during the rewiring process, where
the system size N and the total number of degrees

∑
j kj vary with the time t as:

N (t) = m0 + t ≈ t;
∑

j kj = 2(l+ m)t and
∑

j (kj + �) = [2(l+ m) + �]t.
By adding the contributions of the three processes, we obtain the following dynamical

equation:

9ki
9t = (l− n) 1

N
+ (l+ m+ n)

ki + �∑
j(kj + �)

− (l+ n)
1
N

ki + �∑
j(kj + �)

=
l− n
m0 + t

+
l+ m+ n

2l+ 2m+ �
ki + �
t

− l+ n
2l+ 2m+ �

ki + �
t(m0 + t)

≈ l− n
t

+
l+ m+ n

2l+ 2m+ �
ki + �
t

; for large t (9)

with the initial condition that node i was added to the system at time ti with the degree
ki(ti) = m.
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The solution of Eq. (9) has the form

ki(t) = A
(
t
ti

)
− A+ m ; (10)

where the dynamic exponent

 = (l; m; n; �) =
l+ m+ n

2l+ 2m+ �
; (11)

the coeQcient

A= A(l; m; n; �) =
(2l+ 2m+ �)(l− n) + (l+ m+ n)(m+ �)

l+ m+ n
: (12)

The condition A¿ 0 holds if and only if n¡l+ m+ �.
When n¡l+ m+ �, i.e., A¿ 0, we can obtain from (10):

P(ki(t)¡k) = P(ti ¿ c(k)t) :

Here,

0¡c(k) =
(

A
A− m+ k

)1=

¡ 1; for k ¿m :

Assuming that we add the nodes at equal time intervals to the system, i.e., ti follows
the uniform distribution over interval (0; m0 + t). Hence,

P(ki(t)¡k) = 1−
(

A
A− m+ k

)1= t
m0 + t

;

P(k) =
9P(ki(t)¡k)

9k

=
t

m0 + t
1

A1=(k + A− m)−�

→ 1

A1=(k + A− m)−�; (t → ∞); �= 1 +

1

: (13)

The system self-organizes into a SF network, with the scaling exponent �:

2¡�=
3l+ 3m+ n+ �
l+ m+ n

6 3 +
�

l+ m+ n
: (14)

This allows us to account for the wide variations seen in real networks, for which
� varies from 2 to 3, or �¿ 3.
We consider the following two particular cases:
(a) If �= 0; n= 0; l¿ 0; m¿ 0, then  = 0:5; �= 3; A= 2l+ m. This result is same

as one in the BA model. It indicates that the addition of new edges between the old
nodes at every time step does not change the scaling exponent in the system, but the
coeQcient of the power-law degree distribution becomes greater.
(b) If �= 0; m= 0; n= 0; l¿ 0, then  = 0:5; �= 3; A= 2l. The scaling exponent is

also same as one in the BA model. We notice where new nodes have no new links,
new links are connected only between old nodes.
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In the model A, selecting randomly a node as the starting point of the new link,
while the other end of the link is selected with the preferential attachment. If the two
ends of the new link are all selected with the preferential probability, how does the
network evolve? Meanwhile, in some real networks (e.g. WWW), some old links may
be deleted, we consider the following model:

2.2. The model B

Starting with m0 isolated nodes, and at each time step the following three processes
are performed:

(1) a new node is added to the system: the new node with m(6m0) new edges that
are connected to m diLerent nodes. The preferential probability 	(ki) that a new
node will be connected to node i is given by (1)

(2) n new edges between old nodes are produced: a node i is selected as a end of a
new edge, with the preferential probability 	(ki).

(3) c old links are deleted: we select a node i as a end of a deleted link with the
anti-preferential probability:

	∗(ki) =
1

N (t)− 1
(1−	(ki)) ; (15)

where N (t) is the size of the system, (N (t) − 1)−1 is the normalized coeQcient for
probability, such that

∑
i 	

∗(ki)=1. The anti-preferential probability is more reasonable
for deleting links, it is consistent with the real networks (because some real networks
may exhibit anti-preferential deletion), where m¿ 0; n¿ 0; c¿ 0; m+ n¿c.
By the continuum theory, ki(t) satisKes the following dynamical equation:

9ki
9t =m	(ki) + n


	(ki)× 1 +

∑
j �=i
	(kj)	(ki)




−c

	∗(ki)× 1 +

∑
j �=i
	∗(kj)	∗(ki)




≈m	(ki) + n[2	(ki)− (	(ki))2]

−c
[
2(1−	(ki))

t
− (1−	(ki))2

t2

]

≈ (m+ 2n)ki
2(m+ n− c)t −

nk2i
4(m+ n− c)2t2 − 2c

t
+

cki
(m+ n− c)t2

≈−2c
t
+

m+ 2n
2(m+ n− c)t ki; for large t

(because ki(t)˙ t; ¡ 1) (16)
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with the initial condition that node i at its introduction has ki(ti) = m, where N (t) −
1 = m0 + t − 1 ≈ t; ∑j kj = 2(m+ n− c)t.
Eq. (16) has the following solution:

ki(t) = B
(
t
ti

)
− B+ m; for large t ; (17)

where the dynamic exponent

 = (m; n; c) =
m+ 2n

2(m+ n− c) ; (18)

the coeQcient

B= B(m; n; c) = m− 4c(m+ n− c)
m+ 2n

: (19)

The condition B¿ 0 holds if and only if c¡m=2 or c¿ (m+2n)=2. If c¿ (m+2n)=2,
then ¿ 1, it is impossible because ki(t)6 t for large t. Therefore, we consider only
the case when c¡m=2.
Because Eq. (17) is similar to Eq. (10), we can obtain that the degree distribution

P(k) =
t

m0 + t
1

B1=(k + B− m)−�

→ 1

B1=(k + B− m)−�; (t → ∞); �= 1 +

1

: (20)

This system self-organizes into a SF network, with the scaling exponent �:

2¡�=
3m+ 4n− 2c
m+ 2n

6 3 : (21)

The scaling exponent � varies from 2 to 3. The exponent � is a increasing function for
m, but � is a decreasing function for n and c. This is a interesting phenomenon.

3. Conclusions

In this paper, we have explored further the mechanisms responsible for SF networks.
Growth and preferential attachment are mechanisms common to a number of complex
systems. We have introduced the two models that give more realistic descriptions of
the local processes than the BA model. In the model A, incorporating the addition of
new nodes, new links, and the rewiring of some links, all nodes are born with some
initial attractiveness. We have calculated analytically the degree distribution by the
continuum theory, the system evolves itself into a SF network, the scaling exponent �
depends on the parameters and is greater than 2. In particular, (a) In the BA model,
the addition of new links between old nodes does not change the scaling exponent in
the system, (b) In the BA model, a new node has no new links, but new links are
connected between old nodes, the scaling exponent is same as one in the BA model.
In the model B, we perform the operations: the addition of new nodes, new links, and
the deletion of some links. A link is deleted with the anti-preferential probability. We
think that the anti-preferential probability is more reasonable for deleting links. We
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have shown that the system self-organizes into a SF network, the scaling exponent �
varies from 2 to 3.
If a new node is added to the system at every time step, then the degree ki(t)6 t

(at time t). Consequently, the dynamical exponent 6 1, and the scaling exponent
� = 1 + (1=)¿ 2. However, there are real networks, their scaling exponents are less
than 2 (See Ref. [1]). How do we introduce a model with the scaling exponent �¡ 2?
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