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I. INTRODUCTION

We present a review work considering the Lagrangian formalism for the construction

of one dimension supersymmetric (SUSY) quantum mechanics (QM) with N = 2 super-

symmetry (SUSY) in a non-relativistic context. In this paper, the supersymmetry with

two Grassmann variables (N = 2) in classical mechanics is used to implement the Dirac

canonical quantization method and the main characteristics of the SUSY QM is considered

in detail. A general review on the SUSY algebra in quantum mechanics and the procedure

on like to build a SUSY Hamiltonian hierarchy in order of a complete spectral resolution

it is explicitly applied for the Pöschl-Teller potential I. We will follow a more detailed

discussion for the case of this problem presents unbroken SUSY and broken SUSY. We

have include a large number of references where the SUSY QM works, with emphasis on

the one-component eigenfunction under non-relativistic context. But we indicate some

articles on the SUSY QM from Dirac equation of relativistic quantum mechanics. The

aim of this paper is to stress the discussion how arise and to bring out the correspondence

between SUSY and factorization method in quantum mechanics. A brief account of a new

scenario on SUSY QM to two-component eigenfunctions, makes up the last part of this

review work.

SUSY first appeared in field theories in terms of bosonic and fermionic fields†, and the

possibility was early observed that it can accommodate a Grand-Unified Theory (GUT)

for the four basic interactions of Nature (strong, weak, electromagnetic and gravitational)

[1]. The first work on the superalgebra in the space-time within the framework of the

Poincaré algebra was investigated by Gol’fand and Likhtman [2]. On the other hand,

Volkov-Akulov have considered a non-renormalizable realization of supersymmetry in field

theory [3], and Wess-Zumino have presented a renormalizable supersymmetric field theory

model [4].

Recently the SUSY QM has also been investigated with pedagogical purpose in some

booktexts [5] on quantum mechanics giving its connections with the factorization method

[7]. Starting from factorization method new class of one-parameter family of isospectral

potential in one dimension has been constructed with the energy spectrum coincident with

†A bosonic field (associated with particles of integral or null spin) is one particular case obeying

the Bose-Einstein statistic and a fermionic field (associated to particles with semi-integral spin)

is that obey the Fermi-Dirac statistic.
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that of the harmonic oscillator by Mielnik [8]. In recent literature, there are some inter-

esting books on supersymmetric classical and quantum mechanics emphasizing different

approach and applications of the theory [6].

Fernandez et al. have considered the connection between factorization method and

generation of solvable potentials [9]. The SUSY algebra in quantum mechanics initiated

with the work of Nicolai [10] and elegantly formulated by Witten [11], has attracted

interest and found many applications in order to construct the spectral resolution of

solvable potentials in various fields of physics. However, in this work, SUSY N = 2 in

classical mechanics [12–18] in a non-relativistic scenario is considered using the Grassmann

variables [19]. Recently, we have shown that the N = 1 SUSY in classical mechanics

depending on a single commuting supercoordinate exists only for the free case [20].

Nieto has shown that the generalized factorization observed by Mielnik [8] allow us to

do the connection between SUSY QM and the inverse method [21,22]. The first technique

that have been used to construct some families of isospectral order second differential

operators is based on a theorem due to Darboux, in 1882 [23].

J. W van Holten et al. have written a number of papers dealing with SUSY mechanical

systems [24–33]. The canonical quantization of N = 2 (at the time called N = 1) SUSY

models on spheres and hyperboloids [25] and on arbitrary Riemannian manifolds have

been considered in [26]; its N = 4 (at that time called N = 2) generalization is found in

[27]; SUSY QM in Schwarzchild background was studied in [28]; New so-called Killing-

Yano supersymmetries were found and studied in [29–31]; General multiplet calculus for

locally supersymmetric point particle models was constructed in [32] and the relativistic

and supersymmetric theory of fluid mechanics in 3+1 diemnsions has been investigated

by Nyawelo-van Holten [33]. The vorticity in the hydrodynamics theory is generated by

the fermion fields [34].

D’Hoker and Vinet have also written a number of papers dealing with classical and

quantum mechanical supersymmetric Lagrangian mechanical systems. They have shown

that a non-relativistic spin 1
2
particle in the field of a Dirac magnetic monopole exhibits a

large SUSY invariance [36]. Later, they have published some other interesting works on

the construction of conformal superpotentials for a spin 1
2

particle in the field of a Dyon

and the magnetic monopole and 1
r2
−potential for particles in a Coulomb potential [37].

However, the supersymmetrizatin of the action for the charge monopole system have been

also developed by Balachandran et al. [38].

A new SUSY QM system given by a non-relativistic charged spin- 1
2

particle in an

extended external electromagnetic field was obtained by Dias-Helayel [39].
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Using a general formalism for the non-linear quantum-mechanical σ model, a mecha-

nism of spontaneous breaking of the supersymmetry at the quantum level related to the

uncertainty of the operator ordering has been obtained by Akulov-Pashnev [40]. In [40] is

noted the simplicity of the supersymmetric O(3)-or O(2, 1)-ivariant Lagrangian deduced

there when compared with the analogous obtained using real superfields [26]. The mecha-

nism of spontaneous breaking of the supersymmetry in quantum mechanics has also been

investigated by Fuchs [41].

Barcelos and others have implemented the Dirac quantization method in superspace

and found the SUSY Hamiltonian operator [42]. Recently, Barcelos-Neto and Oliveira

have investigated the transformations of second-class into first-class constraints in super-

symmetric classical theories for the superpoint [43]. Junker-Matthiesen have also consid-

ered the Dirac’s canonical quantization method for the non-relativistic superpaticle [230].

In the interest of setting an accurate historical record of the subject, we point out that, by

using the Dirac’s procedure for two-dimensional supersymmetric non-linear σ-model, Eq.

(13) of the paper by Corrigan-Zachos [35] works certainly for a SUSY system in classical

mechanics.

A generalized Berezin integral and fractional superspace measure arise as a deformed

q-calculus is developed on the basis of an algebraic structure involving graded brackets.

In such a construction of fractional supersymmetry the q-deformed bosons play a role

exactly analogous to that of the fermions in the familiar supersymmetric case, so that

the SUSY is identified as translational invariance along the braided line by Dunne et

al. [45]. An explicit formula has been given in the case of real generalised Grassmann

variable, Θn = 0, for arbitrary integer n = 2, 3, · · · for the transformations that leave

the theory invariant, and it is shown that these transformations possess interesting group

properties by Azcárraga and Macfarlane [46]. Based on the idea of quantum groups

[47] and paragrassmann variables in the q-superspace, where Θ3 = 0, a generalization

of supersymmetric classical mechanics with a deformation parameter q = exp 2πi
k

dealing

with the k = 3 case has been considered by Matheus-Valle and Colatto [48].

The reader can find a large number of studies of fractional supersymmetry in literature.

For example, a new geometric interpretation of SUSY, which apllies equally in the frac-

tional case. Indeed, by means of a chain rule expansion, the left and right derivatives are

identified with the charge Q and covariant derivative D encountered in ordinary/fractional

supersymmetry and this leads to new results for these operators [49].

Supersymmetric Quantum Mechanics is of intrinsic mathematical interest in its own

as it connects otherwise apparently unrelated (Cooper and Freedman [50]) second-order



CBPF-MO-003/01 4

differential equations.

For a class of the dynamically broken supersymmetric quantum-mechanical models

proposed by Witten [11], various methods of estimating the ground-state energy, including

the instanton developed by Salomonson-van Holten [13] have been examined by Abbott-

Zakrzewski [51]. The factorization method [7] was generalized by Gendenstein [52] in

context of SUSY QM in terms of the reparametrization of potential in which ensure us

if the resolution spectral is achieved by an algebraic method. Such a reparametrization

between the supersymmetric potential pair is called shape invariance condition.

In the Witten’s model of SUSY QM the Hamiltonian of a certain quantum system is

represented by a pair H±, for which all energy levels except possibly the ground energy

eigenvalue are doubly degenerate for both H±. As an application of the simplest of the

graded Lie algebras of the supersymmetric fields theories, the SUSY Quantum Mechan-

ics embodies the essential features of a theory of supersymmetry, i.e., a symmetry that

generates transformations between bosons and fermions or rather between bosonic and

the fermionic sectors associated with a SUSY Hamiltonian. SUSY QM is defined (Crom-

brugghe and Rittenberg [53] and Lancaster [54]) by a graded Lie algebra satisfied by the

charge operators Qi(i = 1, 2, . . . , N) and the SUSY Hamiltonian H . The σ model and

supersymmetric gauge theories have been investigated in the context of SUSY QM by

Shifman et al. [55].

While in field theory one works with SUSY as being a symmetry associated with trans-

formations between bosonic and fermionic particles. In this case one has transformations

between the component fields whose intrinsic spin differ by 1
2
h̄. The energy of potential

models of the SUSY in field theory is always positive semi-defined [1,56,60–66]. Here is

the main difference of SUSY between field theory and quantum mechanics. Indeed, due to

the energy scale to be of arbitrary origin the energy in quantum mechanics is not always

positive.

Using supergraph metods, Helayel-Neto et al. have derived the chiral and antichiral

superpropagators [57]; have calculated the chiral and gauge anomalies for the super-

symmetric Schwinger model [58]; under certain asumption on the torsion-like explicitly

breaking term, one-loop finiteness without spoilong the Ricci-flatness of the target mani-

fold [59].

After a considerable number of works investigating SUSY in Field Theory, confir-

mation of SUSY as high-energy unification theory is missing. Furthermore, there exist

phenomenological applications of the N = 2 SUSY technique in quantum mechanics [67].

The SUSY hierarchical prescription [68] was utilized by Sukumar [69] to solve the
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energy spectrum of the Pöschl-Teller potential I (PTPI). We will use their notation.

The two first review work on SUSY QM with various applications were reported by

Gendenshtein-Krive and Haymaker-Rau [70] but does they not consider the Sukumar’s

method [69]. In next year to the review work by Gendenshtein-Krive, Gozi implemented

an approach on the nodal structure of supersymmetric wave functions [71] and Imbo-

Sukhatme have investigated the conditions for nondegeneracy in supersymmetric quantum

mechanics [72].

In the third in a series of papers dealing with families of isospectral Hamiltonians,

Pursey has been used the theory of isometric operators to construct a unified treatment

of three procedures existing in literature for generating one-parameter families of isospec-

tral Hamiltonian [73]. In the same year, Castaños et al. have also shown that any

n-dimensional scalar Hamiltonian possesses hidden supersymmetry provided its spectrum

is bounded from below [74].

Lahiri et al. have investigated the transformation considered by Haymaker-Rau [70],

viz., of the type x = �ny so that the radial Schrödinger equation for the Coulomb potential

becomes a unidimensional Morse-Schrödinger equation, and have stablished a procedure

for constructing the SUSY transformations [75].

Cooper-Ginocchio have used the Sukumar’s method [69] gave strong evidence that

the more general Natanzon potential class not shape invariant and found the PTPI as

particular case [76]. In the works of Gendenshtein [52] and Dutt et al. [77] only the

energy spectrum of the PTPI was also obtained but not the excited state wave functions.

The unsymmetric case has been treated algebraically by Barut, Inomata and Wilson [78].

However in these analysis only quantized values of the coupling constants of the PTPI

have been obtained.

Roy-Roychoudhury have shown that the finite-temperature effect causes spontaneous

breaking of SUSY QM, based on a superpotential with (non-singular) non-polynomial

character, and Casahorran has investigated the superymmetric Bogomol’nyi bounds at

finite temperature [79].

Jost functions are studied within framework of SUSY QM by Talukdar et al., so that

it is seen that some of the existing results follow from their work in a rather way [80].

Instanton-type quantum fluctuations in supersymmetric quantum mechanical systems

with a double-well potential and a tripe-well potential have been discussed by Kaul-

Mizrachi [81] and the ground state energy was found via a different method considered

by Salomonson-van Holten [13] and Abbott-Zakrzewski [51].

Stahlhofen showed that the shape invariance condition [52] for supersymmetric poten-
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tials and the factorization condition for Sturm-Liouville eigenvalue problems are equiv-

alent [82]. Fred Cooper et al. starting from shape invariant potentials [52] applied an

operator transformation for the Pöschl-Teller potential I and found that the Natanzon

class of solvable potentials [83]. The supersymmetric potential partner pair through the

Fokker-Planck superpotential has been used to deduce the computation of the activation

rate in one-dimensional bistable potentials to a variational calculation for the ground state

level of a non-stable quantum system [84].

A systematic procedure using SUSY QM has been presented for calculating the ac-

curate energy eigenvalues of the Schrödinger equation that obviates the introduction of

large-order determinants by Fernandez, Desmet and Tipping [85].

SUSY has also been applied for Quantum Optics. For instant, let us point out that

the superalgebra of the Jaynes-Cummings model is described and the presence of a gap

in the energy spectrum indicates a spontaneous SUSY breaking. If the gap tends to zero

the SUSY is restored [86]. In another work, the Jaynes-Cummings model for a two-level

atom interacting with an electromagnetic field is analyzed in terms of SUSY QM and

their eigenfunctions are deduced [87]. Other applications on the SUSY QM to Quamtum

Optics can be found in [88].

Mathur has shown that the symmetries of the Wess-Zumino model put severe con-

straints on the eigenstates of the SUSY Hamiltonian simplifying the solutions of the

equation associated with the annihilation conditions for a particular superpotential [89].

In this interesting work, he has found the non-zero energy spectrum and all excited states

are at least eightfold degenerate.

The connection of the PTPI with new isospectral potentials has been studied by Drigo

Filho [90]. Some remarks on a new scenario of SUSY QM by imposing a structure on

the raising and lowering operators have been found for the 1-component eigenfunctions

[91]. The unidimensional SUSY oscillator has been used to construct the strong-coupling

limit of the Jaynes-Cummings model exhibiting a noncompact ortosymplectic SUSY by

Shimitt-Mufti [92].

The propagators for shape invariant potentials and certain recursion relations for them

both in the operator formulation as well as in the path integrals were investigated with

some examples by Das-Huang [93].

At third paper about a review on SUSY QM, the key ingredients on the quantization

of the systems with anticommuting variables and supersymmetric Hamiltonian was con-

structed by emphasizing the role of partner potentials and the superpotentials have been

discussed by Lahiri, Roy and Bagchi [94]. In which Sukumar’s supersymmetric proce-
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dure was applied for the following potentials: unidimensional harmonic oscillator, Morse

potential and sech2x potential.

The formalism of SUSY QM has also been used to realize Wigner superoscillators in

order to solve the Schrödinger equation for the isotonic oscillator (Calogero interaction)

and radial oscillator [95].

Freedman-Mende considered the application in supersymmetric quantum mechanics

for an exactly soluble N-particle system with the Calogero interaction [97]. The SUSY

QM formalism associated with 1-component eigenfunctions was also applied to a planar

physical system in the momentum representation via its connection with a PTPI system.

There, such a system considered was a neutron in an external magnetic field [96].

A supersymmetric generalization of a known solvable quantum mechanical model of

particles with Calogero interactions, with combined harmonic and repulsive forces have

investigated by Freedman-Mende [97] and the explicit solution for such a supersymmetric

Calogero were constructed by Brink et al. [98].

Dutt et al. have investigated the PTPI system with broken SUSY and new exactly

solvable Hamiltonians via shape invariance procedure [99].

The formulation of higher-derivative supersymmetry and its connection with the Wit-

ten index has been proposed by Andrianov et al. [100] and Beckers-Debergh [101] have

discussed a possible extension of the super-realization of the Wigner quantization proce-

dure considered by Jayaraman-Rodrigues [95]. In [101] has been proposed a construction

that was called of a parastatistical hydrogen atom which is a supersymmetric system but

is not a Wigner system. Results of such investigations and also of the pursuit of the

current encouraging indications to extend the present formalism for Calogero interactions

will be reported separately.

In another work on SUSY in the non-relativistic hydrogen atom, Tangerman-Tjon

have stressed the fact that no extra particles are needed to generate the supercharges of

N = 2 SUSY algebra when we use the spin degrees of freedom of the electron [102]. Boya

et al. have considered the SUSY QM approach from geometric motion on arbitrary rank-

one Riemannian symmetric spaces via Jost functions and the Laplace-Beltrami operator

[103].

In next year, Jayaraman-Rodrigues have also identified the free parameter of the

Celka-Hussin’s model with the Wigner parameter [95] of a related super-realized general

3D Wigner oscillator system satisfying a super generalized quantum commutation relation

of the σ3-deformed Heisenberg algebra [104]. In this same year, P. Roy has studied the

possibility of contact interaction of anyons within the framework of two-particle SUSY QM
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model [105]; indeed, at other works the anyons have been studied within the framework

of supersymmetry [106].

In stance in the literature, there exist four excellent review articles about SUSY in

non-relativistic quantum mechanics [70,94,107]. Recently the standard SUSY formalism

was also applied for a neutron in interaction with a static magnetic field in the coordinate

representation [108] and the SUSY QM in higher dimensional was discussed by Das-

Pernice [109].

Actually it is well known that the SUSY QM formalism is intrinsically bound with

the theory of Riccati equation. Dutt et al. have ilusted the ideia of SUSY QM and shape

invariance conditions can be used to obtain exact solutions of noncentral but separable

potentials in an algebraic fashion [110]. A procedure for obtaining the complete energy

spectrum from the Riccati equation has been illustrated by detailed analysis of several

examples by Haley [111].

Including not only formal mathematical objects and schemes but also new physics,

many different physical topics are considered by the SUSY technique (localization, meso-

scopics, quantum chaos, quantum Hall effect, etc.) and each section begins with an

extended introduction to the corresponding physics. Various aspects of SUSY may limit

themselves to reading the chapter on supermathematics, in a book written by Efetov

[112].

SUSY QM of higher order have been by Fernandez et al. [113]. Starting from SUSY

QM, Junker-Roy [114], presented a rather general method for the construction of so-called

conditionally exactly sovable potentials [115]. A new SUSY method for the generation

of quasi-exactly solvable potentials with two known eigenstates has been proposed by

Tkachuk [116].

Recently Rosas-Ortiz has shown a set of factorization energies generalizing the choice

made for the Infeld-Hull [7] and Mielnik [8] factorizations of the hydrogen-like potentials

[117]. The SUSY technique has also been used to generate families of isospectral potentials

and isospectral effective-mass variations, which may be of interest, e.g., in the design of

semiconductor quantum wells [118].

The soliton solutions have been investigated for field equations defined in a space-time

of dimension equal to or higher than 1+1. The kink of a field theory is an example of

a soliton in 1+1 dimensions [121–125]. In this work we consider the Bogomol’nyi [119]

and Prasad-Sommerfield [120] (BPS) classical soliton (defect) solutions. Recently, from

N = 1 supersymmetric solitons the connection between SUSY QM and the sphaleron and

kinks has been established for relativistic systems of a real scalar field [126–132,134].
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The shape-invariance conditions in SUSY [52] have been generalized for systems de-

scribed by two-component wave functions [135], and a two-by-two matrix superpotential

associated to the linear classical stability from the static solutions for a system of two

coupled real scalar fields in (1+1)-dimensions have been found [136–138,141,142]. In Ref.

[138] has been shown that the classical central charge, equal to the jump of the super-

potential in two-dimensional models with minimal SUSY, is additionally modified by a

quantum anomaly, which is an anomalous term proportional to the second derivative of

the superpotential. Indeed, one can consider an analysis of the anomaly in supersymmet-

ric theories with two coupled real scalar fields [140] as reported in the work of Shifman et

al. [138]. Besides, the stability equation for a Q-ball in 1 dimension has also been related

to the SUSY QM [139].

A systematic and critical examination, reveals that when carefully done, SUSY is man-

ifest even for the singular quantum mechanical models when the regularization parameter

is removed [143]. The Witten’s SUSY formulation for Hamiltonian systems to also a

system of annihilation operator eigenvalue equations associated with the SUSY singular

oscillator, which, as was shown, define SUSY canonical supercoherent states containing

mixtures of both pure bosonic and pure fermionic counterparts have been extended [144].

Also, Fernandez et al. have investigated the coherent states for SUSY partners of the

oscillator [145], and Kinani-Daoud have built the coherent states for the Pöschl-Teller

potential [146].

In the first work in Ref. [147], Plyushchay has used arguments of minimal bosonization

of SUSY QM and R-deformed Heisenberg algebra in order to get in the second paper in

the same Ref. a super-realization for the ladder operators of the Wigner oscillator [95].

While Jayaraman and Rodrigues, in Ref. [95], adopt a super-realization of the Wigner-

Heisenberg algebra (σ3−deformed Heisenberg algebra) as effective spectral resolution for

the two-particle Calogero interaction or isotonic oscillator, in Ref. [147], using the same

super-realization, Plyushchay showed how a simple modification of the classical model

underlying Witten SUSY QM results in appearance of N = 1 holomorphic non-linear

supersymmetry.

In the context of the symmetry of the fermion-monopole system [36], Pluyschay has

shown that this system possesses N = 3
2

nonlinear supersymmetry [148]. The spectral

problem of the 2D system with the quadratic magnetic field is equivalent to that of the

1D quasi-exactly solvable systems with the sextic potential, and the relation of the 2D

holomorphic n-supersymmetry to the non-holomorphic N-fold supersymmetry has been

investigated [149].
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In [150], it was shown that the problem of quantum anomaly can be resolved for some

special class of exactly solvable and quasi-exactly solvable systems. So, in this paper it

was discovered that the nonlinear supersymmetry is related with quasi-exact solvability.

Besides, in this paper it was observed that the quantum anomaly happens also in the case

of the linear quantum mechanics and that the usual holomorphic-like form of SUSYQM

(in terms of the holomorphic-like operators W (x)± i d
dx

) is special: it is anomaly free.

Macfarlane [151] and Azcárraga-Macfarlane [152] have investigated models with only

fermionic dynamical variables. Azcárraga et al. generalises the use of totaly antisymmetric

tensors of third rank in the definition of Killing-Yano tensors and in the construction of

the supercharges of hidden supersymmetries that are at most third in fermionic variables

[153].

The SUSY QM formulation has been applied for scattering states (continuum eigen-

value) in non-relativistic quantum mechanics [154,155]. However, a radically different

theory for SUSY was recently putted forward, which is concerned with collision problems

in SUSY QM by Shimbori-Kobayashi [156].

Zhang et al. have considered interesting applications of a semi-unitary formulation in

SUSY QM [157]. Indded, in the papers of Ref. [157] a semi-unitary framework of SUSY

QM was developed. This framework works well for multi-dimensional system. Besides

Hamiltonian, it can simultaneously obtain superpartner of the angular momentum and

other observables, though they are not the generators of the superalgebra in SUSY QM.

Recently, Mamedov et al. heve applied SUSY QM for the case of a Dirac particle

moving in a constant chromomagnetic field [158].

The spectral resolution for the Pöschl-Teller potential I has been studied as shape-

invariant potentials and their potential algebras [159]. For this problem we consider as

complete spectral resolution the application of SUSY QM via Hamiltonian Hierarchy

associated to the partner potential respective [160].

Rencently the group theoretical treatment of SUSY QM has also been investigated by

Fernandez et al. [161]. The SUSY techniques has been applied to periodic potentials by

Dunne-Feinberg [162], Sukhatme-khare [163] and by Fernandez et al. [164]. Rencently,

the complex potentials with the so-colled PT symmetry in quantum mechanics [165] has

also been investigated via SUSY QM [166].

This present work is organized in the following way. In Sec. II we start by summarizing

the essential features of the formulation of one dimensional supersymmetric quantum

mechanics. In Sec. III the factorization of the unidimensional Schrödinger equation and

a SUSY Hamiltonian hierarchy considered by Andrionov et al. [68] and Sukumar [69] is
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presented. We consider in Sec. IV the close connection for SUSY method as an operator

technique for spectral resolution of shape-invariant potentials. In Sec. V we present our

own application of the SUSY hierarchical prescription for the first Pöschl-Teller potential.

It is known that the SUSY algebraic method of resolution spectral via property of shape

invariant which permits to work are unbroken SUSY. While the case of PTPI with broken

SUSY in [99,159] has after suitable mapping procedures that becomes a new potential

with unbroken SUSY, here, we show that the SUSY hierarchy method [69] can work for

both cases. In Section VI, we present a new scenery on the SUSY when it is applied for

a neutron in interaction with a static magnetic field of a straight current carrying wire,

which is described by two-component wave functions [108,167].

Section VII contains the concluding remarks.

II. N=2 SUSY IN CLASSICAL MECHANICS

Recently, we present a review work on Supersymmetric Classical Mechanics in the

context of a Lagrangian formalism, with N = 1−supersymmetry. We have shown that

the N = 1 SUSY does not allow the introduction of a potential energy term depending

on a single commuting supercoordinate, φ(t; Θ) [20].

In the construction of a SUSY theory with N > 1, referred to as extended SUSY,

for each space commuting coordinate, representing the degrees of freedom of the system,

we associate one anticommuting variable, which are known that Grassmannian variables.

However, we consider only the N = 2 SUSY for a non-relativistic point particle, which

is described by the introduction of two real Grassmannian variables Θ1 and Θ2, in the

configuration space, but all the dynamics are putted in the time t [13,18,42,43,230,50,94].

SUSY in classical mechanics is generated by a translation transformation in the su-

perspace, viz.,

Θ1 → Θ′
1 = Θ1 + ε1, Θ2 → Θ′

2 = Θ2 + ε2, t → t′ = t+ iε1Θ1 + iε2Θ2, (1)

whose are implemented for maintain the line element invariant

dt− iΘ1dΘ1 − iΘ2dΘ2 = invariant, (Jacobian = 1), (2)

where Θ1,Θ2 and ε1 and ε2 are real Grassmannian paramenters. We insert the i =
√−1

in (1) and (2) to obtain the real character of time.

The real Grassmannian variables satisfy the following algebra:
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[Θi,Θj]+ = ΘiΘj + ΘjΘi = 0 ⇒ (Θ1)
2 = 0 = (Θ2)

2. (3)

They also satisfy the Berezin integral rule [19]

∫
dΘiΘj = δij ⇒

2∑
i=1

∫
dΘiΘi = 2,

∫
dΘi = 0 = ∂Θi

1,
∫
dΘiΘj = δij = ∂Θi

Θj, (4)

where ∂Θi
= ∂

∂Θ1
so that

[∂Θi
,Θj]+ = ∂Θi

Θj + Θj∂Θi
= δij , ∂Θi

(ΘkΘj) = δikΘj − δijΘk, (5)

with i = j ⇒ δii = 1; and if i �= j ⇒ δij = 0, (i, j = 1, 2).

Now, we need to define the derivative rule with respect to one Grassmannian vari-

able. Here, we use the right derivative rule i.e. considering f(Θ1,Θ2) a function of two

anticommuting variables, the right derivative rule is the following:

f(Θα) = f0 +
2∑

α=1

fαΘα + f3Θ1Θ2

δf =
2∑

α=1

∂f

∂Θα
δΘα. (6)

where δΘ1 and δΘ2 appear on the right side of the partial derivatives.

Defining Θ and Θ̄ (Hermitian conjugate of Θ) in terms of Θi(i = 1, 2) and Grassman-

nian parameters εi,

Θ =
1√
2
(Θ1 − iΘ2),

Θ̄ =
1√
2
(Θ1 + iΘ2),

ε =
1√
2
(ε1 − iε2),

ε̄ =
1√
2
(ε1 + iε2), (7)

the supertranslations become:

Θ → Θ′ = Θ + ε, Θ̄ → Θ̄′ = Θ̄ + ε̄, t → t′ = t− i(Θ̄ε− ε̄Θ). (8)

In this case, we obtain

[∂Θ,Θ]+ = 1, [∂Θ̄, Θ̄]+ = 1, Θ2 = 0. (9)

The Taylor expansion for the real scalar supercoordinate is given by
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φ(t; Θ, Θ̄) = q(t) + iΘ̄ψ(t) + iΘψ̄(t) + ΘΘ̄A(t), (10)

which under infinitesimal SUSY transformation law provides

δφ = φ(t′; Θ′, Θ̄′)− φ(t; Θ, Θ̄)

= ∂tφδt+ ∂ΘφδΘ + ∂Θ̄φδΘ̄

= (ε̄Q+ Q̄ε)φ, (11)

where ∂t =
∂
∂t

and the two SUSY generators

Q ≡ ∂Θ̄ − iΘ∂t, Q̄ ≡ −∂Θ + iΘ̄∂t. (12)

Note that the supercharge Q̄ is not the hermitian conjugate of the supercharge Q. In terms

of (q(t);A) bosonic (even) components and (ψ(t), ψ̄(t)) fermionic (odd) components we

get:

δq(t) = i{εψ̄(t) + ε̄ψ(t)}, δA = ε ˙̄ψ(t)− ε̄ψ̇(t) =
d

dt
{εψ̄ − ε̄ψ), (13)

δψ(t) = −ε{q̇(t)− iA}, δψ̄(t) = −ε̄{q̇(t) + iA}. (14)

Therefore making a variation in the even components we obtain the odd components and

vice-versa i.e. SUSY mixes the even and odd coordinates.

A super-action for the superpoint particle with N=2 SUSY can be written as the

following tripe integral‡

S[φ] =
∫ ∫ ∫

dtdΘ̄dΘ{1
2
(Dφ)(D̄φ)− U(φ)}, D̄ ≡ ∂Θ + iΘ̄∂t, (15)

where D is the covariant derivative (D = −∂Θ̄ − iΘ∂t), ∂̄Θ̄ = −∂Θ and ∂Θ = ∂
∂Θ

, built so

that [D,Q]+ = 0 = [D̄, Q̄]+ and U(φ) is a polynomial function of the supercoordinate.

The covariant derivatives of the supercoordinate φ = φ(Θ, Θ̄; t) become

D̄φ = (∂Θ + iΘ̄∂t)φ = −iψ̄ − Θ̄A+ iΘ̄∂tq + ΘΘ̄ ˙̄ψ,

Dφ = (−∂Θ̄ − iΘ∂t)φ = iψ −ΘA− iΘq̇ + ΘΘ̄ψ̇

(Dφ)(D̄φ) = ψψ̄ − Θ̄(ψq̇ − iAψ) + Θ(iAψ̄ + ψ̄q̇)

+ ΘΘ̄
(
q̇2 + A2 + iψ ˙̄ψ + iψ̇ψ̄

)
. (16)

‡In this section about supersymmetry we use the unit system in which m = 1 = ω, where m is

the particle mass and ω is the angular frequency.
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Expanding in series of Taylor the U(φ) superpotential and maintaining ΘΘ̄ we obtain:

U(φ) = φU ′(φ) +
φ2

2
U ′′(φ) + · · ·

= AΘΘ̄U ′(φ) +
1

2
ψψ̄Θ̄ΘU ′′ +

1

2
ψ̄ψΘΘ̄U ′′ + · · ·

= ΘΘ̄{AU ′ + ψ̄ψU ′′} + · · · , (17)

where the derivatives (U ′ and U ′′) are such that Θ = 0 = Θ̄, whose are functions only the

q(t) even coordinate. After the integrations on Grassmannian variables the super-action

becomes

S[q;ψ, ψ̄] =
1

2

∫ {
q̇2 + A2 − iψ̇ψ̄ + iψ ˙̄ψ − 2AU ′(q)− 2ψ̄ψU ′′(q)

}
dt ≡

∫
Ldt. (18)

Using the Euler-Lagrange equation to A, we obtain:

d

dt

∂L

∂∂tA
− ∂L

∂A
= A− U ′(q) = 0 ⇒ A = U ′(q). (19)

Substituting Eq. (19) in Eq. (18), we then get the following Lagrangian for the superpoint

particle:

L =
1

2

{
q̇2 − i(ψ̇ψ̄ + ψ ˙̄ψ)− 2 (U ′(q))2 − 2U ′′(q)ψ̄ψ

}
, (20)

where the first term is the kinetic energy associated with the even coordinate in which

the mass of the particle is unity. The second term in bracket is a kinetic energy piece

associated with the odd coordinate (particle’s Grassmannian degree of freedom) dictated

by SUSY and is new for a particle with a potential energy. The Lagrangian is not invariant

because its variation result in a total derivative and consequently is not zero, however,

the super-action is invariant, δS = 0, which can be obtained from D |Θ=0= −Q |Θ=0 and

D̄ |Θ̄=0= −Q̄ |Θ̄=0 .

The canonical Hamiltonian for the N = 2 SUSY is given by:

Hc = q̇
∂L

∂q̇
+

∂L

∂(∂tψ)
ψ̇ +

∂L

∂(∂tψ̄)
˙̄ψ − L =

1

2

{
p2+

(
U ′(q)

)
2 + U ′′(q)[ψ̄, ψ]−

}
, (21)

which provides a mixed potential term. Putting U ′(x) = −ωx Eq. (18) describes the

super-action for the superymmetric oscillator, where ω is the angular frequency.

A. CANONICAL QUATIZATION IN SUPERSPACE

The supersymmetry in quantum mechanics, first formulated by Witten [11], can be

deduced via first canonical quantization or Dirac quantization of above SUSY Hamiltonian
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which inherently contain constraints. The first work on the constraint systems without

SUSY was implemented by Dirac in 1950. The nature of such a constraint is different

from the one encountered in ordinary classical mechanics.

Salomonson et al. [13], F. Cooper et al., Ravndal [50] do not consider such constraints.

However, they have maked an adequate choice for the fermionic operator representations

corresponding to the odd coordinates ψ̄ and ψ. The question of the constraints in SUSY

classical mechanics model have been implemented via Dirac method by Barcelos-Neto and

Das [42,43], and by Junker [230]. According the Dirac method the Poisson brackets {A,B}
must be substituted by the modified Posion bracket (called Dirac brackets) {A,B}D,

which between two dynamic variables A and B is given by:

{A,B}D = {A,B} − {A,Γi}C−1
ij {Γj , B} (22)

where Γi are the second-class constraints. These constraints define the C matrix

Cij � {Γi,Γj}, (23)

which Dirac show to be antisymmetric and nonsingular. The fundamental canonical Dirac

brackets associated with even and odd coordinates become:

{q, q̇}D = 1, {ψ, ψ̄}D = i and {A, q̇}D =
∂2U(q)

∂q2
. (24)

All Dirac brackets vanish. It is worth stress that we use the right derivative rule while

Barcelos-Neto and Das in the Ref. [42] have used the left derivative rule for the odd

coordinates. Hence unlike of second Eq. (24), for odd coordinate there appears the

negative sign in the corresponding Dirac brackets, i.e., {ψ, ψ̄}D = −i.
Now in order to implement the first canonical quantization so that according with

the spin-statistic theorem the commutation [A,B]− ≡ AB − BA and anti-commutation

[A,B]+ ≡ AB +BA relations of quantum mechanics are given by

{q, q̇}D = 1 → 1

i
[q̂, ˙̂q]− = 1 ⇒ [q̂, ˙̂q]− = q̂ ˙̂q − ˙̂qq̂ = i,

{ψ, ψ̄}D = i → 1

−i [ψ̂,
ˆ̄ψ]+ = i ⇒ [ψ̂, ˆ̄ψ]+ = ψ̂ ˆ̄ψ + ˆ̄ψψ̂ = 1. (25)

Now we will consider the effect of the constraints on the canonical Hamiltonian in the

quantized version. The fundamental representation of the odd coordinates, in D = 1 =

(0 + 1) is given by:
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ψ̂= σ+ =
1

2
(σ1 + iσ2) =

(
0 0

1 0

)
≡ b+

ˆ̄ψ= σ− =
1

2
(σ1 − iσ2) =

(
0 1

0 0

)
≡ b−

[ψ̂, ˆ̄ψ]+ = 12×2, [ ˆ̄ψ, ψ̂]− = σ3, (26)

where σ3 is the Pauli diagonal matrix, σ1 and σ2 are off-diagonal Pauli matrices. On

the other hand, in coordinate representation, it is well known that the position and

momentum operators satisfy the canonical commutation relation ([x̂, p̂x]− = i) with the

following representations:

x̂ ≡ q̂(t) = x(t), p̂x = mẋ(t) = −ih̄ d

dx
= −i d

dx
, h̄ = 1. (27)

In next section we present the various aspects of the SUSY QM and the connection

between Dirac quantization of the SUSY classical mechanics and the Witten’s model of

SUSY QM.

III. THE FORMULATION OF SUSY QM

The graded Lie algebra satisfied by the odd SUSY charge operators Qi(i = 1, 2, . . . , N)

and the even SUSY Hamiltonian H is given by following anti-commutation and commu-

tation relations:

[Qi, Qj ]+ = 2δijH, (i, j = 1, 2, . . . , N), (28a)

[Qi, H ]− = 0. (28b)

In these equations, H and Qi are functions of a number of bosonic and fermionic low-

ering and raising operators respectively denoted by ai, a
†
i(i = 1, 2, . . . , Nb) and bi, b

†
i (i =

1, 2, . . . , Nf), that obey the canonical (anti-)commutation relations:

[ai, a
†
j]− = δij, (29a)

[bi, b
†
j ]+ = δij , (29b)

all other (anti-)commutators vanish and the bosonic operators always commute with the

fermionic ones.
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If we call the generators with these properties ”even” and ”odd”, respectively, then

the SUSY algebra has the general structure

[even, even]− = even

[odd, odd]+ = even

[even, odd]− = odd

which is called a graded Lie algebra or Lie superalgebra by mathematicians. The case of

interest for us is the one with Nb = Nf = 1 so that N = Nb +Nf = 2, which corresponds

to the description of the motion of a spin 1
2

particle on the real line [11].

Furthermore, if we define the mutually adjoint non-Hermitian charge operators

Q± =
1√
2
(Q1 ± iQ2), (30)

in terms of which the Quantum Mechanical SUSY algebraic relations, get recast respec-

tively into the following equivalent forms:

Q2
+ = Q2

− = 0, [Q+, Q−]+ = H (31)

[Q±, H ]− = 0. (32)

In (31)), the nilpotent SUSY charge operators Q± and SUSY Hamiltonian H are now

functions of a−, a+ and b−, b+. Just as [Qi, H ] = 0 is a trivial consequence of [Qi, Qj] =

δijH, so also (32) is a direct consequence of (31) and expresses the invariance of H under

SUSY transformations.

We illustrate the same below with the model example of a simple SUSY harmonic

oscillator (Ravndal [50] and Gendenshtein [70]). For the usual bosonic oscillator with the

Hamiltonian§

Hb =
1

2

(
p2
x + ω2

bx
2
)

=
ωb
2

[a+, a−]+ = ωb

(
Nb +

1

2

)
, Nb = a+a−, (33)

a± =
1√
2ωb

(±ipx − ωbx) =
(
a∓
)†
, (34)

[a−, a+]− = 1, [Hb, a
±]− = ±ωba±, (35)

§NOTATION: Throughout this section, we use the systems of units such that c = h̄ = m = 1.
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one obtains the energy eigenvalues

Eb = ωb

(
nb +

1

2

)
, = 0, 1, 2, . . . , (36)

where nb are the eigenvalues of the number operator indicated here also by Nb.

For the corresponding fermionic harmonic oscillator with the Hamiltonian

Hf =
ωf
2

[b+, b−]− = ωf

(
Nf − 1

2

)
, Nf = b+b−, (b+)† = b−, (37)

[b−, b+]+ = 1 , (b−)2 = 0 = (b+)2 , [Hf , b
±]− = ±ωfb±, (38)

we obtain the fermionic energy eigenvalues

Ef = ωf

(
ηf − 1

2

)
, ηf = 0, 1, (39)

where the eigenvalues ηf = 0, 1 of the fermionic number operator Nf follow from Nf
2 =

Nf .

Considering now the Hamiltonian for the combined system of a bosonic and a fermionic

oscillator with ωb = ωf = ω, we get:

H = Hb +Hf = ω
(
Nb +

1

2
+Nf − 1

2

)
= ω(Nb +Nf) (40)

and the energy eigenvalues E of this system are given by the sum Eb + Ef , i.e., by

E = ω(nb + nf ) = ωn, (nf = 0, 1; nb = 0, 1, 2, . . . ; n = 0, 1, 2, . . .). (41)

Thus the ground state energy E(0) = 0 in (41) corresponds to the only non-degenerate case

with nb = nf = 0, while all the excited state energies E(n)(n ≥ 1) are doubly degenerate

with (nb, nf) = (n, 0) or (n− 1, 1), leading to the same energy E(n) = nω for n ≥ 1.

The extra symmetry of the Hamiltonian (40) that leads to the above of double degen-

eracy (except for the singlet ground state) is in fact a supersymmetry, i.e., one associated

with the simultaneous destruction of one bosonic quantum nb → nb − 1 and creation

of one fermionic quantum nf → nf + 1 or vice-versa, with the corresponding symmetry

generators behaving like a−b+ and a+b−. In fact, defining,

Q+ =
√
ωa+b−, Q− = (Q+)† =

√
ωa−b+, (42)

it can be directly verified that these charge operators satisfy the SUSY algebra given by

Eqs. (31) and (32).
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Representing the fermionic operators by Pauli matrices as given by Eq. (26), it follows

that

Nf = b+b− = σ−σ+ =
1

2
(1− σ3), (43)

so that the Hamiltonian (12) for the SUSY harmonic oscillator takes the following form:

H =
1

2
p2
x +

1

2
ω2x2 − 1

2
σ3ω, (44)

which resembles the one for a spin 1
2

one dimensional harmonic oscillator subjected to a

constant magnetic field. Explicitly,

H=


 1

2
p2
x + 1

2
ω2x2 − 1

2
ω 0

0 1
2
p2
x + 1

2
ω2x2 + 1

2
ω




=


 ωa+a− 0

0 ωa−a+


 =


 H− 0

0 H+


 (45)

where, from Eqs. (26) and (42), we get

Q+ =
√
ω


 0 a+

0 0


 , Q− =

√
ω


 0 0

a− 0


 . (46)

The eigenstates of Nf with the fermion number nf = 0 is called bosonic states and is

given by

χ− = χ↑ =


 1

0


 . (47)

Similarly, the eigenstates of Nf with the fermion number nf = 1 is called fermionic state

and is given by

χ+ = χ↓ =


 0

1


 . (48)

The subscripts −(+) in χ−(χ+) qualify their non-trivial association with H−(H+) of H

in (45). Accordingly, H− in (45) is said to refer to the bosonic sector of the SUSY

Hamiltonian H while H+, the fermionic sector of H . (Of course this qualification is only

conventional as it depends on the mapping adopted in (26) of b∓ onto σ±, as the reverse

mapping is easily seen to reverse the above mentioned qualification.)
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A. WITTEN’S QUANTIZATION WITH SUSY

Witten’s model [11] of the one dimensional SUSY quantum system is a generalization

of the above construction of a SUSY simple harmonic oscillator with
√
ωa− → A− and√

ωa+ → A+, where

A∓ =
1√
2
(∓ipx −W (x)) = (A±)†, (49)

where, W = W (x), called the superpotential, is an arbitrary function of the position

coordinate. The position x and its canonically conjugate momentum px = −i d
dx

are

related to a− and a+ by (34), but with ωb = 1:

a∓ =
1√
2
(∓ipx − x) = (a±)†. (50)

The mutually adjoint non-Hermitian supercharge operators for Witten’s model [11,107]

are given by

Q+ = A+σ− =


 0 A+

0 0


 , Q− = A−σ+


 0 0

A− 0


 , (51)

so that the SUSY Hamiltonian H takes the form

H = [Q+, Q−]+ =
1

2

(
p2
x +W 2(x)− σ3

d

dx
W (x)

)

=


 H− 0

0 H+


 =


 A+A− 0

0 A−A+


 (52)

where σ3 is the Pauli diagonal matrix and, explicitly,

H−= A+A− =
1

2

(
p2
x +W 2(x) − d

dx
W (x)

)

H+= A−A+ =
1

2

(
p2
x +W 2(x) +

d

dx
W (x)

)
. (53)

In this stage we present the connection between the Dirac quantization and above

SUSY Hamiltonian. Indeed, from Eq. (26) and (21), and defining

W (x) ≡ U ′(x) ≡ dU

dx
, (54)

the SUSY Hamiltonian given by Eq. (52) is reobtained.

Note that for the choice of W (x) = ωx one reobtains the unidimensional SUSY oscil-

lator (44) and (45) for which
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A− = a−=
1√
2

(
− d

dx
− ωx

)
= ψ

(0)
−

(
− 1√

2

d

dx

)
1

ψ
(0)
−

A+ = a+= (A−)† =
1√
2

(
d

dx
− ωx

)
=

1

ψ
(0)
−

(
1√
2

d

dx

)
ψ

(0)
− , (55)

where

ψ
(0)
− ∝ exp

(
−1

2
ωx2

)
(56)

is the normalizable ground state wave function of the bosonic sector Hamiltonian H−.

In an analogous manner, for the SUSY Hamiltonian (52), the operators A± of (49)

can be written in the form

A−= ψ
(0)
−

(
− 1√

2

d

dx

)
1

ψ
(0)
−

=
1√
2


− d

dx
+

1

ψ
(0)
−

dψ
(0)
−

dx


 (57)

A+= (A−)† =
1

ψ
(0)
−

(
1√
2

d

dx

)
ψ

(0)
−

=
1√
2


 d

dx
+

1

ψ
(0)
−

dψ
(0)
−

dx


 , (58)

where

ψ
(0)
− ∝ exp

(
−
∫ x

W (q)dq
)

(59)

and

ψ
(0)
+ ∝ exp

(∫ x

W (q)dq
)
⇒ ψ

(0)
+ ∝ 1

ψ
(0)
−

(60)

are symbolically the ground states of H− and H+, respectively. Furthermore, we may

readily write the following annihilation conditions for the operators A±:

A−ψ(0)
− = 0, A+ψ

(0)
+ = 0. (61)

Whatever be the functional form of W (x), we have, by virtue of Eqs. (47), (48), (51),

(59), (60) and (61),

Q−ψ
(0)
− χ− = 0, |φ− >≡ ψ

(0)
− χ− ∝ exp

(
−
∫ x

W (q)dq
) 1

0


 (62)



CBPF-MO-003/01 22

and

Q+ψ
(0)
+ χ+ = 0, |φ+ >≡ ψ

(0)
+ χ+ ∝ exp

(∫ x

W (q)dq
) 0

1


 , (63)

so that the eigensolution |φ− > and |φ+ > of (62) and (63) are both annihilated by

the SUSY Hamiltonian (52), with Q−χ+ = 0 and Q+χ− = 0, trivially holding good. If

only one of these eigensolution, |φ− > or |φ+ >, are normalizable, it then becomes the

unique eigenfunction of the SUSY Hamiltonian (52) corresponding to the zero energy

of the ground state. In this situation, SUSY is said to be unbroken. In the case when

neither |φ− >, Eq. (62), nor |φ+ >, Eq. (63), are normalizable, then no normalizable zero

energy state exists and SUSY is said to be broken. It is readily seen from (62) and (63)

that if W (x) → ∞(−∞), as x → ±∞, then |φ− > (|φ+ >) alone is normalizable with

unbroken SUSY while for W (x) → −∞ or +∞, for x → ±∞ neither |φ− > nor |φ+ >

are normalizable and one has broken SUSY dynamically [11,51,71,107]. In this case, there

are no zero energy for the ground state and so far the spectra to H± are identical.

Note from the form of the SUSY Hamiltonian H of (52), that the two second-order

differential equations corresponding to the eigenvalue equations of H− and H+ of Eq.

(53), by themselves apparently unconnected, are indeed related by SUSY transformations

by Q±, Eq. (51), on H , which operations get translated in terms of the operators A± in

Q± as discussed below.

1. FACTORIZATION OF THE SCHRÖRDINGER AND A SUSY HAMILTONIAN

Considering the case of unbroken SUSY and observing that the SUSY Hamiltonian

(52) is invariant under x → −x and W (x) → −W (x) there is no loss of generality involved

in assuming that |φ− > of (62) is the normalizable ground state wave function of H so

that ψ
(0)
− is the ground state wave function of H−. Thus, from (52), (53), (57) and (62),

it follows that

H−ψ
(0)
− =

1

2

(
p2
x +W 2(x) −W ′(x)

)
ψ

(0)
− = A+A−ψ(0)

− = 0, (64)

E
(0)
− = 0, V−(x) =

1

2
W 2(x) − 1

2
W ′(x), W ′(x) =

d

dx
W (x). (65)

Them from (52) and (55),

H+ = A−A+ = A+A− − [A+, A−]− = H− − d2

dx2
�nψ

(0)
− , (66)
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V+(x) = V−(x) − d2

dx2
�nψ

(0)
− =

1

2
W 2(x) +

1

2
W ′(x). (67)

From (64) and (65) it is clear that any Schrödinger equation with potential V−(x),

that can support at least one bound state and for which the ground state wave function

ψ
(0)
− is known, can be factorized in the form (64) with V− duly readjusted to give E

(0)
− = 0

(Andrianov et al. [68] and Sukumar [69]). Given any such readjusted potential V−(x) of

(65), that supports a finite number, M , of bound states, SUSY enables us to construct the

SUSY partner potential V+(x) of (67). The two Hamiltonians H− and H+ of (52), (64)

and (66) are said to be SUSY partner Hamiltonians. Their spectra and eigenfunctions

are simply related because of SUSY invariance of H , i.e., [Q±, H ]− = 0.

Denoting the eigenfunctions of H− and H+ respectively by ψ
(n)
− and ψ

(n)
+ , the integer

n = 0, 1, 2 . . . indicating the number of nodes in the wave function, we show now that H−
and H+ possess the same energy spectrum, except that the ground state energy E

(0)
− of

V− has no corresponding level for V+.

Starting with

H−ψ
(n)
− = E

(n)
− ψ

(n)
− =⇒ A+A−ψ(n)

− = E
(n)
− ψ

(n)
− (68)

and multiplying (68) from the left by A− we obtain

A−A+(A−ψ(n)
− ) = E

(n)
− (A−ψ(n)

− ) ⇒ H+(A−ψ(n)
− ) = E

(n)
− (A−ψ(n)

− ). (69)

Since A−ψ(0)
− = 0 [see Eq. (61)], comparison of (69) with

H+ψ
(n)
+ = A−A+ψ

(n)
+ = E

(n)
+ ψ

(n)
+ , (70)

leads to the immediate mapping:

E
(n)
+ = E

(n+1)
+ , ψ

(n)
+ ∝ A−ψ(n+1)

− , n = 0, 1, 2, . . . . (71)

Repeating the procedure but starting with (70) and multiplying the same from the

left by A+ leads to

A+A−(A+ψ
(n)
+ ) = E

(n)
+ (A+ψ

(n)
+ ), (72)

so that it follows from (68), (71) and (72) that

ψ
(n+1)
− ∝ A+ψ

(n)
+ , n = 0, 1, 2, . . . . (73)

The intertwining operator A−(A+) converts an eigenfunction of H−(H+) into an eigen-

function of H+(H−) with the same energy and simultaneously destroys (creates) a node
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of ψ
(n+1)
−

(
ψ

(n)
+

)
. These operations just express the content of the SUSY operations ef-

fected by Q+ and Q− of (51) connecting the bosonic and fermionic sectors of the SUSY

Hamiltonian (52).

The SUSY analysis presented above in fact enables the generation of a hierarchy of

Hamiltonians with the eigenvalues and the eigenfunctions of the different members of the

hierarchy in a simple manner (Sukumar [69]). Calling H− as H1 and H+ as H2, and

suitably changing the subscript qualifications, we have

H1 = A+
1 A

−
1 + E

(0)
1 , A

(−)
1 = ψ

(0)
1

(
− 1√

2

d

dx

)
1

ψ
(0)
1

= (A+
1 )†, E

(0)
1 = 0, (74)

with supersymmetric partner given by

H2 = A−
1 A

+
1 + E

(0)
1 , V2(x) = V1(x)− d2

dx2
�nψ

(0)
1 . (75)

The spectra of H1 and H2 satisfy [see (71)]

E
(n)
2 = E

(n+1)
1 , n = 0, 1, 2, . . . , (76)

with their eigenfunctions related by [see (73)]

ψ
(n+1)
1 αA+

1 ψ
(n)
2 , n = 0, 1, 2, . . . . (77)

Now factoring H2 in terms of its ground state wave function ψ
(0)
2 we have

H2 = −1

2

d2

dx2
+ V2(x) = A+

2 A
−
2 + E

(0)
2 , A−

2 = ψ
(0)
2

(
− 1√

2

d

dx

)
1

ψ
(0)
2

, (78)

and the SUSY partner of H2 is given by

H3 = A−
2 A

+
2 + E

(0)
2 , V3(x) = V2(x) − d2

dx2
�nψ

(0)
1 . (79)

The spectra of H2 and H3 satisfy the condition

E
(n)
3 = E

(n+1)
2 , n = 0, 1, 2, . . . , (80)

with their eigenfunctions related by

ψ
(n+1)
2 αA+

2 ψ
(n)
3 , n = 0, 1, 2, . . . . (81)

Repetition of the above procedure for a finite number, M, of bound states leads to the

generation of a hierarchy of Hamiltonians given by
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Hn = −1

2

d2

dx2
+ Vn(x) = A+

nA
−
n + E(0)

n = A−
n−1A

+
n−1 + E

(0)
n−1, (82)

where

A−
n= ψ(0)

n

(
− 1√

2

d

dx

)
1

ψ
(0)
n

=
1√
2

(
− d

dx
−Wn(x)

)
,

Wn(x)= − d

dx
�n(ψ(0)

n ), A+
n =

(
A−
n

)†
, (83)

and

Vn(x)= Vn−1(x)− d2

dx2
�n(ψ

(0)
n−1)

= V1(x)− d2

dx2
�n(ψ

(0)
1 ψ

(0)
2 . . . ψ

(0)
n−1), n = 2, 3, . . . ,M, (84)

whose spectra satisfy the conditions

En−1
1 = En−2

2 = . . . = E(0)
n , n = 2, 3, . . . ,M, (85)

ψn−1
1 ∝ A+

1 A
+
2 . . . A

+
n−1ψ

(0)
n . (86)

Note that the nth-member of the hierarchy has the same eigenvalue spectrum as the

first member H1 except for the missing of the first (n− 1) eigenvalues of H1. The energy

eigenvalue of the (n-1)th-excited state of H1 is degenerate with the ground state ofHn and

can be constructed with the use of (86) that involves the knowledge of Ai(i = 1, 2, . . . , n−
1) and ψ(0)

n .

2. SUSY METHOD AND SHAPE-INVARIANT POTENTIALS

It is particularly simple to apply (86) for shape-invariant potentials (Gendenshtein [52],

Cooper et al. [76], Dutt et al. [77] and in review article [107]) as their SUSY partners are

similar in shape and differ only in the parameters that appear in them. More specifically,

if V−(x; a1) is any potential, adjusted to have zero ground state energy E
(0)
− = 0, its SUSY

partner V+(x; a1) must satisfy the requirement

V+(x; a1) = V−(x; a2) +R(a2), a2 = f(a1), (87)

where a1 is a set of parameters, a2 a function of the parameters a1 and R(a2) is a remainder

independent of x. Then, starting with V1 = V−(x; a2) and V2 = V+(x; a1) = V1(x; a2) +

R(a2) in (87), one constructs a hierarchy of Hamiltonians
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Hn = −1

2

d2

dx2
+ V−(x; an) + Σn

s=2R(as), (88)

where as = f s(a1), i.e., the function f applied s times. In view of Eqs. (87) and (88), we

have

Hn+1 = −1

2

d2

dx2
+ V−(x; an+1) + Σn+1

s=2R(as) (89)

= −1

2

d2

dx2
+ V+(x; an) + Σn

s=2R(as). (90)

Comparing (88), (89) and (90), we immediately note that Hn and Hn+1 are SUSY partner

Hamiltonians with identical energy spectra except for the ground state level

E(0)
n = Σn

s=2R(as) (91)

of Hn, which follows from Eq. (88) and the normalization that for any V−(x; a) , E
(0)
− = 0.

Thus Eqs. (85) and (86) get translate simply, letting n → n + 1, to

En
1 = En−1

2 = . . . = E
(0)
n+1 =

n+1∑
s=2

R(as), n = 1, 2, . . . (92)

and

ψ
(n)
1 ∝ A+

1 (x; a1)A
+
2 (x; a2) . . .A

+
n (x; an)ψ

(0)
n+1(x; an+1). (93)

Equations (92) and (93), succinctly express the SUSY algebraic generalization, for

various shape-invariant potentials of physical interest [52,69,77], of the method of con-

structing energy eigenfunctions (ψ(n)
osc) for the usual ID oscillator problem. Indeed, when

a1 = a2 = . . . = an = an+1, we obtain ψ(n)
osc ∝ (a+)nψ

(0)
1 , A+

n = a+, ψ(0)
osc = ψ

(0)
n+1 =

ψ
(0)
1 ∝ e−

ωx2

2 , where ω is the angular frequency.

The shape invariance has an underlying algebraic structure and may be associated

with Lie algebra [168]. In next Section of this work, we present our own application of

the Sukumar’s SUSY method outlined above for the first Pöschl-Teller potential with un-

quantized coupling constants, while in the earlier SUSY algebraic treatment by Sukumar

[69] only the restricted symmetric case of this potential with quantized coupling constants

was considered.
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IV. THE FIRST PÖSCHL-TELLER POTENTIAL VIA SUSY QM

We would like to stress the interesting approaches for the Pöschl-Teller I potential.

Utilizing the SUSY connection between the particle in a box with perfectly rigid walls and

the symmetric first Pöschl-Teller potential, the SUSY hierarchical prescription (outlined in

Section III) was utilized by Sukumar [69] to solve the energy spectrum of this potential.

The unsymmetric case has recently been treated algebraically by Barut, Inomata and

Wilson [78]. However in these analysis only quantized values of the coupling constants

of the Pöschl-Teller potential have been obtained. In the works of Gendenshtein [52]

and Dutt et al. [77] treating the unsymmetric case of this potential with unquantized

coupling constants by the SUSY method for shape-invariant potentials, only the energy

spectrum was obtained but not the excited state wave functions. Below we present our

own application of the Sukumar’s SUSY method obtaining not only the energy spectrum

but also the complete excited state energy eigenfunctions.

It is well known that usual shape invariance procedure [52] is not applicable for com-

putation energy spectrum of a potential without zero energy eigenvalue. Recently, an

approach was implemented with a two-step shape invariant in order to connect broken

and unbroken SUSY QM potentials [99,159]. In this references it is considered the Pöschl-

Teller I potential, showing the types of shape invariance it possesses. In Ref. [159], the

PTPI and the three-dimensional harmonic oscillator both with broken SUSY have been

investigated, for the first time, in terms of a novel two-step shape invariance approach

via a group theoretic potential algebra approach [168]. In the work present is the first

spectral resolution, to our knowledge, via SUSY hierarchy in order to construct explicitly

the energy eigenvalue and eigenfunctions of the Pöschl-Teller I potential.

Starting with the first Pöschl-Teller Hamiltonian [169]

HPT = −1

2

d2

dx2
+

1

2
α2

{
k(k − 1)

sin2αx
+
λ(λ− 1)

cos2αx

}
, (94)

where 0 ≤ αx ≤ π/2, k > 1, λ > 1;α = real constant. The substitution Θ = 2αx, 0 ≤
Θ ≤ π, in (94) leads to

HPT = 2α2H1 (95)

where

H1= − d2

dΘ2
+ V1(Θ)

V1(Θ)=
1

4

[
k(k − 1)sec2(Θ/2) + λ(λ− 1)cossec2(Θ/2)

]
. (96)
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Defining

A±
1 = ± d

dΘ
−W1(Θ) (97)

and

H1= A+
1 A

−
1 + E

(0)
1

= − d2

dΘ2
+W 2

1 (Θ)−W ′
1(Θ) + E

(0)
1 (98)

where the prime means a first derivative with respect to Θ variable. From both above

definitions of H1 we obtain the following non-linear first order differential equation

W 2
1 (θ)−W ′

1(Θ) =
1

4

{
k(k − 1)

sin2(Θ/2)
+

λ(λ− 1)

cos2(Θ/2)

}
−E

(0)
1 , (99)

which is exactly a Riccati equation.

Let be superpotential Ansatz

W1(Θ) = −k
2
cot(Θ/2) +

λ

2
tan(Θ/2), E

(0)
1 =

1

4
(k + λ)2. (100)

According to Sec. III, the energy eigenfunction associated to the ground state of PTI

potential becomes

ψ
(0)
1 = exp

{
−
∫
W1(θ)dΘ

}
∝ sink(Θ/2)cosλ(Θ/2). (101)

In this case the first order intertwining operators become

A−
1 = − d

dΘ
+
k

2
cot(Θ/2)− λ

2
tan(Θ/2) = ψ

(0)
1

(
− d

dΘ

)
1

ψ
(0)
1

(102)

and

A+
1 = (A−

1 )† =
1

ψ
(0)
1

(
d

dΘ

)
ψ

(0)
1

=
d

dΘ
+
k

2
cot(Θ/2)− λ

2
tan(Θ/2). (103)

In Eqs. (102)) and (103), ψ
(0)
1 is the ground state wave function of H1.

The SUSY partner of H1 is H2, given by

H2= A−
1 A

+
1 + E

(0)
1 = H1 − [A+

1 , A
−
1 ]−

V2(Θ)= V1(Θ)− 2
d2

dΘ2
�nψ

(0)
1

= V1(Θ)− 2
d2

dΘ2
�n
[
sink(Θ/2)cosλ(Θ/2)

]

=
1

4

(
k(k + 1)

sin2(Θ/2)
+

λ(λ+ 1)

cos2(Θ/2)

)
. (104)
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Let us now consider a refactorization of H2 in its ground state

H2 = A+
2 A

−
2 + E

(0)
2 , A−

2 = − d

dΘ
−W2(Θ). (105)

In this case we find the following Riccati equation

W 2
2 (θ)−W ′

2(Θ) =
1

4

{
k(k + 1)

sin2(Θ/2)
+

λ(λ+ 1)

cos2(Θ/2)

}
− E

(0)
2 , (106)

which provides a new superpotential and the ground state energy of H2

W2(Θ) = −(k + 2)

2
cot(Θ/2) +

(λ+ 2)

2
tan(Θ/2), E

(0)
2 =

1

4
(k + λ+ 2)2. (107)

Thus the eigenfunction associated to the ground state of H2 is given by

ψ
(0)
2 = exp

{
−
∫
W2(Θ)dΘ

}
∝ sink+1(Θ/2)cosλ+1(Θ/2). (108)

Hence in analogy with (102) and (103) the new intertwining operators are given by

A±
2 = ± d

dΘ
−W2(Θ)

= ± d

dΘ
+

(k + 1)

2
cot(Θ/2)− (λ+ 1)

2
tan(Θ/2)

A−
2 = ψ

(0)
2

(
− d

dΘ

)
1

ψ
(0)
2

, A−
2 ψ

(0)
2 = 0. (109)

Note that the V2(Θ) partner potential has a symmetry, viz.,

V2(Θ) =
1

4

(
k(k + 1)

sin2(Θ/2)
+

λ(λ+ 1)

cos2(Θ/2)

)
= V1(k → k + 1, λ→ λ+ 1) (110)

which is leads to the shape-invariance property (outlined in subsection III.2) for the first

unbroken SUSY potential pair

V1−=
1

4

(
k(k − 1)

sin2(Θ/2)
+

λ(λ− 1)

cos2(Θ/2)

)
− 1

4
(k + λ)2

V1+=
1

4

(
k(k + 1)

sin2(Θ/2)
+

λ(λ+ 1)

cos2(Θ/2)

)
− 1

4
(k + λ)2

= V1−(k → k + 1, λ→ λ+ 1) + (λ+ k + 1). (111)

In this case, one can obtain energy eigenvalues and eigenfunctions by means of the shape-

invariance condition. However, we have derived the excited state algebraically, by exploit-

ing the Sukumar’s method for the construction of SUSY hierarchy [69]. Furthermore, note

that ψ
(0)
1− = ψ

(0)
1 is normalizable with zero energy for the ground state of bosonic sector
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Hamiltonian H1− = H1−E
(0)
1 and the energy eigenvalue for the ground state of fermionic

sector Hamiltonian H1+ = H2 − E
(0)
1 is exactly the first excited state of H1−, but the

eigenfunction 1

ψ
(0)
1

is not the ground state of H1+, for k > 0 and λ > 0.

Let us again consider the Sukumar’s method in order to find the partner potential of

V2(Θ) is

V3(Θ)= V2(Θ)− 2
d2

dΘ2
�nψ

(0)
2 = V2(Θ) +

1

2

(
(2k + 1)

sin2(Θ/2)
+

(2λ+ 1)

cos2(Θ/2)

)

=
1

4

(
(k + 2)(k + 1)

sin2(Θ/2)
+

(λ+ 2)(λ+ 1)

cos2(Θ/2)

)
= V1(k → k + 2, λ→ λ + 2). (112)

Now one is able to implement the generalization for nth-member of the hierarchy, i.e. the

general potential may be written for all integer values of n, viz.,

Vn(Θ)= V1(Θ) +
1

4
(n− 1)

{
2k + n− 2

sin2(Θ/2)
+

2λ+ n− 2

cos2(Θ/2)

}

=
k2 − k + k(n− 1) + (n− 1)(n− 2)

4sin2(Θ/2)

+
λ2 − λ+ λ(n− 1) + (n− 1)(n− 2)

4cos2(Θ/2)

=
1

4

{
(k + n− 1)(k + n− 2)

sin2(Θ/2)
+

(λ+ n− 1)(λ+ n− 2)

cos2(Θ/2)

}
. (113)

Note that Vn(Θ) = V1(Θ; k → k + n− 1, λ → λ + n− 1) so that the (n+1)th-member of

the hierarchy is given by

Hn+1 = A+
n+1A

−
n+1 + E

(0)
n+1, E

(0)
n+1 =

1

4
(k + λ+ 2n)2 (114)

where

A−
n+1= ψ

(0)
n+1

(
− d

dΘ

)
1

ψ
(0)
n+1

=
(
A+
n+1

)†

ψ
(0)
n+1∝ sink+n(Θ/2)cosλ+n(Θ/2). (115)

Applying the SUSY hierarchy method (92), one gets the nth-excited state of H1 from the

ground state of Hn+1, as given by

ψ
(n)
1 ∝ A+

1 A
+
2 . . . A

+
n sin

k+n(Θ/2)cosλ+n(Θ/2)

=
n−1∏
s=0

[
1

sink+s(Θ/2)cosλ+s(Θ/2)

(
d

dΘ

)

sink+s(Θ/2)cosλ+s(Θ/2)
]
sink+n(Θ/2)cosλ+n(Θ/2)
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∝ 1

senk−1(Θ/2)cosλ−1(Θ/2)

(
1

sin(Θ/2)

d

dΘ

)n
sin2(k+n)−1(Θ/2)cos2(λ+n)−1(Θ/2)

∝ (1 − u)
k
2 (1 + u)

λ
2

[
(1 − u)−k+

1
2 (1 + u)−λ+ 1

2

(
dn

dun

)
(1 − u)k−

1
2
+n(1 + u)λ−

1
2
+n

]
, (116)

where (u = cosΘ), so that the ground state of nth-member of hierarchy is given by

ψ(0)
n ∝ sink+n−1(Θ/2)cosλ+n−1(Θ/2) (117)

and the nth-excited state of PTI potential become

ψ
(n)
1 (Θ) ∝ sink(Θ/2)cosλ(Θ/2)F

(
−n, n + k + λ; k +

1

2
; sin2(Θ/2)

)
, (118)

which follows on identification of the square bracketed quantity in (116) with the Jacobi

polynomials (Gradshteyn and Ryzhik [170])

J
(k− 1

2
,λ− 1

2)
n ∝ F

(
−n, n+ k + λ; k +

1

2
;
1 − u

2

)
.

Here F are known as the confluent hypergeometric functions which clearly they are in the

region of convergency and defined by [70]

F (a, b; c; x) = 1 +
ab

c
x+

a(a+ 1)(b(b+ 1)

1.2.c(c+ 1)
x2 +

a(a + 1)(a+ 2)b(b+ 1)(b+ 2)

1.2.c(c+ 1)(c+ 2)
x3 + · · ·

and its derivative with respect to x becomes

d

dx
F (a, b; c; x) =

ab

c
F (a+ 1, b+ 1; c+ 1; x).

The excited state eigenfunctions (118) here obtained by the SUSY algebraic method

agree with those given in Flügge [169] using non-algebraic method. Note that the coupling

constants k and λ in above analysis are unquantized. Besides from Sec. III, Eq. (114)

and Eq. (95) we readily find the following energy eigenvalues for the PTI potential

E
(n)
1 = E

(n−1)
2 = · · · = 2α2E

(0)
n+1 =

α2

4
(k + λ+ 2n)2,

E
(n)
PT= 2α2E

(n)
1 =

α2

4
(k + λ+ 2n)2, n = 0, 1, 2, · · ·. (119)

Let us now point out the existence of various possibilities to supersymmetrize the PTI

Hamiltonian with broken SUSY, for a finite interval [0, π]. with unbroken and broken

SUSY. Indeed both ground states do not have zero energy, so that when k and λ are in a

particular interval one can have a broken SUSY, because there such eigenstates are also not

normalizable. In these cases, the shape invariant procedure is not valid but the Sukumar’s

SUSY hierarchy procedure [69] can be applied. Therefore, we see that other combinations

of the k and λ parameters are also possible to provide distinct superpotentials.
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V. NEW SCENARIO OF SUSY QM

In this Section we apply the SUSY QM for a neutron in interaction with a static

magnetic field of a straight current carrying wire. This system is described by two-

component wave functions, so that the development considered so far for SUSY QM must

be adapted.

The essential reason for the necessity of modification is due to the Riccati equation

may be reduced to a set of first-order coupled differential equations. In this case the

superpotential is not defined asW (x) = − d
dx
�n (ψ0(x)) , where ψ0(x) is the two-component

eigenfunction of the ground state. Only in the case of 1-component wave functions one

may write the superpotential in this form. Recently two superpotentials, energy eigenvalue

and the two-component eigenfunction of the ground state have been found [108,167].

In this Subection we investigate a symmetry between the supersymmetric Hamiltonian

pair H± for a neutron in an external magnetic field. After some transformations on

the original problem which corresponds to a one-dimensional Schrödinger-like equation

associated with the two-component wavefunctions in cylindrical coordinates, satisfying

the following eigenvalue equation

H±Φ
(nρ,m)
± = E

(nρ,m)
± Φ

(nρ,m)
± , nρ = 0, 1, 2, · · · , (120)

where nρ is the radial quantum number andm is the orbital angular momentum eigenvalue

in the z-direction. The two-component energy eigenfunctions are given by

Φ
(nρ,m)
± = Φ

(nρ,m)
± (ρ, k) =


 φ

(nρ,m)
1± (ρ, k)

φ
(nρ,m)
2± (ρ, k)


 (121)

and the supersymmetric Hamiltonian pair

H−≡ A+A− = −I
d2

dρ2
+




m2− 1
4

ρ2
+ 1

8(m+1)2
1
ρ

1
ρ

(m+1)2− 1
4

ρ2
+ 1

8(m+1)2




H+≡ A−A+ = H− − [A+,A−]−

= −I
d2

dρ2
+ V+, (122)

where I is the 2x2 unit matrix and

A± = ± d

dρ
+ W(ρ). (123)

In this Section we are using the notation of Ref. [167]. Thus in this case the Riccati

equation in matrix form, becomes
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W′(ρ) + W2(ρ) =
(m+ 1

2
)(m+ 1

2
− σ3)

ρ2
+
σ1

ρ
+

I

8(m+ 1)2
, (124)

where the two-by-two hermitian superpotential matrix recently calculated in [167], which

is given by

W(ρ;m) = W† = (m+
1

2
)(I + σ3)

1

2ρ
+ (m+

3

2
)(I− σ3)

1

2ρ
+

σ1

2m+ 2
, (125)

where σ1, σ3 are the well known Pauli matrices.

The hermiticity condition on the superpotential matrix allows us to construct the

following supersymmetric potential partner

V+(ρ;m)= V− − 2W′(ρ)

= W2(ρ)− W′(ρ)

=


 (m+ 1

2
)(m+ 3

2
)

ρ2
1
ρ

1
ρ

(m+ 1
2
)(m+ 7

2
)+2

ρ2


+

I

8(m+ 1)2
. (126)

Note that in this case we have unbroken SUSY because the ground state has zero

energy, viz., E−(0) = 0, with the annihilation conditions

A−Φ
(0)
− = 0 (127)

and

A+Φ
(0)
+ = 0. (128)

Due to the fact these eigenfunctions to be of two components one is not able to write

the superpotential in terms of them in a similar way of that one-component eigenfunction

belonging to the respective ground state.

Furthermore, we have a symmetry between V±(ρ;m). Indeed, it is easy to see that

V+(ρ;m)=
(m+ 1)2 − 1

4

ρ2
I + (2m+ 3)

(I− σ3)

2ρ2
+
σ1

ρ
+

I

8(m+ 1)2

= V−(ρ;m → m+ 1) + Rm, (129)

where Rm = − I
8
(2m+3)(m+1)−2(m+2)−2. Therefore, we can find the energy eigenvalue

and eigenfunction of the ground state of H+ from those of H− and the resolution spectral

of the hierarchy of matrix Hamiltonians can be achieved in an elegant way via the shape

invariance procedure.
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VI. CONCLUSIONS

We start considering the Lagrangian formalism for the construction of one dimension

supersymmetric quantum mechanics with N=2 SUSY in a non-relativistic context, viz.,

two Grassmann variables in classical mechanics and the Dirac canonical quantization

method was considered.

This paper also relies on known connections between the theory of Darboux operators

[23] in factorizable essentially isospectral partner Hamiltonians (often called as supersym-

metry in quantum mechanics ”SUSY QM”). The structure of the Lie superalgebra, that

incorporates commutation and anticommutation relations in fact characterizes a new type

of a dynamical symmetry which is SUSY, i.e., a symmetry that converts bosonic state

into fermionic state and vice-versa with the Hamiltonian, one of the generators of this

superalgebra, remaining invariant under such transformations [5,11]. This aspect of it

as well reflects in its tremendous physical content in Quantum Mechanics as it connects

different quantum systems which are otherwise seemingly unrelated.

A general review on the SUSY algebra in quantum mechanics and the procedure on

like to build a SUSY Hamiltonian hierarchy in order of a complete spectral resolution

it was explicitly applied for the Pöschl-Teller potential I. We will now do a more detail

discussion for the case of this problem presents broken SUSY.

It is well known that usual shape invariant procedure [52,200] is not applicable for

computation energy spectrum of a potential without zero energy eigenvalue. Recently,

the approach implemented with a two-step shape invariance in order to connect broken

and unbroken [99] is considered in connections [159]. In these references it is considered

the Pöschl-Teller potential I (PTPI), showing the types of shape invariance it possesses.

In this work we consider superpotential continuous and differentiable that provided us the

PTPI SUSY partner with the nonzero energy eigenvalue for the ground state, a broken

SUSY system, or containing a zero energy for the ground state with unbroken SUSY. We

have presented our own application of the SUSY hierarchy method, which can also be

applied for broken SUSY [69]. The potential algebras for shape invariance potentials have

been considered in the references [159,168].

We have also applied the SUSY QM formalism for a neutron in interaction with a static

magnetic field of a straight current carrying wire, which is described by two-component

wave functions, and presented a new scenario in the coordinate representation. Parts of

such an application have also been considered in [108,167].

Furthermore, we stress that defining k = −2(m + 1
2
) and λ = 2(m + 1

2
), where m is
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angular moment along z axis, in the PTPI it is possible to obtain the energy eigenvalue

and eigenfunctions for such a planar physical system as an example of the 2-dimensional

supersymmetic problem in the momentum representation [96]. We see from distinct su-

perpotentials may be considered distinct supersymmetrizations of the PTPI potential

[160].

In this article some applications of SUSY QM were not commented. As examples, the

connection between SUSY and the variational and the WKB methods. In [94,107] the

reader can find various references about useful SUSY QM and in improving the old WKB

and variational method. However, the WKB approximations provide us good results

for higher states than for lower ones. Hence if we apply the WKB method in order to

calculate the ground state one obtain a very poor approximation. The N = 2 SUSY

algebra and many applications including its connection with the variational method and

supersymmetric WKB have been recently studied in the literature [171,172]. Indeed,

have been suggested that supersymmetric WKB method may be useful in studying the

deviation of the energy levels of a quantum system due to the presence of spherically

confining boundary [172]. There they have observed that the confining geometry removes

the angular-momentum degeneracy of the electronic energy levels of a free atom. Khare

has investigated the supersymmetric WKB quantization approximation [173], and Khare-

Yarshi have studied the bound state spectrum of two classes of exactly solvable non-shape-

invariant potentials in the SWKB approximation and shown that it is not exact [174].

A method to obtain wave function in a uniform semiclassical approximation to SUSY

QM has been applied for the Morse, Rosen-Morse, and anharmonic oscillator potentials

[175]. Inomata et al. have applied the WKB quantization rule for the isotropic harmonic

oscillator in three dimensions, quadratic potential and the PTPI [176].

In literature, the SUSY algebra has also been applied to invetigate a variety of one-

parameter families of isospectral SUSY partner potentials [21,22,177] in non-relativistic

quantum mechanics which are phase-equivalent [178]. By phase-equivalent potentials it

is understood that the potentials relate all Hamiltonians which have the same phase

shifts and essentially the same bound-state spectrum. Lévai-Baye-Sparenberg have ob-

tained potentials which are phase-equivalent with the generalised Ginochio potential [179].

Nag-Roychoudhury show that the repeated application of Darboux’s theorem [23] for an

isospectral Hamiltonian provides a new potential which can be phase equivalent. How-

ever, such a similar procedure is inequivalent to the usual approach on Darboux’ theorem

[180].

Another important approach is the connection between SUSY QM and the Dirac
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equation, so that many authors have considered in their works. For example, Ui [181] has

shown that a Dirac particle coupled to a Gauge field in three spacetime dimensions pos-

sesses a SUSY analogous to Witten’s model [11] and Gamboa-Zanelli [182] have discussed

the extension to include non-Abelian Gauge fields, based on the ground-state wavefunc-

tion representation for SUSY QM. The SUSY QM has also been applied for the Dirac

equation of the electron in an attractive central Coulomb field by Sukumar [183], to a

massless Dirac particle in a magnetic field by Huges-Kostelecty-Nieto [184], and to second-

order relativistic equations, based on the algebra of SUSY by Jarvis-Stedman [185] and

for a neutral particle with an anomalous magnetic moment in a central electrostatic field

by Fred et al. [186] and Semenov [187]. Beckers et al. have shown that 2n fermionic

variables of the spin-orbit coupling procedure may generate a grading leading to a uni-

tary Lie superalgebra [188]. Using the intertwining of exactly solvable Dirac equations

with one-dimensional potentials, Anderson has shown that a class of exactly solvable po-

tentials corresponds to solitons of the modified Korteweg de Vries equation [189]. Njock

et al. [190] have investigated the Dirac equation in the central approximation with the

Coulomb potential, so that they have derived the SUSY-based quantum defect wave func-

tions from an effective Dirac equation for a valence that is solvable in the limit of exact

quantum-defect theory. Dahl-Jorgensen have investigated the relativistic Kepler prblem

with emphasis on SUSY QM via Jonson-Lippman operator [191]. The energy eigenvalues

of a Dirac electron in a uniform magnetic field has been analyzed via SUSY QM by Lee

[192]. The relation between superconductivity and Dirac SUSY has been generalized to

a multicomponent fermionic system by Moreno et al. [193].

An interesting quantum system is the so-called Dirac oscillator, first introduced by

Moshinsky-Szczepaniak [194]; its spectral resolution has been investigated with the help

of techniques of SUSY QM [195]. The Dirac oscillator with a generalized interaction has

been treated by Castaños et al. [196]. In another work, Dixit et al. [197] have considered

the Dirac oscillator with a scalar coupling whose non-relativistic limit leads to a harmonic

oscillator Hamiltonian plus a <S ·<̂r coupling term. The wave equation is not invariant under

parity. They have worked out a parity-invariant Dirac oscillator with scalar coupling by

doubling the number of components of the wave function and using the Clifford algebra

C�7. These works motivate the construction of a new linear Hamiltonian in terms of the

momentum, position and mass coordinates, through a set of seven mutually anticommut-

ing 8x8-matrices yielding a representation of the Clifford algebra C�7. The seven elements

of the Clifford algebra C�7 generate the three linear momentum components, the three

position coordinates components and the mass, and their squares are the 8x8-identity
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matrix I8x8.

Recently, the Dirac oscillator have been approached in terms of a system of two parti-

cles [198] and to Dirac-Mörsen problem [199] and relativistic extensions of shape invariant

potential classes [200].

Results of our analysis on the SUSY QM and Dirac equation for a linear potential

[199,201] and for the Dirac oscillator via R-deformed Heisenberg algebra [95,147], and the

new Dirac oscillator via Clifford algebra C�7 are in preparation.

Crater and Alstine have applied the constraint formalism for two-body Dirac equations

in the case of general covariant interactions [202,203], which has its origin in the work of

Galvão-Teitelboim [12]. This issue and the discussion on the role SUSY plays to justify

the origin of the constraint have recently been reviewed by Crater and Alstine [204].

In [205], Robnit purposes to generate the superpotential in terms of arbitrary higher

excited eigenstates, but there the whole formalism of the 1-component SUSY QM is

needed of an accurate analysis due to the nodes from some excited eigenstates. Results

of such investigations will be reported separately.

Now let us point out various other interesting applications of the superymmetric quan-

tum mechanics, for example, the extension dynamical algebra of the n-dimensional har-

monic oscillator with one second-order parafermionic degree of freedom by Durand-Vinet

[206]. Indeed, these authors have shown that the parasupersymmetry in non-relativistic

quantum mechanics generalize the standard SUSY transformations [207]. The parasuper-

symmetry has also been analyzed in the following references [208–213].

Other applications of SUSY QM may be found in [214–255]. All realizations of SUSY

QM in these works is based in the Witten’s model [11]. However, another approach on

the SUSY has been implemented in classical and quantum mechanics. Indeed, a N=4

SUSY representation in terms of three bosonic and four fermionic variables transforming

as a vector and complex spinor of rotation group O(3) has been proposed, based on the

supercoordinate construction of the action [256]. However, the superfield SUSY QM with

3 bosonic and 4 fermionic fields was first described by Ivanov-Smilga [257].

It is well known that N=4 SUSY is the largest number of extended SUSY for which a

superfield (supercoordinate) formalism is known. However, using components fields and

computations the N > 4 classification of N-extended SUSY QM models have been imple-

mented via irreducible multiplets of their representation by Gates et al. [258]. Recently,

Pashnev-Toppan have also shown that all irreducible multiplets of representation of N

extended SUSY are associated to fundamental short multiplets in which all bosons and

all fermions are accommodated into just two spin states [259].
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N = 4 supersymmetric quantum mechanics many-body systems in terms of Calogero

models and N = 4 superfield formulations have been investigated by Wyllard [260]. This

Ref. and the N=4 superfield formalism used there are actually based on the paper [261].

SUSY N=4 in terms of the dynamics of a spinning particle in a curved background

has also been described using the superfield formalism [262]. There are a few more of

works where SUSY QM in higher dimensions is investigated [263,265,266]. However, the

Ref. [263] is a further extension of the results obtained earlier in the basic paper [264].

The paper of Claudson-Halpern, [267], was the first to give the N = 4 and N = 16

SUSY gauge quantum mechanics, the latter now called M(atrix) theory [268].
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