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1. INTRODUCTION

The Discrete Variational (DV) approach to the solution of
integro-differential equations utilizes a basis set and sampling
techniques which can be adapted to a wide variety of physical pro-
blems. Self-consistent field models of nuclear and electronic struc
ture lead to sdingle parniticle problems, such as the familiar Schro-

dinger equation
(h-e; ) ¥; (£) = 0 (1)

in which a number of states wi, i=1l,2,...N are coupled together in
a nonlinear fashion through the effective potential of the Hamil-
tonian h. In this context, both Hartree-Fock and Local Density (ID)
‘theories have been extensively applied®” °.

The sampling approach becomes more and more interesting as
the number of degrees of freedom (dimensionality) of the physical
system increases. The many particle problem of electronic structu-
re provides opportunities for application of error-minimization stra-
tegies in the (;1,?2) space of six dimensions. The matrix secular
equations of Configuration Interaction (CI) theory and the sums of
one- and two-body interaction integrals of Many-Body Perturbation
Theory (MBPT) can be reformulated as integro-differential equations,

of the general form®’’

Ly ©6H =0:h, 620 =0 ... (2)

ij

Here‘gfgi contain kinetic energy, external potential, and electron -e

, . a ab
lectron interaction operators, and ¢i, ¢ij"" are a set of res-—
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ponse functions corresponding to selected classes of single parti-
cle (i +a), two-body (ij +ab), and higher excitations from some re
ference state characterized by a set of orbitals {i}. The resulting
inhomogeneous equations (2) provide a little explored alternative
to the tedious integral summations of conventional methods. Also,
the structure of the functions ¢?,¢?;,... can provide much insight
into the nature of important electronic correlation processes in
atomic and molecular systems.

Classical problems of structural and fLuid mechanics are
also well suited to the DV scheme, whether formulated as path in-

tegrals

2
GJ Do, %,t) ds = 0 (3)

1

or as partial differential equations in canonical axnﬂinatess{q&},

3 4 b _, (4)

bq;  dt 59,
In the following sections we will develop general concepts and a
way of thinking about approximation which will hopefully enable the
students at this school to design and implement DV methods optimal
for their particular research interests. Examples will be presented
for electronic spectra, charge densities, and bonding of free mole

cules, surface-chemisorbed species, and bulk solids.
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2. GENERAL CONCEPTS

Functions of a continuous variable may be represented by

a discnete set of function values:
V() v {p(ED} i=1,2,...N8 (5)

and basis functions provide an interpolation onto the continuous

field, e.qg.,
VT = [ V(E) X, (). (6)
1 .

Here generalized Lagrange polynomials satisfying xi(?j)=6ij repro-
duce function values on the given grid, and {Xi} can further be chosen
to satisfy boundary conditions and smoothness criteria.

It is useful to draw a distinction between global expan-

s4ons and Local 44%ts; suppose
Y(E) = § C.x, (D). (7)

Then in a global expansion the coefficients {Ci} are defined over
the entire domain of interest ¥ € Q as in, for example the fami-
liar LCAO (linear combination of atomic orbitals) representation of
molecular wave functions. In a local fitting scheme & is divided in
to subdomains Q,, with coefficients {C?} and functions {xﬁ} defined
for T € QA' The multiple scattering (MS) or Green's function repre
sentation of wavefunctions provides an example of this type?.

Global expansions have the advantage of generating sim-

ple equations for solution of the given integro-differential equa-
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tion. Conditions of continuity and differentiability are trivial-
ly satisfied by choice of X as are asymptotic boundary conditions.
The price paid for this convenience is use of a rather large basis,
and consequently solution of a rather large set of linear equations
in a typical application. Conversely, local fits can provide a ve-
ry compact and efficient representation; however, the additional work
required to satisfy matching conditions at subdomain boundaries can
be considerable.

There are a number of related techniques of approximation
which can be mentioned at this point. The traditional method ofcﬁé
chetization of differential equations provided the first foun-

dation for approximate solutions. Here operators like g% are appro

ximated by finite differences; e.g.

of(x,y) . £(x+4,y)-f(x,y) (8)
0X , A
and a selected grid of points (xi,y.), i=1,2,...N leads to a coup-
j=1,2,...M

led set of equations in f(xi,yi) of order NM. For one- and two-di-
mensional problems this finite difference approach is reasonably
effective'’. If the desired solution ¥ has much structure dense grids
are required, and as the number of dimensions increases this ap-—
proach rapidly becomes intractable.

The {4inate element methods which today dominate the fields
of structural mechanics, diffusion, fluid flow and related two -
and three-dimensional problems, represent a more sophisticated ap-
proach to grid and basis selection. Here the function is represented

by local fits; e.q.

>

£ () ] ¢} g} ®  Fea

It

(9)

=
>
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over nonoverlapping polyhedra @ The interpolating functions gi

X
are typically polynomials of low order, centered on each of the
nodes fi of the grid which is formed from the vertices of the po-
lyhedra. Function values f(??) and possibly their derivatives
ﬁf(?i) provide variational parameters which are coupled both by
the target differential equation, and by boundary conditions be-
tween adjacent subdomains?!.

A large fraction of the effort involved in finite ele-
ment calculations involves choice of a node set optimal for a par
ticular problem. Since the amount of computation involved per point
is considerably greater than in simple finite difference schemes,
it is important to develop nonuniform grids, which are sparse in
regions where f 1s smoothly varying, and dense in regions where f
has considerable structure. Nested grids, with small polyhedra fit
ting inside larger ones, are frequently used for this purpose;e.q.,
tetrahedra in 3 dimensions (3D).

The final class of methods we will discuss deal with a
verages or moments of various properties taken over the sample
grid. An ernon momenit approach is particularly closely related to
discrete variational schemes used in molecular and solid state pro
blems. Suppose we want to satisfy de=0; then define i;f(;) =E(;)
and call E the "local error". A strategy for producing an E which

is in some sense a minimum will constitute an approximate solu-

tion. Define a sample average as

<g> = Z wig(;i) (10)

1

and then satisfy
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<P.E> =0 j=1,2,...M (11)

. > . .
with functions {¢j} and weight wi=w(ri) suitably chosen.
As an example, consider a mean square error minimization,

with an expansion of the type given in Eq. (7). Then

<JE|?> = T w, (Jhx.c)* (] ey (12)
i j 3k

and the conditions Ei%%lii =0 3j=1,2,...M give a homogeneous set
of linear equations forJ{Cj}. However, ij;=h—a, the equations are
quadratic in the eigenvalue €.

Linean methods which converge to the conventional Rayleigh-

Ritz variational integral approach provide our final, and most prac

tical example. Let {f.} = {X;} and require
X% gj;xjcj> =0 j=1,2,...M (13)
This gives a Hermitean matrix;
Ny =g wy X3 (E 1o x (F) (14)

and with {wp,;p} corresponding to an integration rule one recovers
the standard Rayleigh-Ritz equations?®’"*, In particular, for the

Schroédinger equation,

=0 (15)
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3. PRACTICAL ASPECTS

A. Sampling Schemes

By now it is clear that the choice of a sampling scheme is
one of the more important issues in constructing an efficient DV
method. If no prior information is used, unbilased random sampling
is always available, with sample means converging as N—l/z, where
N is the number of points. Pseudorandom sampling such as the dio-
phantine scheme developed by Haselgrove can produce reéults which
converge as N-k, where k depends upon the smoothness (differentia-
bility) of the integrand*’. Here we are considering sampling as a
method of approximate integration; however, we note that the con-
vegence of eigenvalues  and wavefunction coefficients is roughly equi
valent. The prefacton E controlling the error in a given property,
Ef\JEON_k is controlled by other factors involving detailed and de-
liberate error cancellation.

Potential singularities at nuclear sites in the SCF elec-
tronic Hamiltonian (and rI; in the CI case) limit the convergence
rate to k=1. However, wedlghted pseudorandom sampling is effective
in reducing EO greatly. The general idea can be simply illustrated:
suppose we want to calculate the integral ff(x)dx. Then a change
of variable gives J(ff%g)dy, and if we are able to map x+ry such
that dy/dx =f-1, then a single point will produce the exact re-
sult! Of course, such one to one mappings are never available in
cases of interest. It is perfectly feasible to generate distributions
of sample points with density D(?) roughly similar to the integrand,
and w'bD_l(;) provides a suitable weight function. In a typical DV

application, there are hundreds or thousands of matrix elements, so

it is pointless to optimize sampling for a single case. A pseudo-
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random grid consisting of a few hundred points per atom (~v10°® for
heavy elements) with a distribution function consisting of a sum
of radial Fermi-functions centered on the nuclei is sufficient for
most spectroscopic studies, at the LD single particle level of the-
ory.

In principle, one can obtain highly acéurate results with
a very small number of points. The pseudospectral methods of Fri-
esner'® and others require of the order of one point per variation
al coefficient. Such highly optimized sampling leads to difficul-
ties associated with the so-called "aliasing problem", which are
also encountered with periodic sampling. Nevertheless, one has the
perspective of developing a stable algorithm with an order of mag-
nitude fewer points than present-day technology.

Conventional integration schemes of the Gauss-polynomial
type'"® are hopelessly inefficient for the full 3D or 6D space of a
molecule. However, we have found that a mixed scheme, consisting of
a regular integration mesh covering a spherical region around each
nucleus, and a pseudorandom sample in the interstitial and exterior
regions, provides good wavefunction accuracy in both core and va-
lence regions. Such a scheme, with a modest increase in sampling
effort compared to simple pseudorandom, is well suited for calcula
tion of hyperfine properties?®, Finally, we want to mention the a-
daptation of classical integration methods by Baerends et al.l!® to

very accurate integration rules for molecular structures.
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B. POTENTIAL APPROXIMATIONS

The lectures of Prof. Pedroza'’ and workshop discussions have
focussed on the approximations of LD theory which lead to various
forms of effective exchange and correlation potential ch' Our pur-
pose here is to consider some little discussed but critical as-—
pects of approximate solution of the Poisson equation VzVC=—4ﬂD (16)
to obtain the Coulomb potential. In fact, so-called "shape-approxi
mations" to solutions of Egq. (16) are often responsible for differ
ences (i.e., errors) in eigenvalues and other properties which are
greater than those attributable to VXC approximations.

The muf§fin-tin potential is of considerable interest, since
it is central to the use of multiple scattering wavefunctions. Here
VC is approximated by a spherical average in spherical regions a-

round each nucleus, a constant in interstitial regions, and spheri-

cal in exterior regions:

+
VMT(r) = Vk(rx) rGQA (17)

= VO r € interstitial
The Schrodinger: and Dirac equations can be solved exactly in this
model potential, using'a partial wave (angular momentum) represen-—
tation.

The potential truncation implied by Eq. (17) is reasonably
small for close-packed metallic systems; it becomes a major source
of error for open structures such as semiconductors and free mole-
cules. The MS wavefunctions can be used as a basis set, in such

cases, for more accurate calculations with a refined potential. The
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Linearized Muffin Tin Orbital (LTMO) scheme represents a highly suc
cessful application of this technique®®.

The Self-Consistent Charge (SCC) approximation to VC has
been used in a variety of DV molecular and solid studies; it is based
upon approximating the charge density by a sum of spherical overlap-

ping atomic distributions.
= — v v 2
P = Pgee = L pn£|Rn£(rv)| (18)
vnd

Here {Rﬁz} are the radial wavefunctions used in the LCAO basis set

and {pzz} are amplitudes determined either analytically as Mulliken

orbital populations'® or numerically as a least-squares fit to o

on the sample grid”’zo. The corresponding potential V is obtained
P P scc

by one-dimensional integration and summation. This potential has

a range of utility somewhat larger than V is easy to generate,

MT’
and uses parameters (populations) which have chemical intuitive ap
peal.

For highly accurate calculations and for situations where
the concentration of charge in localized covalent bonds is important,
the least-squares approach is capable of extension to the required

precision. In the Self-Consistent Multipolar (SCM) approximation

the expansion of Eq. (18) is extended as

©
It
©

V \Y) 2 V -
=7 o', R, (x)|? + ) g ,(r )Y (E) . (19)
scM oy ndllml TV vap ATV LY
Here {g:K} are radial functions centered on each nucleus,L=({,m) la
bels the spherical harmonics {Y;} also centered on nuclei.
Selection of the form of radial functions {gzz} is lar-

gely a matter of convenience; Slater-type expansions, Gaussians,



CBPF-M0O-004/87
-11-

and highly localized polynomials have been used"’ '®*’2°  From the
point of view of LD theory it is advantageous to generate model
(fitted) densities, and to calculate potentials and related proper
ties to high precision using the model densities. Graphical dis-
plays of fitting errors Ap(;) are very helpful in identifying and

removing systematic shortcomings.

C. SELECTION OF BASIS SETS

The methods which we have been describing are very flexi-
ble with respect to choice of basis functions; it is only necessa-
ry to be able to evaluate Xj and i;xj numerically. This freedom per
mits one to select bases on grounds of boundary conditions, ease
of calculation, and physically motivated interpretation. The use

of analytic Slater-type orbitals (STO) of the form rn—z—le—prthﬂ

.. 2
and Cartesian Gaussian orbitals (GTO) xlszke_pr centered on nu-

clei (or off-center as well for GTO) is well developed in standard
applications of HF, CI, and MBPT methods.

Accumulated experience in selecting and optimizing basis
parameters can thus be exploited. The disadvantage of using analytic
bases is that they do not satisfy the asymptotic properties of the
exact wavefunctions; in consequence, the convergence rate of solu-
tions with number of functions used can be slow. Since GTOs do not
satisfy the cusp condition at the nucleus, their convergence is in
ferior to that of STOs. Neither type of function is capable, with
a single term, of describing both valence- and long-range behavior
of the single~particle HF or LD states of interest.

Numenical solutions of appropriate model Hamiltonians do
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not suffer from these shortcomings. The functions
9. = R_,(r )Y (F) (20)
i T Tnd'TVv L

are readily generated by standard atomic SCF codes. The radial wave-
functions are stored in tabular form, and values for arbitrary r
are retrieved by polynomial interpolation. Since a free atom or ﬁg
gative ion haé only a limited number of bound states, a procedure
is needed to extend the basis. This is accomplished most simply by
embedding the atom in a potential well, with parameters chosen to
control the spatial extent of excited state orbitals?'?.

When is a basis set sufficiently complete? What is the op
timum strategy for generating a "good" basis with minimum effort?
These important practical questions have to be attacked on the ba-
sis of experience; there are few useful general rules, but a lot of
folk-lore. From the point of view of physical interpretation it is
better to have a compact basis, with a near-minimal number of para
meters. We have already mentioned SCC approximations to the poten-
tial which generate effective atomic configurations {Dzﬂ}' Optimi-
zation of the basis functions of Eqg. (20) using these configurations
generally produces a near-minimal set of reasonable quality, and
also leads to useful interpretations of bonding mechanisms and ex-
citation processes.

Most simple schemes fail at one time or another; the SCC
basis iteration just described is no exception. An alternative ap-
proach which requires only a little more effort, is to produce a
spherical average of the molecular or crystallize potential about
each site, and to use this potential with suitable boundary condi-

tions in generating {¢¥}. Site-optimized orbitals of this type have
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been found effective in binding energy studies on transition metal
clusters and chemisorption complexes?®
Using the group - theoretic methods described by Prof. Vian

na’?, we generate symmetry orbitals (SO)

(21)

Z¢

nlm"” ﬂmJ

with coefficients {wzmj} corresponding to irre@ucible representa-
tions of the symmetry group of the molecule, solid, surface, or
chain. The benefits of transforming the AO basis to an SO set con-
sist not only in reducing the size of the secular matrices (Eq. 15),
but through selection rules and descent in symmetry arguments one
obtains an understanding of the origins and possible excitations

of the eigenstates.

4, TRANSITION STATES AND TOTAL ENERGY

In general the single particle HF and LD eigenvalues do
not correspond to physically observable energies (Koopmans "theo-
rem" and empirical practice notwithstanding). However, it is pos-
sible to construct pseudoparticle Hamiltonians whose eigenvalues do
correspond to binding and excitation total energy differences®. Here
we will consider a simple example, application of the Ztransition
state scheme to LD theory, since it is of great practical utility.

Suppose the total energy is expanded in a Taylor series in

the orbital occupation numbers

E(R) = E(n,) + (K-Ho)ﬁnElowwnz) (22)
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about some reference state Ho' But we know that BE/ani= € the
single particle eigenvalues, so

- -> ¥ > 2
E(n) -E(n_) = g dn e (ng) +0(8n?) . (23)

We can do better than this; choose the mean-value Hamiltonian

h(Eo) +h(n)

h(n) = 5 (24)
then’
E(n) -E(R.) = ] én.e, () +0(sn?). (25)
i 1 1
In practice, a precision of v +0.2 eV is observed, with
respect to direct calculation of total energy differences. for

binding and valence-state excitations in molecules. By comparison
with experiment, <ondization potentials are generally found with an
accuracy of *0.5 eV or better, which is about the level of uncer-
tainty in Vie® These transitions correspond to ni-+ni—l; the elec
trhon afsinities n, *n.+1 should be given to a similar accuracy-
however, diffuse anion final states are harder to describe. Mul-
tielectron excitations such as shake-up ionization (ni,nj,nk) >
(ni—l,nj—l,nk+l) have also been successfully modelled using the
transition state scheme.

As an example of interest in inorganic chemistry, let us
briefly consider the dodeca-carbonyls M4(CO)12 with M=Co,Rh,Ir.
These compounds are thoroughly characterized in solution and as
molecular crystals through IR, optical, X-ray, electrochemical, and

other techniques?®. Since the CO groups are easily substituted,
g
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they play a role as catalysts, analogs for surface chemisorption

and reactive intermediates.

~E - = - = L
—_— _ 9 — ———
] e — — 9?2
—47] 7o, T__ 7a, - Se
] 27e . __ 27¢ — — 8 14 _L_L..__I
1 - .
6| eenon 200 | s ——— | d-
| - 266 — . band
> 5,605=— " 9=
© —8— 28-—:_: 602 812_—__— . I.
o= Sap==— -
— TTtee-ll2le I3t _
|7G| — ... Te —_— '
- 10— R !
7a J— .t
[
-12— o — ==
C04(CO)|2 Rh4(CO)|2 lr4(CO)|2

Fig. 1 - Ground state LD -eigenvalues for M, (CO);, free molecules
(Ref.23); the highest occupied molecular orbital is indicated by
a heavy line. For Co, the 26e +27e optical absorption edge and the
22e »27e intense o »o* absorption are notable, and fit well with
experiment.

The idea of volume partitioning of the total energy is
very helpful in obtaining- the bonding properties of fragments of

molecules and solids. Let us write

Eioe = L By =1 [ e(¥)a’r (26)
Y Y ¥

where Yy denotes a nonoverlapping partitioning of the domain of in
terest, and ¢ is the Locaf enengy density. In LD theory, as in HF,

¢ consists of a single particle term, and two-body and exchange
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corrections,
-> -> : > >
e(r) = p_(r) + W (r) +W_ (o). (27)
The single particle part

- = 2
e ".ZG Bio €iolwio(r)l (28)
the electron-electron, electron-nuclear and nuclear-nuclear Coulcomb

terms

1 >
W, = -5 vc<r)(pnuc+§ o) (29)
and exchange-correlation corrections.
Wee © g pG(Exc,o_ch,o) (30)
are directly obtained as output of the SCF process. Here p is

nuc
the (delta-function sum) nuclear charge distribution andg% represents

the spin 4,V components of electronic density?°’?2*

. With volumes vy
suitably chosen one can make a quantitative determination of the
energy of an atom or of a specified bonding region. This volumetric
approach provides an alternative to orbital-transformation schemes

commonly used in fragment analysis, and is clearly independent of

basis~-set considerations.



CBPF-M0O-004/87
—17-

5. EMBEDDED CLUSTERS

A. Models

A wide variety of embedded cluster schemes have evolved
in response to the need to represent interaction of a cluster or
molecular fragment with its environment. The most simple method is
to place the cluster in a pofential 44ield, which in chosen to model
the cluster-host interaction in an average sense. In HF and ID cal-
culations it has been common to simply add a number of external
point charges to model the electrostatic field of the host. In ge-

neral we can write

cluster hlocal * Vhost (31)

with Vho generated by an array of point charges, distributed charge

st
(e.g., uniform density, sheets of charge, spherical shells), dis-
tributed ions of finite radial extent, or in self-consistent LD

form with

N host
plr) = pcluster ¥ g pv (32)
An 1iteration schematic of the form
(0,) (V)
—> h
Peluster > pcrystal cluster

A

(Z)
< : {w.,ei}<
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shows the essential features of decomposition of cluster density in
to component ions, summation to form crystal density and poten-

tials, solution of the SCF equations, and orbital density summa-

tion to provide input for further cycles?*’?°, In the case of ionic

solids Ewald summation®® is used to accelerate convergence 0f the

Coulomb potential.

The self-consistent scheme just described would produce
a periodic potential in a crystalline solid, essentially identical
to that used in band structure calculations. Indeed, the resulting
charge densities, spectral densities, and cohesive energies are
in rather good agreement when one takes into account the small cluster
size (2-3 shells of neighbors) typically employed. However, there
is a difficulty, which surfaces when ones uses sufficiently flexi
ble basis sets: the exterior atom/ion wells generate core states
which are capable of stripping electrons from the cluster. The
physical reason that this does not occur is that these states are
occupied and the Pauli exclusion principle generates a campensating
repulsive interaction. Pseudo-potential arguments?’ can be used to
truncate the exterior core regions, and simple parametrized forms are used
in many applications.

A more rigorous approach to wavefunction boundary condi-
tions can be obtained by the cluster Green's function theory?®.
'Here one obtains a localized partial wave representation of the
host Green's function, removes terms connected with cluster sites,
and redetermines the cluster wavefunctions in the MS framework.
The computational effort required here is heavy, with applications
primarily being in the area of metallic impurities. Less sophisti
cated boundary conditions have been developed by different groups

to approximately satisfy the physical boundary conditions desired.
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For example, in the case of metals, one can simply match the clus
ter wavefunction at some boundary to propagating spherical waves 2%/3°,
For semiconductors, it is convenient to generate bond - saturating
pseudoatoms (typically hydrogenic) to terminate the cluster and to
suppress surface states®! .

As a final practical example we discuss basis orthogona-
Lization techniques, which permit us to reject (project out) un-
desired wavefunction components in solving the single particle clus
ter equations. Consider expansions of the type of Eq. (7) , and

demand that the conditions

<Xj|¢k> =0 j=1,2,...M (33)
k=1,2,...L

be satisfied. For the sake of simplicity, suppose that the refer-

ence functions {¢k} are mutually orthonormal, then the operator
P = 1'-E|¢k><¢k| (34)

will "purify" the basis, in the sense that ijij satisfy Eq. 33.

The functions {¢k} can either be taken to be atomic core states
(core-orthogonalization) or exterior host-atom valence states (o-
verlap repulsion). The operation can either be carried out direc-
tly, by numerical summation to transform {xj} +{ij}, or implici-

tly by transforming Hamiltonian and overlap matrices in Eg. (15)
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B. APPLICATIONS TO CHEMISORPTION

The DV methods with numerical basis sets have been applied
in studies of the electronic structure of transition metal (IM) clus
ters. Free particles?®?, alloys and metallic impurities?? ligated
clusters®®, surfaces and chemisorption geometries®* have been mo-
delled in order to gain. an understanding of the metal-metal and
metal-ligand bonding. In this section we will take the interaction

of acetylene C H2 with the Ni(11ll) surface as an example of ap-

2
plications to chemically interesting chemisorption processes.

The charge density contours of o (F) for a clean Ni(1l1l1)
surface are shown in Fig. 2; core contributions are suppressed. Here

a very small Ni, cluster, at the center of the figure, is variation

3

al and used to generate a self-consistent embedding potential for

the semi-infinite solid.

Fig. 2 - Charge density contours in Ni(1l1ll) plane; 0.03 <p <0.08
a.u. with interval 0.005 a.u. (Ref.35). :
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A cut perpendicular to the surface is shown in Fig. 3; the
upper right-atom is variational. One can note the tendency of p to

fill in and smooth out density variations in the surface plane, as

opposed to interior regions.

Fig. 3 - Charge density contours transverse to Ni(111) plane; in-
tervals of 0.005 a.u. (Ref.35).

As a free molecule CZHZ is linear; but a variety of bonded
geometries are possible on the Ni surface. Models have been pro-
posed for plausible binding sites based upon electron diffraction
(LEED) , photoemission (UPS) and infrared (IR) vibrational spectra,
as well as in analogy to known molecular species. The LD theory can
play a useful role here in determining the relative energy and

most likely conformation of metal chemisorption complexes. A long-

range goal is to map sufficient portions of the interatomic poten-
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tial surface to aid in construction of classical and semiclassical
models of surface-reaction dynamics. Calculations were first per-
formed on isolated C2H2 to calibrate the basis set and verify that
good accuracy is obtained for binding energy and geometry. One of
the so-called "close-coupled" sites 'was chosen for the present CZHZ:Ni(lll)

study, with the C H2 in planar geometry parallel to the surface,

2
and the C-C axis in a bridging geometry with respect to Ni. Two
parameters were varied; height of the molecular plane above the sur-
face and C-C-H angle. Charge density in the transverse plane (Fig.4)
shows the C-C bond cross-section for the minimum energy configura-
tion. The molecular plane (Fig.5) shows a longitudinal cross-sec-
tion of the C-C bond and the optimal C-C-H angle of 165°. Further
studies need to be made, particularly with the molecular plane per

pendicular to the surface, and for different adsorption sites, in

order to model dissociation and recombination processes.

N ot
- -

\ 0

Fig. 4 - Charge density contours for C,H,:Ni(1lll) transverse to
(111) plane; intervals of 0.005 a.u. (Ref.35).
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Fig. 5 - Charge density contours in C2H plane over Ni(1l1ll); in-

tervals of 0.02 a.u. 2

6. RELATIVISTIC EFFECTS

We have emphasized the flexibility of DV numerical methods
in treating different basis sets and incorporating various interac-
tions in the Hamiltonian. Relativistic effects on electronic struc
ture become important for the description of chemdical properties
for atoms of the 44 series and beyond; 4Annen shell propenties are
affected over the entire periodic table. The Dirac equation pro-
vides an adequate single particle approach, with an effective Ha-

miltonian?®®
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> 5 >
P+ E moc +Vu(r) (35)
v

which can be directly utilized in the LD-SCF scheme. Here % and B
are the 4x4 velocity and rest-mass matrices, c =137.037 (speed
of light in a.u.) and Vu is the effective potential. Fortunately,
relativity does not alter the structure of the potential greatly®’’?3®
so that most effects can be identified with modifications in the
kinetic part of h-namely, spin-orbit splitting and mass —-velocity
increase in binding. Indirect effects, which arise as self-consis
tent shielding alter both energy and radial wavefunctions, are
of great importance in understanding relative shifts of s-, p-,
and d-level structure of heavy atoms, and concomitant changes in
chemical properties.

In our particular approach to the Dirac equation, four-

component solutions of the atomic problem are used as basis func-

tions??,

anj(r) Yﬂjm(f’g)
Xni’,jm = (36)
.?nzj(r)yzjm(r'g)

where { and g are the large-and small-component radial functions
respectively, and Y are spherical spinor harmonics corresponding
to total angular momentum j and orbital components £ and L. Mag-
netic effects in open-shell systems are included through a mo -
ment-polanized potential Vu analogous to the spdin-polarized po-
tential of non-relativistic theory. Here the Kramers pairs, which
are degenerate under time reversal in absence of a magnetic field,

are split into two classes u =+4,v.
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As a simple example of relativistic effects as determined

in LD theory, we display in Table 2 valence and shallow core eigen

values for the d%s? configuration of Pt.

level relativistic level nonrelativistic
4s 1/2 695.6 4s 578.5
4p 1/2 587.4 4p 485.6

3/2 496.4
4d 3/2 318.8 44 314.7

5/2 302.0
4f 5/2 74.6 4f 86.3

7/2 71.1
58 1/2 103.8 5s 83.1
5p 1/2 69.0 5p 53.9

3/2 53.8
5d 3/2 8.2 54 9.4

o 6_§\ K

0,9eV 4.8eV

6s 1/2 5.9 6s 4.6
6p 1/2 6p 0.9

3/2 .

5 4.7169316

Etot(xlO ) 5.0192786

Table 2 - Orbital and total energies (eV) for d®s? platinum atom
(o =0.7, spin restricted)

in NR and DS models.
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7. APPLICATIONS TO CERAMIC OXIDES

Ceramic oxide materials provide a severe challenge to e-
lectronic structure theories, due to their complex and varied com-
position. Their properties are typically very dependent upon in-
trinsic defect structure, and sensitive to (deliberate or acciden-
tial) impurity doping. Technical and industrial applications  are
very wide-ranging, including structural materials, recording and
microwave device components, catalysts and sensors, nonlinear e-
lectronic circuit elements, and the new class of high - temperature
superconductors, among others. It would require too much space to
reproduce here the material presented at this School. This section
will consist of an extended Abstract, and the reader is invited to
consult the literature for further details.

Using the DV-LD scheme with an embedded cluster model of
the extended solid, we have considered TM monoxides with the rock-
salt structure. In the early TM series, compounds like TiOX and
VOX (x#1 denotes deviations from stoichiometry) exhibit numerous
vacancies on both metal and oxygen sublattices, with properties ranging
from metallic to semiconducting. Diffuse X-ray scattering studies
and K-shell absorption cross-sections have been used to characterize
the vacancy structures and to probe local relaxation phenomena“’’*?,
Toward the middle of the 3d series compounds like wustite Fel_xo
form interstitial defect complexes associated with M2+-+M3+ valence
changes. Aggregates of the 4:1 tetrahedral (4 metal vacancies, 1
interstitial metal) complex are considered to dominate electronic and
thermodynamic properties. These materials, including MnO and Co0

may be termed magnetic semiconductors or insulators, with antifer-

romagnetic ordering commonly observed. Cohesive energy calculations
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based on small (8 atom) or moderate sized (27 atom) clusters allow
the determination of energy of various defect arrangements relative
to the unperturbed lattice. The 4:1 interstitial with Fe3+ at the
center is in fact found to be the most stable isolated defect in

F 0, confirming interpretations of Mdssbauer, X-ray, and neutron

el—x
scattering data"?. Aggregates of this complex formed by edge - or
vertex-sharing (7:2 <110> and 7:2 <111>) are also found to be ener
getically favored, and are thus expected to be present in high con
centration at elevated temperatures. In CoO the 4:1 complex also
appears to be most stable; however, the simple metal vacancy lies
close in energy. Thus 1:0 defects can be present in significant num-
bers and contribute to diffusion and conduction processes®?. Ex-
periments in progress will help to distinguish between different
processes present in Mn, Fe and Co monoxide, and check our predic-
tion that in MnO the 4:1 interstitial is relatively unfavored.

Zirconia, ZrOz, provides an example of a structural ce-

ramic, whose native defect state consists of oxygen vacancies. The

+

addition of divalent ions such asCa2 or trivalent ions such as

y3+ as substituents on the Zr4+ sites stabilizes the cubic phase.
Cluster calculations have shown that 0 vacancies reduce the in-
trinsic band gap from V6.5 eV to "5 eV, also introducing "impurity
levels" in the mid-gap region. Divalent metal counterions reduce
the gap to V2 eV, with impurity states appearing near the top of
the valence band. Trivalent impurities produce a band gap of ~3.2 eV,
with mid-gap impurity levels.

Neutron diffraction studies have shown that certain oxygen
near neighbors move off of lattice sites, to partially compensate

for the "hole" made by a vacancy. Charge density difference maps

Ap =p (reference) -p (defect-crystal) clearly show the ionic na-
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ture of bonding in Zx0, and reveal the polarization of electron den
sity induced by defects and their counterions®“. Work in progress
is aimed toward relating Ap and the associated energy changes AE
with observed changes in bulk dielectric constant.

The superconducting copper-oxide ceramics form as variants
of the perovskite structure. The first-discovered high T, material

of this class 1lLa X(Sr,Ba)XCuO

9 with TC v 35K, is actually a semi-

4/
conductor in the "pure" phase, and one of the principal questions

2+-+La3+) merely stabilize the geometri-

has been: Does doping (Ba
cal structure required for superconductivity, or do accompanying
electronic charge compensations such as Cu2+-+Cu3+ provide the es-
sential difference? X-ray absorption near edge structure (XANES)
measurements and cross-section calculations of Cu K-edge processes
suggest that Cu3+ is present in significanf concentration even in
the undoped material, and that the ratio 2%:3% changes very little
upon doping“°®.

Self consistent cluster calculations on CuO6La8, CuOékHBa
and related embedded complexes show that the Cu-O0 bond is highly
covalent. The Cu near-neighbor environment is distorted octahedral,
with four short (equatorial) and two long (axial) bonds. In a larger
perspective there exist sheets of square-planar Cu-0 arrays, coupled
to the rest of the lattice through the axial bonds. We find that
the critical electronic levels of the unperturbed lattice consist
of occupied d(x°~y?)=-0 planar and vacant d(3z?-r?%)-0 axial states,
separated by only 0.03 eV. The occupied level, of 86%d character,
corresponds roughly to the Cu2+ configuration, while the empty level,
of 57%d character, could be termed a "valence excitation". Small

changes in Cu-O relative bond lengths, such as are produced by lat

tice vibrations, or perturbations on lattice sites, including sub-
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stitution of neighboring La by Ba, are sufficient to invert the
level ordering thus driving the valence excitation. These results
and literally thousands of other investigations now under way point
toward new mechanisms of superconducting pair formation and stabi

lization.
The materials with highest confirmed TC’M9OK, such as

yBaZCu present further challenges for construction of a via-

307—x
ble theory. There are fwo types of copper; one in four-fold co-or
dination to oxygen, forming chains (or x4ibbons) through the lat-
tice, and the other in five-fold pyramidal co-ordination to oxy-

+

gen, forming sheets enclosing the y3 and Ba2+ sites. Here the che

mical average valence is ﬂfCu+2'2, and one of the main unresolved
questions is: Do both Cu sites contribute to superconductivity, or
only the 4-fold? Since substitution of Y by magnetic rare -earth
ions produces little change in TC (in contrast to normal metal-
based superconductors) the latter case seems likely.

The compositions with high TC are characterized by an ox
ygen vacancy structure which is ordered, and tends to segregate
the Cu-O0 ribbons and sheets. One is then faced with the possibili
ty (or need!) of constructing 1D and 2D superconductivity models.
Experiments on single crystals which measure anisotropy of criti-
cal fields, and of normal transport and spectroscopic properties
will provide much-needed classification of what is presently a ve
ry active and confused area of research. Cluster and band - struc-
ture calculations are useful in providing é static victure of level
structures and potential interactions, which can be incorporated
in phenomenological models of the electron-pairing through lattice

phonous or local modes three-body Cu-O-Cu resonances, Or more exo

tic dynamical mechanisms"”®.
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