
CBPF-MO-004/04

An Introduction to Logical Operations on Classical and Quantum Bits∗

F.L. Marquezino and R.R. Mello Júnior

Centro Brasileiro de Pesquisas F́ısicas – CBPF/MCT
Coordenação de Campos e Part́ıculas – CCP

Av. Dr. Xavier Sigaud, 150
22290-180 Rio de Janeiro (RJ) Brazil

(CNPq Fellows/PIBIC)
franklin@serraon.com.br, rui.rodrigues@inf.ucp.br

Abstract

This article is a short review on the concept of information. We show the strong relation
between Information Theory and Physics, and the differences between classical and quantum
information, with emphasis in their manipulation through logical gates.This paper is intended
to be read by non-specialists and undergraduate students of Computer Science, Mathematics
and Physics, with knowledge in Linear Algebra and Quantum Mechanics.

Key-words: Logical Gates, Quantum Computation, Computer Science.

∗The authors are undergraduate students of Computer Science at the Catholic University of Petrópolis. They
are also members of Grupo de F́ısica Teórica José Leite Lopes.

CBPF-MO-004/04 1

1 Introduction

In a previous paper [1], we expose the physical character of information, making it clear that
every information must be represented by a physical system. However, another question that
may arise is how to interfere on the information being represented? This subject will be studied
in this article, under the viewpoints of both Classical and Quantum Computation.

Sections 2 and 3 give an introduction to two different models of computation. The former is
the traditional circuit model, compatible with the idea of Turing machines, but more adequate
to the purposes of this paper. The latter is the corresponding concept that uses properties of
Quantum Mechanics, instead of Classical Mechanics.

As soon as we learn how to perform simple operations with a certain physical system, it is
very important to learn how to keep these operations reliable. In Section 4, we briefly introduce
classical and quantum error detection and correction.

Here, we assume that the reader already has a certain backgroung on Quantum Information.
If necessary, we recommend the reading of [1] or [2] before starting reading Section 3.

2 On classical circuits

The Turing machine is an important concept, developed by the british mathematician Alan
Turing [3]. Any calculation using a classical physical system, can be carried out by a Turing
machine, according to the Church-Turing thesis [4]:

“Any process that is effective or algorithmic in nature defines a mathematical func-
tion belonging to a specific well-defined class, known variously as the recursive, the
λ-definable, or the Turing computable functions.”

Here, we use a different, yet equivalent formalism, which is the circuit of gates and wires.
The proof for the equivalence between Turing machines and circuits can be achieved through the
notion of uniform circuit family. The reader may found this proof in many books on Computer
Science or Quantum Computation, including [5].

We shall begin our study of the classical circuits by introducing the notion of Boolean
functions. A function f : {0, 1}n → {0, 1}m is called a Boolean function, due to the english
mathematician George Boole.

Interesting information on this subject can be found in [6], specially in the section on
Combinational Logics. Another good reference is the book by Andrew Tanenbaum [7].

We can define a Boolean function f(x) which is equal to 0 if x = 1 and is equal to 1 if x = 0.
This function corresponds to the logical operation NOT. We can write the result of f(x) as ¬x
or x̄.

Another interesting function should be f(x, y), which is equal to 1 if x = y = 1, and 0
otherwise. This is the logical gate AND. Similarly, we could define a function f(x, y), equal to
0 if x = y = 0 and 1 otherwise, which corresponds to the logical gate OR. We can also write
an AND operation as a product and an OR operation as a sum. For instance, f(x, y) = xy,
meaning “x and y”, or f(x, y) = x+ y, meaning “x or y”.

These functions can be represented by a table, called the truth table. See Tables 1, 2 and 3,
for the functions NOT, AND and OR, respectively. We can build any circuit with these three
logical operations.

CBPF-MO-004/04 2

x ¬x

0 1

1 0

Table 1: Logical operation NOT.

x y xy

0 0 0

0 1 0

1 0 0

1 1 1

Table 2: Logical operation AND.

At this point we should finally introduce the circuit of gates and wires. In this model each
gate has a graphical representation. Wires carry 0’s and 1’s, through space or time. See Fig.1,
for the functions NOT, OR and AND.

The output of a gate can be the input of another gate1. So, let f(x) be a Boolean function
corresponding to the NOT logical operation, and let g(x, y) be a Boolean function corresponding
to the AND logical gate. We can define a function h = f ◦ g = ¬(xy). This function is very
important in Computer Science, and is called NAND. Graphically, it can be represented by
putting a small circle in the outcome of the AND gate, meaning that this result is negated (see
Fig. 2). Any classical logical circuit can be designed using only the NAND logical gate, and the
FANOUT2.

Another interesting logical gate is the NOR, defined as f(x, y) = ¬(x + y), that is, an OR
logical gate with its outcome inverted. As well as the NAND gate, this gate can also be used to
build any logical circuit.

We cannot expect to create quantum circuits in a straightfoward way by simply using the
same techniques of classical circuits. Firstly, because in classical circuits the universal gate is
NAND, which is irreversible3, while in quantum circuits all gates must be reversible. Not even

1Normally, the output of a gate is not a input of the same gate, although it may be possible in some special
cases, such as flip-flop circuits. Flip-flops are special circuits that work as memories, keeping the value of a bit
even after the input signalization.

2A “gate” that replicates the value of one bit in two different wires. It is often represented by a bifurcation in
a wire.

3If we know only the output of an irreversible gate, we do not necessarily know the inputs.

Figure 1: Graphical representation for the logical operations NOT, OR and AND.

CBPF-MO-004/04 3

Figure 2: We can use the NAND gate to build the gates AND, OR and NOT. Consequently, we
can build any classical circuit using only NAND gates.

Figure 3: We can also use the NOR gate to build the gates AND, OR and NOT. Consequently,
the gate NOR is also universal.

CBPF-MO-004/04 4

x y x + y

0 0 0

0 1 1

1 0 1

1 1 1

Table 3: Logical operation OR.

FANOUT is possible in Quantum Mechanics, because of the non-cloning theorem [8].

3 On quantum circuits

Similarly to Classical Computation, there must be a mathematical representation for the op-
erations performed in the quantum physical system. Computer scientists are used to represent
logical operations by Boolean functions. However, in Quantum Computation we will use a
slightly different formalism, which will be more suitable. The reader must be familiar with
Linear Algebra, because that is what we will use from now on.

A quantum state is represented by a vector in a Hilbert space (a complex vector space with
inner product). Hence, if we consider an orthonormal basis composed by the states |0〉 and |1〉,
the quantum state can be any of the form α|0〉 + β|1〉, where α and β are complex numbers
called amplitudes. Since this state must be a unit vector, we know that ‖α‖2 + ‖β‖2 = 1.

We can represent our computational basis by the state vectors

|0〉 ≡
[
1
0

]
and |1〉 ≡

[
0
1

]
, (1)

for example. This representarion may help the understanding of the calculations carried out in
this section.

Operations on a quantum state must preserve its norm, so they are described by unitary
matrices. In order to represent a logical operation on a qubit, one should find a unitary matrix
that gives the desired result when applied to the qubit.

U |ψ〉 = |ψ′〉. (2)

To illustrate that, let us observe the equivalent of the NOT classical logic gate. We must
find a unitary operator U, such that

U |0〉 = |1〉 (3)
U |1〉 = |0〉, (4)

and, since U is a linear operator,

U(α|0〉 + β|1〉) = αU |0〉 + βU |1〉. (5)

The operator

σx =

[
0 1
1 0

]
, (6)

one of the three Pauli matrices, corresponds to the unitary matrix that we are looking for.

CBPF-MO-004/04 5

Note that if we apply the operator σx twice, we keep the original value of the qubit.

σxσx =

[
0 1
1 0

] [
0 1
1 0

]
=

[
1 0
0 1

]
(7)

which is the identity matrix.
Another interesting operator is the Hadamard gate:

H =
1√
2

[
1 1
1 1

]
. (8)

This gate is able to create superpositions in a qubit. Note that H|0〉 = 1√
2
(|0〉 + |1〉) and

H|1〉 = 1√
2
(|0〉 − |1〉).

Another interesting type of operator that we cannot forget mentioning is the controlled
operator. When we have at least two qubits (a quantum register), we can define an operator
that will interfere in a particular qubit if and only if some requirement is observed. For instance,
let σc,t

x be an operator that applies the NOT logic operation in the qubit t if and only if the
qubit c is |1〉.

σc,t
x (|0〉c|0〉t) = |0〉c|0〉t (9)
σc,t

x (|0〉c|1〉t) = |0〉c|1〉t (10)
σc,t

x (|1〉c|0〉t) = |1〉c|1〉t (11)
σc,t

x (|1〉c|1〉t) = |1〉c|0〉t. (12)

In this case, we say that qubit t is the “target qubit” and qubit c is the “control qubit”.
This gate is called CNOT and, similarly, it may be expressed as a unitary matrix.

CNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 . (13)

Similarly to Classical Computation, there are gates in Quantum Computation that can be
used to build any possible circuit. It can be proven that an arbitrary unitary matrix U can be
decomposed into a product of two-level unitary matrices, i.e., matrices that act non-trivially on
no more than two vector componets. One could also prove that single qubit gates and CNOTs
can be used to achieve any two-level unitary matrix. Hence, it can be proven that single qubit
gates and CNOT gates can implement an arbitrary operation and, therefore, they are universal
in Quantum Computation.

The proof for the last paragraph is not straightfoward and would spend a reasonable space in
this paper. If the reader is interested in studying this subject deeper, the main reference is [9].

4 Error detection and correction: some brief remarks

An important area of Computer Science concerns the detection and correction of errors. If we
intend to build a computer, no matter if a classical or a quantum-mechanical one, we have to
deal with its errors, so that the calculations can be trusted.

CBPF-MO-004/04 6

In a classical digital computer, we can consider one single kind of error. Suppose we wish to
send a bit through a channel. If there is noise in this channel, a bit 0 can be changed to 1, with
probability p, and a bit 1 can be changed to 0, with probability q. So, the bit 0 will keep correct
with probability 1−p, and the bit 1 with probability 1− q. Normally, we consider p = q. In this
case, both bits 0 and 1 have the same probability p of being affected by the noise, and the same
probability 1− p of being sent correctly. This channel is called a binary symmetric channel.

Classical schemes for error detection and correction use some kind of redundancy. A very
simplistic example would be repeating the same bit n times. For instance

0L = 000 (14)
1L = 111 (15)

with n = 3.
In this case, if we wish to represent the number 5 (101 in the binary system), we must repeat

each logical bit three times:

(101)L = 111000111. (16)

If some noise inverts a single bit in a triplet, we can easily repair the information. For
instance, if the above number is changed to 111010110, we know that the triplets 010 and 110
are wrong. We can recover the information by performing the majority vote. So, the triplet 010
was originally 000 and the triplet 110 was 111. One could easily prove that the majority vote
works properly whenever p < 1

2 .
In Quantum Mechanics, errors are not so simple. Firstly, we cannot simply copy the quantum

bits, because of the non-cloning theorem. Moreover, even if we could copy qubits, we would not
be able to detect errors by simply measuring them. These limitations are enough to show us
that our techniques must me changed if we wish to handle the quantum-mechanical world. But,
if we wish to go a little further, we must consider that different kinds of errors may occur in this
case.

A qubit can suffer a phase flip, when α|0〉+β|1〉 is changed to α|0〉−β|1〉. Besides, we must
remember that a qubit is continuous, so it can suffer a small error. Imagine a Bloch sphere
where the state is accidentally rotated by a small angle. This error would not be detected if
we consider only bit flips and phase flips. How can we protect our quantum computers against
all these threats? Peter Shor, who created the code to correct arbitrary errors on a single
qubit, answered this question [10]. Nowadays, this code is known as the Shor code. In order to
understand it, we will analyze two “modules”: the three-qubit bit flip code and the three-qubit
phase flip code. The Shor code is a combination of these two “modules”.

Before the explanation of these modules, it should be important to have a brief digression on
the third postulate of Quantum Mechanics, which concerns to measurements. A measurement is
characterized by an observable,M , such thatM =M † = (MT)	. So, the spectral decomposition
of M is:

M =
∑
m

Pm. (17)

According to this postulate, the possible outcomes that may occur in an experiment are the
eigenvalues of M , i.e., m. If the state before the measurement is |ψbef 〉, then the probability
that a result m occurs is

CBPF-MO-004/04 7

p(m) = 〈ψbef |Pm|ψbef 〉 (18)

and the state after the measurement is

|ψaft〉 = Mm|ψ〉√
〈ψbef |Pm|ψbef

. (19)

Now, we shall return to the study of the Shor code.

4.1 The three-qubit bit flip code

At first, we must encode our qubits, as follows:

|0〉 becomes |0L〉 ≡ |000〉 (20)
|1〉 becomes |1L〉 ≡ |111〉, (21)

so that the qubit |ψ〉 = α|0〉 + β|1〉 is encoded as α|000〉 + β|111〉.
If we wish to check if some error occurred, we use a measurement called syndrome diagnosis.

Its result is called the error syndrome. We use four projection operators, each one corresponding
to a bit flip in a specific qubit.

P0 ≡ |000〉〈000| + |111〉〈111| no error occurred (22)
P1 ≡ |100〉〈100| + |011〉〈011| error on 1st qubit (23)
P2 ≡ |010〉〈000| + |101〉〈101| error on 2nd qubit (24)
P3 ≡ |001〉〈000| + |110〉〈110| error on 3rd qubit. (25)

Note that, when we measure an state |ψ〉 using the operator Pi, (0 < i ≤ 3), we obtain 1 if
the i-th qubit is corrupted, and 0 otherwise. Similarly, if we use the operator P0, we obtain 1 if
the three qubits are correct, and 0 otherwise. After the measurement, the qubit is not modified!
This is possible because the syndrome diagnosis does not give us any information about the
qubit per si (i.e., the values of α and β).

4.2 The three-qubit phase flip code

The three-qubit bit flip code protects our qubit against the simplest kind of error. However,
as we mentioned before, quantum bits are subject to much more errors than simple flips. The
second type of noise that we will analyze is the phase flip. This error may change a qubit
α|0〉 + β|1〉 into α|0〉 − β|1〉.

The idea behind the three-qubit phase code is very similar to that used in the three-qubit
bit flip code. Instead of encoding the qubit according to equations 20 and 21, we must use

|0〉 becomes |0L〉 ≡ |+++〉 (26)
|1〉 becomes |1L〉 ≡ | − −−〉, (27)

where |+〉 ≡ (|0〉 + |1〉)/√2 and |−〉 ≡ (|0〉 − |1〉)/√2.

CBPF-MO-004/04 8

The only difference is that, in this code, we use the basis {|+〉, |−〉} to encode the qubit,
instead of the basis{|0〉, |1〉}. Remember that we can use the Hadamard operator (eq. 8) to
change between one basis and the other.

To perform the syndrome measurement, we only need to use the correct operators for the
new basis.

Pi becomes P
′
i ≡ (H ⊗H ⊗H)Pi(H ⊗H ⊗H). (28)

If the reader is interested in demonstrations for the subject exposed so far in this section,
we recommend the references [5] and [11].

4.2.1 The Shor code

The Shor code is a concatenation of the two codes explained before. In the first step, we encode
the qubit using the phase flip code (eq. 26 and eq. 27). Consequently, we will have three qubits4

from this point on. In the second step, we encode each of the three resulting qubits using the
bit flip code (eq. 20 and eq. 21). Finally, we have nine qubits representing the initial qubit.

|0〉 becomes |0L〉 ≡ (|000〉 + |111〉)(|000〉 + |111〉)(|000〉 + |111〉)
2
√
2

(29)

|1〉 becomes |1L〉 ≡ (|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)
2
√
2

. (30)

As we can see, this code is very expensive, especially if we consider the present status of
experimental quantum computation. The best quantum computer ever built had only seven
qubits! However, the Shor code is extremely important because it protects the qubit against
arbitrary errors, not only bit flips or phase flips. The main lesson of this section is that,
although quantum states can present a continuum of errors, they can be repaired by detecting
and correcting only a discrete subset of errors.

5 Conclusions

This paper is an introduction to one of the most important topics in Computer Science. When-
ever we wish to perform a computation, we must know how to store a certain initial value, and
then manipulate it until we achieve a result, when we can finally measure the system and obtain
an answer.

We began by showing how we can perform simple operations in physical system, with classical
and quantum logic gates. Then, we showed how to keep it reliable, with error detection and
correction codes. Naturally, this is a vast area of knowledge, which could not be completely
described in one single article. However, our goal here is to introduce this subject in a simple
but effective way, helping to students and researchers from different areas of knowledge.

The references mentioned throughout this paper can be used to improve the comprehension
of the subject.

4We used three qubits in our example, but we could have used more. The same comment is valid for the bit
flip code. Three is the minimum necessary in both cases.

CBPF-MO-004/04 9

Acknowledgements

The authors thank Prof. J.A. Helayël-Neto (CBPF) and Dr. J.L. Acebal (PUC-Minas) for
reading the manuscripts, and for providing helpful discussions. We thank the Group of Quan-
tum Computation at LNCC, in particular Drs. R. Portugal and F. Haas, for the courses and
stimulating discussions. We also thank the brazilian institution CNPq and the PIBIC program,
for the financial support.

References

[1] Marquezino, F.L. and Mello Júnior, R.R., “Considerations on Classical and Quantum Bits”.
Work in progress.

[2] Lavor, C., Manssur, L.R.U and Portugal, R., “Grover’s Algorithm: Quantum Database
Search”. (2003) Available in www.arxiv.org/quant-ph/0301079.

[3] Turing, A.M., “On computable numbers, with an application to the Entscheidungsprob-
lem”, Proc.Lond.Math.Soc. 2, 42:230. (1936)

[4] Shapiro, S., “Church’s Thesis”. Encyclopedia of Artificial Inteligence, John Wiley & Sons,
New York. (1990) pp. 99-100.

[5] Nielsen, M.A. and Chuang, I.L., “Quantum Computation e Quantum Information”, Cam-
bridge University Press (2000).

[6] WWW page at University of Maryland: http://www.cs.umd.edu/class/spring2003/
cmsc311/Notes/.

[7] Tanenbaum, A.S., “Structured Computer Organization”. 4th edition, Upper Saddle River,
NJ: Prentice Hall. (1999)

[8] Wooters, W.K. and Zurek, W.H., “A single quantum cannot be cloned”, Nature, 299,
802-803. (1982)

[9] Barenco, A., Bennett, C.H., Cleve, R., DiVicenzo, D.P., Margolus, N., Shor, P., Sleator, T.,
Smolin, J. and Weinfurter, H., “Elementary gates for quantum computation”, Phys.Rev.A,
52:3457-3467. (1995). Also available in www.arxiv.org/quant-ph/9503016.

[10] Shor, P.W., “Fault-tolerant quantum computation”. In Proceedings, 37th Annual Sympo-
sium on Foundations of Computer Science, pages 56-65, IEEE Press, Los Alamitos, CA.
(1996)

[11] Preskill, J., “Lecture Notes for Physics 229: Quantum Information and Computation”.
California Institute of Technology. (1998)

[12] Williams, C.P. and Clearwater, S.H., “Explorations in Quantum Computing”, The Elec-
tronic Library of Science, California. (1997)

