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Abstract

A quick and condensed review of the basic prop-

erties of the division algebras is presented. Some

applications to physics and to physically moti-

vated mathematical problems are discussed.
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Introduction: what is a division algebra?

The most familiar division algebras are R, C and
H (i.e. the algebra of the quaternions, spanned
by the identity and the three Pauli matrices).

They all admit the unit element and an anti-
involution (the conjugation) s.t.

(a∗)∗ = a, (ab)∗ = b∗a∗

(the conjugation corresponds to the transposi-
tion in the matrix representation).

Definition of a division algebra over R (see [Por]).

It is a finite-dimensional real linear space X with
a bilinear product X2 → X s.t.

ab = 0 iff a = 0 ∨ b = 0.

A division algebra is normed if ∃N : X → R+ s.t.

N : a 7→ a∗a ∈ R+, N(ab) = N(a)N(b)

N is the norm, while R+ denotes the non-negative
real numbers.
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A division algebra is said alternative if ∀a, b ∈ X

both properties below hold

a(ab) = a2b, (ab)b = ab2.

Comment: the alternativity is a weakening of

the notion of associativity.

The Cayley algebra, also called algebra of oc-

taves or octonions and denoted by O, is an al-

ternative division algebra of dimension 8.

The 14-dimensional exceptional Lie group G2 is

its group of automorphisms.
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Some results on division algebras.

i) Frobenius’ theorem: any associative division

algebra over R is isomorphic to R, C or H.

ii) Hurwitz’ theorem: any normed division alge-

bra over R with unit element is isomorphic to

R, C, H or O.

iii) any alternative division algebra over R is iso-

morphic to R, C, H or O.

iv) any division algebra over R has dimension 1,

2, 4 or 8.

4



CBPF-MO-002/01

Explicit construction of division algebras

through a procedure, see [Pos], known as
“doubling of an algebra”.

R → C → H → O → . . .

Comment: the simplest example of doubling
corresponds to the geometrical identification of
complex numbers with points in the real plane.

Let a, b, c, d ∈ X, then (a, b), (c, d) ∈ X2.
In X2 we define the product through

(a, b)(c, d) = (ad− c∗b, bc∗ + da).

The identity 1X2 in X2 is 1X2 = (1X ,0).
By setting IX2 = (0, 1X), we can write
(a, b) = a1X2 + bIX2.

The conjugation in X2 is introduced through

(a1X2 + bIX2)∗ = a∗1X2 − bIX2.
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Comment: the “doubling of an algebra” can be

performed ad libitum. However, each time that

a doubling is performed some properties are lost.

In the passage from complex numbers to quater-

nions the commutativity is lost.

In the passage from quaternions to octonions

the associativity is lost while the weaker property

of alternativity is preserved.

The doubling of the octonions produces an al-

gebra which is no longer normed.
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Applications of the division algebras

∗) Octonions and the seven-sphere S7.

S7 is a compact, simply connected, parallelizable

manifold (the last property means ∃ d nowhere

vanishing, linearly independent vector fields, with

d the dimensionality of the manifold). It can be

expressed as [CP]

S7 = {x ∈ O|x∗x = 1}.

The remaining compact, simply connected par-

allelizable manifolds are S1 and S3, associated to

complex numbers and quaternions respectively.

They are both group-manifolds

S1 ∼ U(1), S3 ∼ SO(3).

Comment: S7 is not a group-manifold due to the

non-associativity character of the octonions.
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∗) Lorentz groups and division algebras [KT].

The universal covering groups of some Lorentz-

groups are isomorphic to division algebra-valued

Sl(2) groups. The following isomorphisms hold

S0(2,1) ∼ Sl(2,R),

S0(3,1) ∼ Sl(2,C), ([)

S0(5,1) ∼ Sl(2,H). (])

([) provides the 2-component spinor decompo-

sition in the standard Minkowski space.

(]) provides a 2-component spinor decomposi-

tion in a 6-dimensional Minkowski space.

10-dimensional supersymmetric theories admit

an octonionic description based on the Jordan

algebra realization of SO(9,1) in terms of 2× 2

hermitian matrices over O.
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Further associations (see [GK]):

SO(8) admits a realization through the G2 auto-

morphisms group of the octonions plus left and

right multiplications by unit octonions xL, xR.

SO(7) admits a realization through the G2 au-

tomorphisms group of the octonions plus left

and right multiplications by conjugated unit oc-

tonions xL, xR = xL
∗.

Consistency checks:

1

2
(8 · 7) = 28 ⇐⇒ 14 + 7 + 7 = 28,

1

2
(7 · 6) = 21 ⇐⇒ 14 + 7 = 21.

9



CBPF-MO-002/01

∗) Octonions and Clifford Γ-matrices [Oku].

The seven-dimensional Euclidean real Clifford
algebra C(0,7) is expressed by seven real anti-
symmetric Γ matrices of size 8×8 which can be
constructed in terms of the octonionic structure
constants.

∗)Division algebras and extended supersym-
metries [Top].

The simplest association of division algebras and
extended supersymmetries is for 1D N-extended
SUSY Quantum Mechanical Systems.
For N = 1,2,4,8 the supersymmetric algebra

{Qi, Qj} = δijH, i, j = 1, . . . , N,

can be realized through

Q =
∂

∂θ
+ θ

∂

∂x
and

Qa = τaD,
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where τa denotes the generators of the corre-
sponding division algebra (besides the identity)
and D is the supersymmetric derivative

D =
∂

∂θ
− θ

∂

∂x
.

∗) Γ-matrices and extended supersymmetries
[PT].

The irreducible multiplets of representation of
the 1D N-extended SUSY algebra are in one-to-
one correspondence with the real-valued Clifford
Γ-matrices of Weyl type (i.e. decomposable in
antidiagonal block form).

The dimensionality D of the Clifford algebra cor-
responds to N , the number of extended super-
symmetries.

The size d of the Clifford Γ-matrices corresponds
to n, the number of states in the irreducible
multiplet.
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Comment: Just for N = 8 there are two realiza-

tions of the N = 8 supersymmetry, namely

i) a matrix realization, corresponding to the

N = 8 case of the above classification, which

further implies n = 16,

ii) the octonionic realization discussed above.

This is of course not a matrix realization since

the octonions are non-associative.

Open problem: find a connection between the

two realizations of the N = 8 supersymmetry.
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∗) String theories and division algebras [Omn].

According to the theory of geometrical embed-

dings, the motion of an Euclidean string in a

D-dimensional Euclidean target manifold is re-

duced, for D = 3,4,6,10, to the Liouville theory

of a single field Φ taking values in a division

algebra, according to the table

D = 3 ⇐⇒ R,

D = 4 ⇐⇒ C,

D = 6 ⇐⇒ H,

D = 10 ⇐⇒ O (?).

Comment: (?) is conjectured.

Notice that the dimension of the corresponding

division algebra is D − 2, the dimension of the

transverse coordinates space.
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∗) Further applications:

- The supersymmetric affinization 0̂ of the oc-

tonions. An N = 8 supersymmetric algebra of

Malcev type [CRT].

- Division algebras and N = 2,4,8 extended su-

persymmetrizations of the KdV hierarchy [CRT2].
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